ECE 311: Linear Systems Analysis I

Concepts:
- Continuous-time and discrete-time test signals:
 - Impulses
 - Unit-steps
 - Sinusoids
 - Complex exponentials
- Periodic signals in continuous-time and discrete-time
- Energy and power of a signal
- Linearity, time-invariance, causality, and stability for continuous-time and discrete-time systems
- Impulse response, convolution integral, and convolution sum for LTI systems
- Complex exponentials as eigenfunctions of LTI systems
- Fourier series for continuous-time and discrete-time periodic signals
- Fourier transforms for continuous-time and discrete-time aperiodic signals
- Energy/power spectral density and Parseval identities
- Frequency response, magnitude spectrum, and phase spectrum of LTI systems
- Connection between frequency response, impulse response, and ordinary differential equation representations of LTI systems
- Ideal lowpass, bandpass, and highpass filters
- Basic modulation and demodulation
- Shannon-Nyquist sampling and aliasing

Applications:
- Communication
- Signal Processing
- Control
- Circuits
- Optics

Tools:
- MATLAB

Signals
- Understand standard test signals in continuous-time and discrete-time and their connections via sampling
- Understand periodicity and compute the period of a periodic signal
- Understand energy and power and compute them

Fourier Analysis
- Understand frequency harmonics and spectrum, and bandwidth of signals
- Compute Fourier transforms and Fourier series for standard signals
- Understand the impact of elementary transformations on the spectrum of a signal

LTI Systems
- Understand causality, stability, and their connections with impulse response
- Understand linearity and time invariance
- Understand convolution and compute the response of an LTI system to an arbitrary input
- Understand complex exponentials as eigenfunctions of LTI systems
- Understand frequency response of an LTI system and compute magnitude and phase spectra
- Understand the interplay between time domain and frequency domain analyses of LTI systems

Sampling
- Understand Shannon-Nyquist sampling theorem
- Understand the consequences of aliasing
- Specify anti-aliasing filter and sampling rate for alias-free A/D conversion

Simulation
- Analyze systems in time and frequency domain using MATLAB and/or Simulink tools

Calculus
- Integrate and differentiate
- Determine sums of basic series
- Understand the fundamental theorem of calculus
- Understand and apply trigonometric identities

Complex Arithmetic
- Analyze signals via Fourier Transform (forward and inverse using tables) for frequency content
- Understand properties of Fourier Transform, especially time-domain convolution versus frequency domain multiplication
- Analyze causal signals via one-sided Laplace Transform (forward and inverse tables)
- Understand properties of Laplace Transform, especially time-domain convolution versus frequency domain multiplication AND final value theorem for steady state analysis

ODEs
- Solve linear ordinary differential equations
- Identify homogenous and particular solutions to an ODE

RLC and Op AMP
- Analyze \(n \)th order RLC and Op Amp circuits and create a corresponding ordinary differential equation

Pre-requisites
- ECE 202 with a C or higher; MATH 340 with a C or higher; ECE 331, may be taken concurrently; ECE 341, may be taken concurrently or ECE 451, may be taken concurrently