FIU – EMA5646 Ceramic Processing

Course Information

Introduction to the science and engineering of ceramic processing, with emphasis on theoretical fundamentals and current state-of-the-art processing

Course Objective

The main objective of EMA5646 Ceramic Processing is to introduce principles and engineering practices of conventional as well as new, unconventional processing techniques for ceramics, especially advanced technical ceramics and glass materials

Contents Covered

  • Ceramic powder synthesis, processing, and characterizations
  • Additives used in ceramic processing
  • Ceramic green body formation and characterization
  • Thermal processing of ceramics
  • Post firing processing of ceramics

Course Syllabus

SYLLABUS for EMA 5646 Ceramic Processing

Lecture Slides & Videos

Lecture slides (PDF)Section No.Lecture videos on YouTube w/ closed captions (CC)Additional Resources
Lecture 1  Course IntroductionL1-01Textbook Instructor Website 
 L1-02Policy Grading Objectives 
 L1-03What are ceramics 
 L1-04Traditional ceramics and glasses 
 L1-05Ceramics for mechanical applications 
 L1-06Ceramics for thermal applications 
 L1-07Functional ceramics 
 L1-08Ceramics atomic and micro structures 
 L1-09Ceramic processing and materials tetrahedron 
 L1-10Overview and tentative schedule 
 L1-11Mini-proposal guideline 
 L1-12No plagiarism 
    
Lecture 2  Powder PreparationL2-01 Introduction to powder preparation 
 L2-02Raw materials 
 L2-03Powder preparation methods 
 L2-04Mechanical milling 
 L2-05Mechanochemical synthesis 
 L2-06Solid state reaction 
 L2-07Solution precipitation 
 L2-08Solvent removal 
 L2-09 Gel routes 
 L2-10Vapor phase reactions 
 L2-11Thermodynamics vs kinetics 
 L2-12Lab safety 
    
Lecture 3  Powder CharacterizationL3-01Introduction to powder characterizations 
 L3-02Composition analysis techniques 
 L3-03XRD phase analysis 
 L3-04Elemental analysis techniques 
 L3-05Depth profiling 
 L3-06Electron based and other composition analysis techniques 
 L3-07Particles and their classifications 
 L3-08Particles size and size distribution PSD 
 L3-09Particles size analysis techniques 
 L3-10Powder surface area and porosity introduction 
 L3-11Surface area and porosity from gas adsorption introduction 
 L3-12Measurement of gas adsorption isotherms 
 L3-13Gas adsorption isotherm classification and example 
 L3-14Langmuir adsorption isotherm 
 L3-15BET adsorption isotherm and BET surface area 
 L3-16Pore analysis from gas adsorption 
 L3-17From gas adsorption isotherm to pore size distribution 
 L3-18Specific pore volume and porosity from gas adsorption 
 L3-19Pore analysis by mercury porosimetry 
 L3-20Porosity from pycnometry 
    
Lecture 4  AdditivesL4-01Introduction and classification for ceramic processing additives 
 L4-02Solvents 
 L4-03Dispersant introduction 
 L4-04Surfactant as dispersant 
 L4-05Polymer as dispersant 
 L4-06Ions and molecules as dispersant 
 L4-07Binders 
 L4-08Coagulants 
 L4-09Plasticizers introduction 
 L4-10Polymer melting point Tm and glass transition temperature Tg 
 L4-11Polymer elastic modulus vs temperature 
 L4-12Plasticizer effect on polymer Tg 
 L4-13Other additives 
    
Lecture 5  Colloidal ProcessingL5-01Introduction to colloidal processing 
 L5-02Van der Waals forces between particles 
 L5-033 ways to stabilize colloidal suspensions 
 L5-043 ways to develop particle surface charges 
 L5-05Point of zero charge PZC 
 L5-06Electrical double layer EDL over particle surface in solutions 
 L5-07Debye length and repulsion between particles 
 L5-08Surface potential and surface charge density 
 L5-09Electrostatically stabilized colloids 
 L5-10Debye length examples 
 L5-11Electrophoresis, mobility and zeta potential 
 L5-12Stern model for EDL and zeta potential 
 L5-13Al2O3 TiO2 AgI colloids zeta potentials – ionic strength effect 
 L5-14Colloids isoelectrical point IEP 
 L5-15Zeta potential on green structure examples of SiO2 Al2O3 
 L5-16Colloids steric stabilization by polymer adsorption and repulsion 
 L5-17Polymer coverage of particles – concentration, MW, and solvent effects 
 L5-18Unadsorbed polymer effect in colloidal solutions 
 L5-19Polymer coverage, MW, and solvent effects on colloid steric stabilization 
 L5-20Colloid electrosteric stabilization by polyelectrolyte adsorption 
 L5-21Rheology of colloidal suspensions 
 L5-22Newtonian and non Newtonian behaviors in rheology 
 L5-23Zeta potential effect on colloidal suspension rheology 
 L5-24Polymer adsorption MW solvent effects on colloid rheology 
 L5-25Polyelectrolyte effect on colloid rheology 
 L5-26Solid loading effect on colloid rheology 
 L5-27Particle shape and size effects on colloid rheology 
    
Lecture 6  Green Body FormationL6-01Introduction to green body formation 
 L6-02Green body formation methods 
 L6-03Regular packing of monosized spheres 
 L6-04Random packing of monosized particles 
 L6-05Random packing of bimodal spheres 
 L6-06Random packing of bimodal nonspheres 
 L6-07Packing of practical powders 
 L6-08Mechanical compaction 
 L6-09Powders vs granules for mechanical compaction 
 L6-10Die compaction – pressure effects 
 L6-11Die compaction – powder size distribution effect 
 L6-12Die compaction – granule hardness effects 
 L6-13Die compaction – die powder interaction effects 
 L6-14Release from die and defects in mechanical compaction 
 L6-15Isostatic pressing 
 L6-16Casting for green body formation 
 L6-17Slip casting 
 L6-18Tape casting 
 L6-19Other casting techniques 
 L6-20Plastic forming by extrusion and injection molding 
 L6-21Drying after casting or plastic formation 
 L6-22Binder removal from green bodies 
 L6-23Green body characterization 
    
Lecture 7  SinteringL7-01Introduction to sintering 
 L7-02Pressureless sintering setups 
 L7-03Monitoring of sintering by density and dilatometry 
 L7-04Isothermal vs constant heating rate sintering 
 L7-05Multi stage heating schedules for sintering 
 L7-06Constant heating rate sintering 
 L7-07Atmosphere effects on sintering 
 L7-08Other sintering techniques 
 L7-09Hot pressing HP 
 L7-10Hot isostatic pressing HIP

HIP intro video by Isostatic Pressing AssociationEquipment considerations

Metal HIP w a metal capsule by Bodycote

HIP w/ rapid cooling by Quintus

 L7-11Microwave sintering 
 L7-12Spark plasma sintering SPS 
 L7-13Flash sintering FS 
 L7-14Classification and microstructural evolution in sintering 
 L7-15Driving force for coarsening vs sintering 
 L7-16Necessary condition for densification 
 L7-17Grain size and pore size evolution in sintering 
 L7-18Vapor pressure and vacancy concentration in sintering 
 L7-19Mass transport mechanisms determine densification vs coarsening 
 L7-20Sintering kinetics 
 L7-21Coarsening and grain growth in sintering 
 L7-22Factors influencing pure solid state sintering 
 L7-23Liquid phase sintering 
 L7-24Constrained sintering 
 L7-25Reaction sintering 

Videos for lab demonstrations

Dry pressing