Search PubMed Magnifying glass icon for PubMed search

Publications @ Colorado State University


Table of publications with most recent at the top
Illustrations Publication Details

Strong Efficiency Enhancement of Eu3+-Induced Polystyrene-b-Poly (acrylic acid) Nanoaggregateson Bladed Organic Polymer Solar Cells through Doping the Electron Transport Layer

Guo S, Li S, Shen W, Yue Y, Wang Q, Liu J, Wang Y, Li J, Snow CD, Kipper MJ, Belfiore LA, Lee SW, Tang J. ACS Applied Energy Mater. (2025)

Diagram showing metal-organic frameworks deposited within porous protein crystal structure

Deposition of Metal - Organic Frameworks within a Porous Protein Crystal Superstructure

DeRoo JB, Rojina S, Jones AA, Rajendran D, Thai JE, Tuttle RR, Snow CD, Reynolds MM (2025) Journal of Materials Chemistry B.

Smart quadruplicate information coding and hazard sensing, with dual UV/IR excitation, in 2D fine images of Eu3+/Tb3+/Zn2+ hyaluronan nanoaggregates and NaGdF4:Yb,Er nanoparticles

Liu J, Wang B, Li S, Wang Y, Li J, Zhang Y, Snow CD, Kipper MJ, Lee SW, Belfiore LA, Tang J. J. Mater. Chem. C. (2025)


Enhanced Fluorescence Bioimaging of Water Soluble Conjugated Ruthenium (II) Complex in Vitro/Vivo Oxidoreductase-Overexpressed Tumor Cells

Li L, Liu J, Xu R, Wang Y, Wamg Y, Huang L, Du Z, Snow CD, Xie H, Kipper MJ, Belfiore LA, Tang J. (2025) Sensors and Actuators B: Chemical.


Multilevel Information Encoding of Metal Ion-Induced Fluorescent Nanoaggregates and Full-Color Electrohydrodynamic Printing

Wang B, Liu J, Shen W, Wang Y, Li J, Zhang Y, Wang Q, Snow CD, Kipper MK, Lee SW, Belfiore LA, Tang J. (2025) ACS Appl. Poly. Mater.


Laboratory automation setup showing liquid handling robotics for protein crystallization as well as Python programming control thereof

Automation of Protein Crystallization Scaleup via Opentrons-2 Liquid Handling

DeRoo JB, Jones AA, Slaughter CK, Ahr TW, Stroup SM, Thompson GB, Snow CD. (2025) SLAS Technology
Scientific diagram showing DNA transport and adsorption in porous protein crystals

Characterization of Guest DNA Transport and Adsorption within Host Porous Protein Crystals

Chen S, Stuart JD, Munsky B, Snow CD. (2024) Langmuir.


Smart cancer targeting and super-sensitive sensing of Eu3+/Tb3+-induced hyaluronan characteristic nanomicelles with effective drug loading and releasing

Bi Y; Li L; Liu J; Wang Y; Wang B; Wang Y; Snow CD; Li J; Kipper MJ; Belfiore LA; Tang J (2024) Molecules.



Full fluorescence paper of Eu3+ induced diblock copolymer nanoaggregates for negative multiple mode photon information storage and encryption

Chen W, Tang Q, Xu R, Liu J, Wang Y, Wang W, Wang Y, Snow CD, Kipper MJ, Belfiore LA; Tang J. (2024) Appl. Mater. Today



A smart microporous block copolymer membrane containing fluorescent europium complexes reports drug release through fluorescence changes

Xu R; Wang J; Li Z; Wang B; Shen W; Wang Y; Wang W; Wang Y; Li J; Snow CD; Kipper MJ; Belfiore LA; Tang J. (2024) J. Mater. Chem. C.

Image of crosslinked crystals withstanding tough conditions

Tuning chemical DNA ligation within DNA crystals and protein-DNA co-crystals

Orun AR, Slaughter CK, Shields ET, Vajapayajula A, Jones S, Shrestha R, Snow CD (2024) ACS Nanoscience Au.


Image of a scFv bound to a peptide colored by AlphaFold confidence alongside a schematic illustration of a sliding window

PAbFold: Linear Antibody Epitope Prediction using AlphaFold2

DeRoo J, Terry JS, Zhao N, Stasevich TJ, Snow CD, Geiss BJ (2024) eLife.


schematic illustrating catalytic, therapeutic, and structural biology applications of porous crystals

Porous protein crystals: synthesis and applications

Jones AA, Snow CD (2024) Chem. Commun.


Laboratory Evolution of Substrate Recognition and Nanoparticle Product Size

Hendricks A, Cohen R, McEwen G, Tien T, Guilliams B, Alspach A, Snow CD, Ackerson C (2024) ACS Chem. Biol.


DNA Hybrid Flourescent Chrominance Sensor: Drug Sensing through Direct Gradient Flourescent Color Transformation of Hybrid DNA Crystals Loaded Lanthanide (Eu3+/Tb3+) Complexes

Zhao S; Xiu D; Zhang M; Wang Y; Qiu M; Snow CD; Wang Y; Belfiore LA; Tang J (2024) J. Crystal Growth.

Image of PEG polymers inside protein crystal nanopores and probing thereof with an AFM tip

Ligand presentation inside protein crystal nanopores: Tunable interfacial adhesion noncovalently modulates cell attachment

Wang D, Hedayati M, Stuart JD, Madruga LYC, Popat KC, Snow CD, Kipper MP (2023) Materials Today Nano.


Improved performance for polymer solar cells though photon energy harvesting and down-conversion of Eu3+-induced diblock polymer aggregates (EIPAs)

Long Z, Li Shuxin, Shen W, Li T, Wang Y, Guo S, Kipper MK, Snow CD, Belfiore LA, Tang J. (2023) J. Mater. Chem. C.


Schematic image of a protein-dna co-crystal expanded with insert DNA with the insert acting as a binding site for a guest protein.

Modular Protein-DNA Cocrystals as Precise, Programmable Assembly Scaffolds

Orun, AR, Shields, ET, Dmytriw S, Vajapayajula A, Slaughter CK, and Snow CD (2023) ACS Nano.


Image of fluorescent protein crystals conjugated to textiles.

Textile Functionalization by Porous Protein Crystal Conjugation and Guest Molecule Loading

Hartje LF, Andales DA, Gintner LP, Johnson LB, Li YV, Snow CD (2023) Crystals.


schematic flowchart for the assembly of modular DNA synthetic barcodes.

Scalable Combinatorial Assembly of Synthetic DNA for Tracking Applications

Stuart JD, Wickenkamp NR, Davis KA, Meyer C, Kading RC, Snow CD (2023) Int. J. Mol. Sci.


Schematic image of DNA barcodes being loaded into protein crystal nanopores and the crystals being fed to mosquito larvae, with adult mosquitoes flying away and being trapped.

Mosquito Tagging Using DNA-Barcoded Nanoporous Protein Microcrystals

Stuart JD, Hartman DA, Gray LI, Jones AA, Wickenkamp NR, Hirt C, Safira A, Regas AR, Kondash TM, Yates ML, Driga S, Snow CD, Kading RC (2022) PNAS Nexus



Lanthanide (Eu3+/Tb3+)-Loaded gamma-Cyclodextrin Nano-Aggregates for Smart Sensing of the Anticancer Drug of Irinotecan

Guo Y, Liu J, Tang Q, Li C, Zhang Y, Wang Y, Wang Y, Bi Y, Snow CD, Kipper MK, Belfiore LA, Tang J. (2022) Internation Journal Molecular Sciences.



Conditionally Designed Luminescent DNA Crystals Doped by Ln3+(Eu3+/Tb3+) Complexes or Fluorescent Proteins with Smart Drug Sensing Property

Xiu D, Zhao S, Li Z, Xu Y, Wang Y, Zhe Z, Zhang M, Snow CD, Belfiore LA, Tang J. (2022) J Materials Chemistry B.


Image of a DNA junction being ligated via the chemical EDC, and an illustration of crystals stable in low pH, blood serum, and deionized water.

Stabilizing DNA-Protein Co-Crystals via Intra-Crystal Chemical Ligation of the DNA

Ward AR, Dmytriw S, Vajapayajula A, Snow CD, (2021) Crystals.



Stable Fluorescence of Eu3+ Complex Nanostructures Beneath a Protein Skin for Potential Biometric Recognition

Zhao Y, Yao Z, Snow CD, Xu Y, Wang Y, Xiu D, Belfiore LA, Tang J. (2021) Nanomaterials.


AFM image showing the hexagonal array of nanopores in a protein crystal.

Measuring interactions of DNA with nanoporous protein crystals by atomic force microscopy

Wang D, Stuart JD, Jones AA, Snow CD, Kipper MJ (2021) Nanoscale.



Histidine polypeptide-hybridized nanoscale metal-organic framework to sense drug loading/release

Yanan X, Zhenhua L, Xiu D, Sun G, Snow CD, Wang Y, Wang Y, Belfiore LA, Tang J. (2021) Materials & Design



Design of genetically-encoded sensors to detect nucleosome ubiquitination in live cells

Passos CDS, Choi Y-S, Snow CD, Cohen RE, Yao T. (2021) J Cell Biology



Near infrared emitting and biocompatible Yb3+-DNA complexes with dual responses to Cu2+ and Fe3+.

Li Z, Sun G, Snow CD, Xu Y, Wang Y, Xiu D, Zhang U, Zhu Z, Belfiore LA, Tang J. (2020) Optical Materials


Schematic image of scaffold building blocks and target macromolecules coming together to form a crystal

Porous protein crystals as scaffolds for structural biology

Ward AR, Snow CD (2020) Curr. Opin. Struct. Biol.


Schematic image of a protein crystal nanopore array, with an inset closeup of a nanopore containing the enzymes HRP and GOx, working together to convert AmplexRed and Glucose into Resorufin.



Porous protein crystals as scaffolds for enzyme immobilization

Kowalski AE*, Johnson LB*, Dierl HK, Park S, Huber TR, Snow CD (2019) Biomater. Sci.


Models of an enzyme active site

Advancing biomarkers for anaerobic o-xylene biodegradation via metagenomic analysis of a methanogenic consortium

Rossmassler K, Snow CD, Taggart D, Brown C, De Long SK (2019) Appl. Microbiol. Biotechnol.


Diverse images of engineered protein crystals, both macroscopic and nanoscale features



Protein crystal based materials for nanoscale applications in medicine and biotechnology

Hartje LF, Snow CD (2018) WIREs Nanomedicine and Nanobiotechnology

Drug Sensing of Protein Crystals Doped with Luminescent Lanthanide Complexes

Sun G, Tang J, Snow CD, Li Z, Zhang Y, Wang Y, Belfiore LA. (2019) Cryst. Growth Des.



Enhancing the Power Conversion Efficiency for Polymer Solar Cells by Incorporating Luminescent Nanosolid Micelles as Light Converter

Wang D, Shen W, Tang J, Wang Y, Liu J, Want X, Yang R, Snow CD, Huang Linjun, Jiao Jiqing, Wang Y, Want W, Belfiore LA. (2018) ACS Appl. Energy Mater.


Illustration of protein crystal nanopores containing a luminescent Eu(TTA)3phen complex.



Synthesis of luminescent lanthanide complexes within crosslinked protein crystal matrices

Zhang Y, Zhang X, Tang J, Snow CD, Sun G, Kowalski AE, Hartje LF, Zhao N, Wanga Y, Belfiore LA. (2018) Cryst. Eng. Comm.


Image of a porous protein crystal, various cross-linking reagement chemical structures, a XRD pattern, and an image of healthy cells.



Characterizing the Cytocompatibility of Various Cross-Linking Chemistries for the Production of Biostable Large-Pore Protein Crystal Materials

Hartje LF, Bui HT, Andales DA, James SP, Huber TR, Snow CD. ACS Biomater. Sci. Eng. (2018)


Schematic of a cysteine in a protein crystal nanopore getting conjugated to a guest molecule.



Installing Guest Molecules at Specific Sites within Scaffold Protein Crystals

Huber TR, McPherson EC, Keating CE, Snow CD. Bioconj. Chem. (2018) 29(1):17-22


Image of a Au(25) gold nanoparticle with relative size to a protein crystal nanopore.



Adsorbtion-Coupled Diffusion of Gold Nanoclusters Within a Large-Pore Protein Crystal Scaffold

Hartje LF, Munsky B, Ni TW, Ackerson CJ, Snow CD. J Phys. Chem. B (2017) 121(32):7652-7659


Image showing a protein crystal, the nanostructure thereof, and the effect of adding two different fluorescent proteins.

Programmed Assembly of Host-Guest Protein Crystals

Huber TR, Hartje LF, McPherson EC, Kowalski AE, Snow CD. Small (2016) 13(7):1602703


Protein crystal schematic and showing the installation of gold nanoparticles via shared metal affinity.



Gold Nanoparticle Capture Within Protein Crystal Scaffolds

Kowalski AE, Huber TR, Ni TW, Hartje LF, Appel KL, Yost JW, Ackerson CJ, Snow CD. RSC Nanoscale (2016) 8(25):12693-6.


Chart showing Rosetta energy scores for combinatorial libraries under consideration for protein design.

A Structure-Based Design Protocol for Optimizing Combinatorial Protein Libraries

Lunt MW, Snow CD. Methods Mol. Biol. (2016) 1414 99-138.


Image showing a spatial grid, the action of fast-fourier transform, and a protein-crystal packing arrangement



Optimizing Shape Complementarity Scoring Parameters for Recognition of Authentic Crystal Packing Arrangements

Bennett JA, Snow CD. Cryst. Growth Des. (2016)


Electrostatic surfaces for supercharged cellulase variants.



Characterization of supercharged cellulase activity and stability in ionic liquids

Johnson LB, Park S, Gintner LP, Snow CD. J. Mol. Catalysis. B: Enzymatic (2016) 132: 84-90


Molecular structure for a cellulase



Molecular dynamics simulations of cellulase homologs in aqueous 1-ethyl-3-methylimidazolium chloride

Johnson LB, Snow CD. J. Biomol. Struct. Dyn. (2016)


Image showing decomposition of cellulase into four blocks for recombination



Discriminating between stabilizing and destabilizing protein design mutations via recombination and simulation

Johnson LB, Gintner LP, Park S, Snow CD. P.E.D.S. (2015) 28(8): 259-267.


Schematic of recombining protein blocks and subsequent experimental assaying and regression analysis

Methods for Library-Scale Computational Protein Design

Johnson LB, Huber TR, Snow CD. Methods Mol. Biol. (2014) 1216 129-59.


Publications @ Caltech


Close up view of selected sidechains in an enzyme active site



Comparison of random mutagenesis and semi-rational designed libraries for improved cytochrome P450 BM3-catalyzed hydroxylation of small alkanes

Mike Chen, Christopher Snow, Christina Vizcarra, Stephen Mayo, and Frances Arnold. Protein Eng. Des. Sel. (2012)
View of a NADPH binding site in an enzyme



Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methypropan-1-ol production at theoretical yield in Escherichia coli

Sabine Bastian, Xiang Liu, Joseph Meyerowitz, Christopher Snow, Mike Chen, Frances Arnold. Metab. Eng. (2011), 13, 345-352.
Close view of charged amino acid sidechains interacting with vectors to represent polarization effects.



Polarizable Protein Packing

Albert Ng and Christopher Snow J. Comp. Chem. (2011), 32, 1334-1344.
Close-up view of amino acid sidechains in an enzyme active site



Combinatorial alanine substitution enables rapid optimization of cytochrome P450BM3 for selective hydroxylation of large substrates

Jared Lewis, Simone Mantovani, Yu Fu, Christopher Snow, Russell Komor, Chi-Huey Wong, and Frances Arnold. Chem. BioChem. (2010), 11, 2502-2505.
Structure of a cellobiohydrolase enzyme



Efficient screening of fungal cello-biohydrolase class I enzymes for thermo-stabilizing sequence blocks by SCHEMA structure-guided recombination

Pete Heinzelman, Russell Komor, Arvind Kanaan, Philip Romero, Xinlin Yu, Shannon Mohler, Christopher Snow and Frances Arnold. Protein Engineering, Design and Selection (2010) dio: 10.1093/protein/gzq063
Structure of a cellulase



SCHEMA Recombination of a Fungal Cellulase Uncovers a Single Mutation that Contributes Markedly to Stability

Pete Heinzelman, Christopher D. Snow, Matthew A. Smith, Xinlin Yu, Arbind Kannan, Kevin Boulware, Alan Villalobos, Sridhar Govindarajan, Jeremy Minshull, and Frances H. Arnold. J. Biol. Chem. (2009) 284:26229-26233.
Structure of a cellulase with a substrate in the tunnel



A Family of Thermostable Fungal Cellulases Created by Structure-Guided Recombination

Pete Heinzelman, Christopher D. Snow, Indira Wu, Catherine Nguyen, Alan Villalobos, Sridhar Govindarajanm Jeremy Minshull and Frances H. Arnold. Proc. Natl. Acad. Sci. USA (2009) 106(14):5610-5615.
Structure of a small protein showing many alternative rotamers



SHARPEN: Systematic Hierarchical Algorithms for Rotamers and Proteins on an Extended Network

Ilya V. Loksha, James R. Maiolo III, Cheng Hong, Albert Ng, and Christopher D. Snow. Journal of Computational Chemistry (2009) 30(6):999-1005.
Structure of p450 enzyme active site



Evolutionary history of the emergence of a specialized cytochrome P450 propane mono-oxygenase

Rudi Fasan, Yergalem T. Meharenna, Christopher D. Snow, Thomas L. Poulos, and Frances H. Arnold. Journal of Molecular Biology (2008) 383(5), 1069-1080.
Sphere representation of a mystery small molecule



Hunting for predictive computational drug discovery models

Christopher D. Snow. Expert Review of Anti-infective Therapy (2008) 6(3)
Structure of a cytochrome P450



A diverse family of thermostable cytochrome P450s created by recombination of stabilizing fragments

Yougen Li, Alan D. Drummond, Andrew M. Sawayama, Christopher D. Snow, Jesse D. Bloom, Frances H. Arnold. Nature Biotechnology (2007)


Publications @ Stanford


Structure of a ribosome



Non-bulk-like Solvent Behavior in the Ribosome Exit Tunnel

Del Lucent, Christopher Snow, Colin Aitken, Eric Sorin, Sung-Joo Lee & Vijay S. Pande. PLoS Comp. Bio. (2010), 6, e1000963.

Side-chain recognition and gating in the ribosome exit tunnel

Paula Petrone, Christopher D. Snow, Del Lucent & Vijay S. Pande. Proc. Natl. Acad. Sci. USA (2008) 105(43), 16549-16554.
Structure of human aldose reductase enzyme



Electric Fields at the Active Site of an Enzyme: Direct Comparison of Experiment with Theory

Ian Suydam, Christopher D. Snow, Vijay S. Pande & Stephen G. Boxer. Science (2006)
Structure of N-terminal 39 residues of ribosomal protein L9



Kinetic Definition of Protein Folding Transition State Ensembles and Reaction Coordinates

Christopher D. Snow, Young Min Rhee, & Vijay S. Pande. Biophysical Journal (2006)
Structure of FKBP protein



Direct calculation of the binding free energies of FKBP ligands

Hideaki Fujitani, Yoshiaki Tanida, Masakatsu Ito, Guha Jayachandran, Christopher D. Snow, Michael R. Shirts, Eric J. Sorin, & Vijay S. Pande. Journal of Chemical Physics (2005) 123(8),084108

How well can simulation predict kinetics and thermodynamics of protein folding?

Christopher D. Snow, Eric Sorin, Young Min Rhee, & Vijay S. Pande. Annual Review of Biophysics and Biomolecular Structure
Structure of p53 oligomerization domain



Dimerization of the p53 oligomerization domain: Identification of a folding nucleus by molecular dynamics simulations

Lillian T. Chong, Christopher D. Snow, Young Min Rhee, & Vijay S. Pande. Journal of Molecular Biology (2004) 345(4), 869-78.
Structure of Trp-zip miniprotein



Trp zipper folding kinetics by molecular dynamics and temperature-jump spectroscopy

Christopher D. Snow, Linlin Qiu, Deguo Du, Feng Gai, Stephen J. Hagen, & Vijay S. Pande. Proc. Natl. Acad. Sci. USA (2004) 101(12), 4077-4082.

Using path sampling to build better Markovian state models: Predicting the folding rate and mechanism of a tryptophan zipper beta hairpin

Nina Singhal, Christopher D. Snow, and Vijay S. Pande. The Journal of Chemical Physics (2004) 121(1) 415-425.
Structure of the BBA5 miniprotein






Absolute comparison of simulated and experimental protein-folding dynamics

Christopher D. Snow, Houbi Nguyen, Vijay S. Pande, Martin Gruebele. Nature AOP, published online 20 October 2002; doi:10.1038/nature01160. Nature (2002) 420(6911), 102-106.


Up Front: Science Behind the Screens

HHMI Bulletin - M. Mitchell Waldrop
Structure of Trp-Cage mini-protein

The Trp Cage: Folding Kinetics and Unfolded State Topology via Molecular Dynamics Simulations

Christopher D. Snow, Bojan Zagrovic, Vijay S. Pande. J. Am. Chem. Soc. (2002) 124(49), 14548-14549.



Native-like Mean Structure in the Unfolded Ensemble of Small Proteins

Bojan Zagrovic, Christopher D. Snow, Siraj Khaliq, Michael R. Shirts, Vijay S. Pande. J. Mol. Biol. (2002) 323(1), 153-164.
Structure of villin headpiece protein

Simulation of folding of a small alpha-helical protein in atomistic detail using worldwide-distributed computing

Bojan Zagrovic, Christopher D. Snow, Michael R. Shirts, Vijay S. Pande. J. Mol. Biol. (2002) 323(5), 927-937.

Atomistic protein folding simulations on the submillisecond time scale using worldwide distributed computing

Vijay S. Pande, Ian Baker, Jarrod Chapman, Sidney Elmer, Stefan M. Larson, Young Min Rhee, Michael R. Shirts, Christopher D. Snow, Eric J. Sorin, Bojan Zagrovic. Biopolymers (2002) 68(1): 91-109.


Folding@Home and Genome@Home: Using distributed computing to tackle previously intractable problems in computational biology

Stefan M. Larson, Christopher D. Snow, Michael R. Shirts, Vijay S. Pande. Computational Genomics, Richard Grant, editor, Horizon Press

Publications @ MIT


Structure of ribosomal protein L9



Surface Salt Bridges, Double-Mutant Cycles, and Protein Stability: an Experimental and Computational Analysis of the Interaction of the Asp 23 Side Chain with the N-Terminus of the N-Terminal Domain of the Ribosomal Protein L9

Donna L. Luisi, Christopher D. Snow, Jo-Jin Lin, Zachary S. Hendsch, Bruce Tidor, Daniel P. Raleigh. Biochemistry (2003) 42(23), 7050-7060.