CIVE 522 ENGINEERING HYDROLOGY

INSTRUCTOR
Jorge A. Ramírez, Ph.D.
Professor, Civil and Environmental Engineering Department
A222 Engineering Bldg. (970) 491-7621
Office Hours: MWF 1:00 - 2:00 PM – A222 Engineering Bldg.

TEXTBOOKS AND REFERENCES
The following books and references have been placed on reserve at the Morgan Library.
8. Class handouts.
9. http://www.engr.colostate.edu/~ramirez/ce_old/classes/ce522_ramirez/CE522-new.htm

COURSE OBJECTIVES

COURSE EVALUATION
Three exams (75% of final grade) and 5/6 homework assignments (25% of final grade)

ACADEMIC INTEGRITY AND HONOR PLEDGE
This course will adhere to the Academic Integrity Policy of the Colorado State University General Catalog and the Student Conduct Code. Accordingly, we will use an honor pledge for all homework assignments and all exams as indicated below.

The honor pledge will be:

“I pledge that I have not given, received, or used any unauthorized assistance.”

“I pledge that I will not give, receive, or use any unauthorized assistance.”

Jorge A. Ramírez
CIVE 522 ENGINEERING HYDROLOGY

COURSE OUTLINE

TOPICS

Linear System Theory and Rainfall-Runoff Analysis
 Unit hydrograph theory
 instantaneous unit hydrograph (IUH)
 IUH analysis methods: Harmonic analysis
 Fourier transforms
 Laplace transforms
 Linear channel
 Linear reservoir
 Nash model

River and Reservoir Flood Routing
 Flood Routing
 Reservoir flood routing methods:
 Mass curve method
 Storage indication method
 Puls method
 Goodrich method
 Coefficient method
 Woodward method
 Others
 Linear Muskingum method:
 Analytical Solution
 Hydraulic analogy
 Parameter estimation procedures.
 Multiple reach Muskingum method
 Nonlinear Muskingum method:
 Muskingum-Cunge method
 Distributed flow routing - Wave motion
 Kinematic wave and Overland Flow
 Analytical solution - Overland flow problem
 Linear and non-linear numerical solutions
 Overland Flow with spatially variable infiltration
 Routing of diffusive and dynamic waves

Hydrologic Design
 Design scale
 Design Level
 Risk Analysis
 Hydroeconomic Analysis
 First Order Analysis of uncertainty
 Composite Risk Analysis
 Risk Analysis of safety factors and safety margins
 Hydrologic design under natural and parameter uncertainty
 Bayes risk
 Opportunity Losses
 Value of Sample Information
CIVE 522 ENGINEERING HYDROLOGY

COURSE OUTLINE

TOPICS

Precipitation data analysis.
 Data analysis
 Modeling
 Mean Areal Precipitation: Thiessen polygons - Isohyets - IWD Methods
 Kriging
 Kriging with covariances
 Kriging with semivariograms
 Kriging with generalized covariances
 Co-Kriging
 Orographic Influences and their analysis

Design Storms
 Design precipitation depth
 Point precipitation
 Areal precipitation
 Intensity-Duration-Frequency (IDF) Curves
 Design Hyetographs
 Storm event-based analysis
 IDF-based analysis
 Estimated Limiting Storms
 Frequency analysis