Instructor: Randy A. Bartels

Office: 316 Scott Bioengineering Building Engineering

Office Hours: by appointment

E-mail: randy.bartels@colostate.edu

Phone: 491-8971

Lecture: TTh, 11:00-12:15 pm: 231 Scott Bioengineering Building

Texts:

Background: Electromagnetics & Linear Systems Theory

HW Policy: No extensions. Graded only if legible (as judged by grader).

Course Description: This course will serve as an introduction to the concepts of optical systems and imaging from a linear systems wave perspective. We will cover the topics listed below with a major emphasis on Fourier Optics and the description of optical imaging systems. Upon completion of this course, students should be able to design and analyze a simple optical system.

Homework: The homework is an essential part of the course. You should attempt all problems yourself, but feel free to argue with your colleagues about them. (Simply copying each other’s solutions is, however, counterproductive for all parties and is not acceptable.) Homework will be due on the Friday one week after it is assigned at the beginning of class.
A homework solution MUST include a full explanation of how the problem is set up, the motivation of steps in the analysis, and an interpretation of the results. The entire point of homework is to explore and think about the material presented in the class AND to be able to communicate your findings. The ability to communicate scientific ideas is of critical importance. Moreover, the emphasis of homework is to analyze each physical situation, interpret that analysis, and communicate the meaning. As a result, the emphasis is NOT on algebraic manipulations. You are encouraged to use Mathematica (and to a MUCH lesser extent other mathematical tools) to write up your solution. All solutions MUST be in a highly simplified form that YOU interpret correctly. Remember: each homework solution should be a short story that includes a reproduction of appropriate diagrams and may require plots of the final solutions you find to explain behaviors.

Late homework will not be accepted.

Numerical Projects: We will have a series of numerical projects to be implemented in Matlab or Mathematica. The early assignments are designed to build the necessary Matlab and Mathematica skill set required for realistic simulations of light propagation with the Fourier optics tools that we learn in the class.

Topics and Schedule:

1. **A review:**
 - Linear Systems Theory
 - Fourier Transforms and their physical meaning
 - A brief optics refresher

2. **Principles of Wave Optics**
 - Wave theory
 - Optical components from the viewpoint of wave optics
 - Interference

3. **Fourier Transforms in Optics**

4. **Diffraction Theory**
 - Fresnel and Fraunhofer diffraction
 - Applications of diffraction

5. **Optical Systems**
 - Lens Theory
 - Coherent and incoherent systems
 - Frequency response of optical systems
<table>
<thead>
<tr>
<th>Grading and Exams:</th>
<th>%</th>
<th>Score Range</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
<td>25%</td>
<td>100.00-90.00%</td>
<td>A</td>
</tr>
<tr>
<td>Numerical Projects</td>
<td>25%</td>
<td>89.99-79.00%</td>
<td>B</td>
</tr>
<tr>
<td>Exams</td>
<td>50%</td>
<td>78.99-68.00%</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>67.99-57.00%</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Below 56.99%</td>
<td>F</td>
</tr>
</tbody>
</table>