Linux Compute Servers

List of Servers

Name Alias Hardware Operating System
linuxg5 linux19 1 x AMD EPYC 7453 28-core with 128GB RAM
2 x NVIDIA A100 GPU
Rocky Linux 8
linuxg4 linux18 1 x AMD EPYC 7662 64-Core Processor 128GB RAM
1 x NVIDIA A100 GPU
Rocky Linux 8 GPU set in multi-instance mode. See here for more info.
linuxg3 linux17 1 x AMD EPYC 16-core with 64GB RAM
2 x NVIDIA Tesla V100S GPU
Rocky Linux 8
linuxg1 linux15 1 x Intel Xeon E5-2683 16-core (2.1GHz) with 128GB RAM
1 x NVIDIA Tesla P100 GPU
Rocky Linux 8
linuxe4 linux10 2 x Intel Xeon E5-2630 Six core (2.6GHz) with 64GB RAM Rocky Linux 8
linuxe3 linux9 2 x Intel Xeon E5-2630 Six core (2.6GHz) with 64GB RAM Rocky Linux 8
linuxe2 linux8 2 x Intel Xeon E5-2630 Six core (2.6GHz) with 64GB RAM Rocky Linux 8
linuxe1 linux7 2 x Intel Xeon E5-2630 Six core (2.6GHz) with 64GB RAM Rocky Linux 8
linuxb1 linux6 1 x AMD EPYC 7351 16 Core (2.4GHz) with 128GB RAM Rocky Linux 8
linuxa5 linux5 2 x Intel Xeon Fourteen Core (2.4GHz) with 256GB RAM Rocky Linux 8
linuxa4 linux4 2 x Intel Xeon Fourteen Core (2.4GHz) with 256GB RAM Rocky Linux 8
linuxa3 linux3 2 x Intel Xeon Fourteen Core (2.4GHz) with 256GB RAM Rocky Linux 8
linuxa2 linux2 2 x Intel Xeon Fourteen Core (2.4GHz) with 256GB RAM Rocky Linux 8
linuxa1 linux1 2 x Intel Xeon Fourteen Core (2.4GHz) with 256GB RAM Rocky Linux 8

Software

Server programs are installed at the request of Faculty and Staff. Some general software is available such as:

  • ANSYS
  • MATLAB
  • Common GNU compilers such as c/c++ and g77.
  • Anaconda and Python 2.7 and 3.X

Most of the software can be found in the usual directory locations and /usr/local, but contact us for more info or for more information on specific program availability if needed.

Multi-Instance GPU

The Multi-Instance GPU (MIG) feature allows GPUs be partitioned into separate instances. To identify and choose the instance you’d like to use:


1. Identify the instances available:

    nvidia-smi -L

2. Set your CUDA_VISIBLE_DEVICES environment variable to the instance you’d like to run on.

    If using tcsh

    setenv CUDA_VISIBLE_DEVICES MIG-xxx-xxx-xxx-xxx-xxx

    If using bash

    export CUDA_VISIBLE_DEVICES=MIG-xxx-xxx-xxx-xxx-xxx

Then run your code as normal. For more information, see here.