Concepts:
- MOS transistors are used as linear devices for signal amplification and conditioning
- MOS transistors are used as non-linear devices for power amplification
- Design tradeoffs among gain, bandwidth, output swing, stability, and noise are provided
- Feedback allows another degree of freedom to achieve design goals
- Design requires drawing from model information, making compromises and analyzing results relative to desired specifications
- Noise in transistor-based circuits

Applications:
- Single stage linear amplifiers
- Multi-stage linear amplifiers
- Class A, Class B, and Class AB amplifiers

Tools:
- SPICE
- Electronic circuit editor
- Cadence schematic and simulation tools

Linear Amplifier Operation and Design
- Design bias circuits in single and multi-stage amplifiers using active loads for achieving operational specifications
- Analyze and optimize design for achieving fundamental specifications such as gain, bandwidth, and output swing
- Calculate and articulate tradeoffs in amplifier configurations relative to performance
- Show first-order effects and sources of parasitic elements as related to performance of linear amplifiers

Device Behavior in Circuits
- Determine region of operation, bias points
- Determine equivalent circuits

Noise and Perturbations on Signal Integrity
- Depict common gate, drain, and source configurations
- Analyze circuits for transfer functions of voltage, current and transconductance

Waveform Generation and Shaping
- Analyze common topologies for sinusoid, pulse and triangular waveform generation
- Design waveform generators to basic, first order specifications

Engineering Procedures and Tools
- Display lab notebook that meets industrial needs for documentation and intellectual property instantiation
- Employ SPICE as a routine tool to further understand calculations and measurements
- Extract parameters from measurements to modify model parameters for better matching of simulation to experiment
- Use LabView for data acquisition and analysis and extract parameters using math functions

<table>
<thead>
<tr>
<th>IN</th>
<th>OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis and Design Using Models
• Express diode, MOSFET and BJT regions of operation by function and bias</td>
<td>Linear Amplifier Operation and Design
• Design bias circuits in single and multi-stage amplifiers using active loads for achieving operational specifications</td>
</tr>
<tr>
<td>Device Behavior in Circuit Configurations
• Determine region of operation, bias points
• Determine equivalent circuits</td>
<td>Device Behavior in Circuits
• Determine region of operation, bias points
• Determine equivalent circuits for any region</td>
</tr>
<tr>
<td>Linear Signal Amplification, Transfer Functions
• Depict common gate, drain, & source configs
• Analyze configurations for transfer functions of voltage, current and transconductance</td>
<td>Noise and Perturbations on Signal Integrity
• Depict common gate, drain, and source configurations
• Analyze circuits for transfer functions of voltage, current and transconductance</td>
</tr>
<tr>
<td>Thevenin and Norton Equivalent Circuits
• Transform sources and impedances to equivalent forms to analyze circuit behavior</td>
<td>Waveform Generation and Shaping
• Analyze common topologies for sinusoid, pulse and triangular waveform generation
• Design waveform generators to basic, first order specifications</td>
</tr>
<tr>
<td>SPICE Simulation
• Simulate circuits
• Use simulation to confirm hand calculations for single-transistor amplifiers</td>
<td>Engineering Procedures and Tools
• Display lab notebook that meets industrial needs for documentation and intellectual property instantiation
• Employ SPICE as a routine tool to further understand calculations and measurements
• Extract parameters from measurements to modify model parameters for better matching of simulation to experiment
• Use LabView for data acquisition and analysis and extract parameters using math functions</td>
</tr>
<tr>
<td>Laboratory Procedures
• Connect devices and evaluate bias circuits and time-varying behavior
• Analyze measurements and display results in Bode plots for transfer functions
• Extract device properties (e.g. threshold voltage) from measured data
• Use LabView to derive I-V characteristics of devices and customize V1’s</td>
<td>Pre-requisites
• ECE 331 with a C or higher</td>
</tr>
</tbody>
</table>

Pre-requisites
- ECE 331 with a C or higher