
BiGNoC: Accelerating Big Data Computing
with Application-Specific Photonic
Network-on-Chip Architectures

Sai Vineel Reddy Chittamuru , Student Member, IEEE, Dharanidhar Dang , Student Member, IEEE,

Sudeep Pasricha , Senior Member, IEEE, and Rabi Mahapatra, Senior Member, IEEE

Abstract—In the era of big data, high performance data analytics applications are frequently executed on large-scale cluster

architectures to accomplish massive data-parallel computations. Often, these applications involve iterative machine learning algorithms

to extract information and make predictions from large data sets. Multicast data dissemination is one of the major performance

bottlenecks for such data analytics applications in cluster computing, as terabytes of data need to be distributed frequently from a

single data source to hundreds of computing nodes. To overcome this bottleneck for big data applications, we propose BiGNoC, a

manycore chip platform with a novel application-specific photonic network-on-chip (PNoC) fabric. BiGNoC is designed for big data

computing and exploits multicasting in photonic waveguides. For high performance data analytics applications, BiGNoC improves

throughput by up to 9:9� while reducing latency by up to 88 percent and energy-per-bit by up to 98 percent over two state-of-the-

art PNoC architectures as well as a broadcast-optimized electrical mesh NoC architecture, and a traditional electrical mesh NoC

architecture.

Index Terms—Photonic networks-on-chip, photonic channel sharing, big data computing, multicasting

Ç

1 INTRODUCTION

LARGE-SCALE data analytics applications represent some
of the most data-intensive workloads in the emerging

domain of big data computing.Most of the high-performance
data analytics applications e.g., cancer genome analysis, stock
market predictions, consumer product recommendations,
disaster forecasting, etc. involve iterative execution of various
machine learning algorithms. These iterative machine learn-
ing algorithms for large-scale data analytics tasks often run
on a MapReduce framework [1] implemented either in the
cloud or on commodity clusters in datacenters.

Recently, Hadoop [2] and Spark [3] based distributed
frameworks are being increasingly used for MapReduce
implementations on cloud services. However, wide-spread
security exploits and higher off-loading time with cloud
computing have driven several organizations to build their
own datacenters for big data processing [2], [3]. Such data-
centers are safer from intrusion with lower off-loading time,
but according to the Hamilton’s cost model [4] the over-
heads due to power dissipation, power distribution, and

cooling in such datacenters with commodity processors can
be quite significant. A specialized manycore processor solu-
tion in which a large number of cores are interconnected
through an efficient on-chip network can reduce such over-
heads and lead to improved system performance, com-
parted to commodity processors. This motivates us to design a
customized chip manycore processor (CMP) platform to more effi-
ciently run the iterative machine learning algorithms for big data
processing.

The iterative algorithms in big data processing with Map-
Reduce execute on multiple master and servant cores and
take thousands of iterations to produce the desired output.
Each iteration typically consists of three phases [5] (Fig. 1). In
the initial multicast phase (Fig. 1a) a master node (MN),
which consists of one ormoremaster cores,multicasts a large
feature set ofmodel parameters to one ormore servant nodes
(SN; each with one or more servant cores) that perform com-
putations based on the parameters. While computing, these
servant nodes may need to exchange or shuffle data with
other servant nodes. This phase is called the shuffle phase
(Fig. 1b). Lastly, in the aggregation phase (Fig. 1c), all the ser-
vant nodes update and send their partial results to themaster
node. The master node aggregates this partial data to pro-
duce themulticasting data for the next iteration.

Multicasting is a performance bottleneck in executing
large scale data analytics applications that have large fan-
out, big data sizes, and take a large number of iterations to
achieve convergence. For example, the K-nearest neighbor
algorithm for breast cancer prediction and prognosis [6]
requires multicasting of approximately 200 MB of sampled
cancer genomic features in each iteration, from 100 image

� S. V. Reddy Chittamuru and S. Pasricha are with the Department of Elec-
trical and Computer Engineering, Colorado State University, Fort Collins,
Colorado 80523. E-mail: {sai.chittamuru, sudeep}@colostate.edu.

� D. Dang and R. Mahapatra are with the Department of Computer Science
and Engineering, Texas A&M University, College Station, Texas 77843.
E-mail: {d.dharanidhar, rabi}@tamu.edu.

Manuscript received 26 Oct. 2017; revised 24 Apr. 2018; accepted 26 Apr.
2018. Date of publication 8 May 2018; date of current version 10 Oct. 2018.
(Coressponding author: Sai Vineel Reddy Chittamuru).
Recommended for acceptance by X. Wang.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2018.2833876

2402 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 11, NOVEMBER 2018

1045-9219� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-0918-1755
https://orcid.org/0000-0002-0918-1755
https://orcid.org/0000-0002-0918-1755
https://orcid.org/0000-0002-0918-1755
https://orcid.org/0000-0002-0918-1755
https://orcid.org/0000-0002-3802-381X
https://orcid.org/0000-0002-3802-381X
https://orcid.org/0000-0002-3802-381X
https://orcid.org/0000-0002-3802-381X
https://orcid.org/0000-0002-3802-381X
https://orcid.org/0000-0002-0846-0066
https://orcid.org/0000-0002-0846-0066
https://orcid.org/0000-0002-0846-0066
https://orcid.org/0000-0002-0846-0066
https://orcid.org/0000-0002-0846-0066
mailto:
mailto:

samples, each of size 2 MB. As the typical number of itera-
tions is more than 1000, the total multicasting data is in the
order of hundreds of gigabytes. Another example is the
alternating least squares algorithm for Netflix movie rating
prediction, which involves 385 MB of data being distributed
to servant nodes per iteration, over hundreds of iterations
[7]. This computation thus involves tens of gigabytes of
multicast data. These examples motivate the need for supporting
efficient multicasting for big data workload execution scenarios.

Recent developments in the fabrication of CMOS-
compatible on-chip photonic interconnects have opened up
the possibility of redesigning emerging manycore process-
ing architectures, especially for big data applications. On-
chip photonic interconnects provide several prolific advan-
tages over their conventional metallic counterparts, includ-
ing the ability to communicate at near light speed, larger
bandwidth density by using dense wavelength division
multiplexing (DWDM), and lower power dissipation [8].
These advantages motivate us to consider using photonic
links for inter-core communication in CMPs that run the
iterative algorithms for big data processing. Further, a few
prior works [8], [9], [10] have emphasized the importance of
multicasting in photonic waveguides to improve data com-
munication rates, and proposed photonic network-on-chip
(PNoC) architectures that enable inter-core communication
with multicast-enabled waveguides. The multicasting capa-
bility of photonic interconnects further inspires us to use
them in CMPs optimized for big data processing.

In this paper,we present a novel application-specific PNoC
architecture for manycore chips, called BiGNoC, to execute
large-scale data analytics applications with high throughput
and ultra-low latency. To the best of our knowledge, this is
the firstwork that attempts to design PNoCs to tackle iterative
machine learning algorithm based large-scale data analytics
applications in CMPs. Our novel contributions are:

� We devise a master-servant cluster based commu-
nication fabric (MSNoC) with dedicated channels
for master-to-servant and servant-to-master
communication;

� We design a hierarchical manycore BiGNoC archi-
tecture with multiple MSNoCs to execute any combi-
nation of high performance large-scale data analytics
applications;

� We evaluate BiGNoC by comparing it with two pre-
viously proposed PNoCs, as well as a broadcast
optimized electrical mesh NoC, and a traditional
electrical mesh NoC for multiple real-world big data
applications [12], [13], [14], [15].

2 BACKGROUND AND RELATED WORK

Photonic interconnects utilize several photonic devices such
as microring resonators (MRs) as modulators, detectors,
and switches; photonic waveguides; splitters, and trans-
impedance amplifiers (TIAs). Each MR has a unique reso-
nancewavelength in the utilizedDWDMspectrum in awave-
guide (typically consisting of 64 or less wavelengths) that it
can couple to and work correctly with. This resonant nature
of an MR allows it to be use as a filter or a switch. A filter MR
is used to filter and drop its resonance wavelength on to a
photodetector, whereas a switchMR is used to route the prop-
agation of a resonant wavelength signal between two wave-
guides. Typically, an MR can electro-optically be driven on
and off resonance with its resonance wavelength, which
allows the MR to modulate 1s (when off-resonance) and 0s
(when on-resonance) on its resonancewavelength. The reader
is directed to [16] formore discussion on these devices.

Several PNoC architectures have been proposed to date
(e.g., [9], [10], [11], [17], [18], [19]) that use on-chip photonic
interconnects with MRmodulators to modulate electrical sig-
nals at the source node on to photonic signals, which then
travel through a photonicwaveguide, and arrive atMRdetec-
tors at the destination node where the photonic signals are
detected and electrical signals recovered. Several efforts have
explored high throughput crossbar PNoCs that provide non-
blocking connectivity, e.g., [9], [10], [11], [17] using different
types of photonic waveguides such as Multiple-Write-Single-
Read (MWSR), Single-Write-Multiple-Read (SWMR), and
Multiple-Write-Multiple-Read (MWMR). Furthermore, mul-
ticasting in photonicwaveguides enables simultaneous recep-
tion of photonic signals in multiple destination nodes. These
destination nodes partially de-tune their MR detectors from
their resonating wavelengths [8], such that a portion of the
photonic energy in the multicast-enabled waveguide contin-
ues to be absorbed in subsequent MR detectors of other desti-
nation nodes. In the presence of on-chip multicast traffic (i.e.,
same message transfer from one source node to multiple des-
tination nodes), these multicast-enabled waveguides enable
higher data rates compared to ordinary photonic waveguides
that inefficiently transfer a single multicast message as multi-
ple unicast messages. Only a few prior works exploit multi-
casting in SWMR [9] and MWMR [10] waveguides, primarily
to improve the performance of PNoC architectureswith cache
coherence traffic (e.g., in the MOESI coherence protocol,
when a shared block is invalidated, an invalidate message
must bemulticast to all sharers). In addition, a photonicmulti-
stage NoC was proposed in [40] that uses photonic-
distributed arbitration and concurrent channel reservation
mechanisms. This multistage NoC uses an electrical router to
interconnect multiple photonic sub-networks and achieves
lower latencies. A high-throughput hybrid photonic mesh-
diagonal links topology was proposed in [41] with a
contention-aware adaptive routing function, and a parallel-
ized photonic channel allocation protocol, to reduce NoC
latency.However, no prior work has attempted to design PNoCs to
optimize iterative machine learning algorithm-based large-scale
data analytics applications in CMPs.

Several architectures have been explored recently to
address large-scale data analytics applications. A PENC
manycore architecture consisting of 192 small processing
coreswas proposed in [21], which canwork as a co-processor

Fig. 1. MapReduce (a) multicast phase, (b) shuffle phase, and (c) aggre-
gation phase of communication while executing iterative machine learn-
ing algorithms for large-scale data analytics applications.

CHITTAMURU ETAL.: BIGNOC: ACCELERATING BIG DATA COMPUTINGWITH APPLICATION-SPECIFIC PHOTONIC NETWORK-ON-CHIP... 2403

in tandemwith a general-purpose CPU to accelerate big data
processing. A low-power manycore architecture for a mod-
ern big-data stream mining applications is proposed in [22]
that is able to cope with the dynamic nature of the input data
stream while consuming limited power. A parallel CMP
architecture called SpiNNaker based on a customized electri-
cal NoC to implement spiking neural networks was pro-
posed in [23]. The cores in this architecture are connected by
a modified version of the torus topology, whereas the inter-
chip topology is a 2D triangular mesh with 6-port routers. A
neural network architecture called EMBRACE is proposed
in [24] which integrates a 2D array of interconnected neural
tiles surrounded by I/O blocks and adopts a hierarchical
mesh-based topology to connect neural tiles. Furthermore, it
uses a region-based routing scheme in each network layer to
directmessages to destination nodes. Someworks have dem-
onstrated reconfigurable neural networks on a broadcast-
aware mesh NoC architecture [25], [26]. A theoretical analy-
sis for determining a preferred interconnect architecture for
general purpose configurable emulation of spiking neural
networks is presented in [25] and shows that mesh NoC
using multicast is the most suitable architecture for a wide
range of neural network topologies. A cluster-based recon-
figurable NoC architecture for neural networks is presented
in [26], which employs a reconfigurable communication fab-
ric that efficiently handles multicast communication. In [27],
a CPU-GPU architecture was presented with an electrical
ring network to better execute large-scale data analytics
applications, but this ring interconnect is known to be ineffi-
cient for large-scale systems. A hybrid (wiredþwireless) on-
chip interconnect based CPU-GPU architecture was pro-
posed in [28] for large-scale data analytics applications. The
authors in [38] proposeMelia, which is an FPGA-basedMap-
Reduce architecture. None of the abovementioned prior works
explore the impact of using photonic interconnects for big data
processing as part of the on-chip network. Our goal in this paper is
to show, for the first time, how PNoC architectures can be designed
and customized for manycore chips, to meet the unique communi-
cation requirements of big data analytics applications.

3 MASTER-SERVANT CLUSTER ARCHITECTURE

High-performance data analytics applications use a set of
iterative machine learning algorithms for data predictions.
A machine learning job may take hundreds or thousands of
iterations to converge to a solution. On a CMP, each itera-
tion starts with the multicast of a big data set of model
parameters from a master core to all the servant cores. Then
the servant cores sometimes exchange data among them-
selves while processing their received data, thus creating
inter-servant traffic. Lastly, each servant updates the model
parameters partially and sends these model parameters to
the master node. These partial results are aggregated at the
master node to form the global model parameters for the
computations in the subsequent iteration. Thus, execution
of large-scale data-intensive applications requires dedicated
hardware with master cores, servant cores, and an intercon-
nection fabric between the masters and servants. In this sec-
tion, we describe the architecture of a new master-servant
cluster based communication fabric (MSNoC), in which
master cores are connected to servant cores via photonic
communication channels.

In our MSNoC architecture, a node (N) is defined as an
entity consisting of four cores. A node can either be a master
node (MN; with four master cores connected using an electri-
cal concentrator) or a servant node (SN; with four servant
cores connected using an electrical concentrator). The buffer
size of the electrical concentrator of anMN is larger compared
to the buffer size of the electrical concentrator of an SN, as the
MNnode is expected to receivemore number of packets com-
pared to a servant node. Our simulation based analysis shows
that the buffer size of the electrical concentrator of an MN
needs to be larger than the buffer size of the electrical concen-
trator of an SN. More details about buffer sizes of MNs and
SNs are presented in Table 1. Eachmaster core in anMNhas a
private L1 and L2 cache, whereas each servant core in an SN
has only a private L1 cache. The L1 cache size of a master core
in the MN is larger than the L1 cache size of a servant core in
the SN (see Table 1). As master cores access main memory
more frequently compared to servant cores, therefore, the
larger L1 size of a master core boosts the MSNoC’s perfor-
mance. Every MN and SN is attached to a gateway interface
(GI) module that facilitates transfers between the core-cache
layer and the interconnectionnetwork layer. A detailed layout
of the MSNoC is shown in Fig. 2a, where 16 nodes are
arranged in a 4� 4 grid. Among these 16 nodes, a single node
is an MN and the remaining nodes are SNs (i.e., SN1 to SN15).
The master GI (MGI) and servant GI (SGI) are shown
in Figs. 2b and 2c, respectively, and discussed further in
Sections 3.1, 3.2 and 3.3. Communication between cores
within a node (MN or SN) uses a 5� 5 on-chip electrical
router, where four of its input and output (I/O) ports are con-
nected to four cores (master or servant) and the fifth I/O port
is connected to the GI module associated with the node. A
round-robin arbitration scheme is used within each node for
communication between cores and theGI.

Communication between SNs and MNs is accomplished
using SWMR and MWSR waveguides (Sections 3.1, 3.2 and

TABLE 1
Micro-Architectural Parameters For MSNoC Cluster

Number of nodes per cluster 16 (1 MN and 15 SNs)
Number of cores 64 (4 per node)

Servant Node (SN):

Number of servant cores 4
Buffer size of concentrator 10

Servant Core:

L1 I-Cache size/Associativity 16 KB/Direct Mapped Cache
L1 D-Cache size/Associativity 16 KB/Direct Mapped Cache

Master Node (MN):

Number of master cores 4
Buffer Size of concentrator 20

Master Core:

L1 I-Cache size/Associativity 32 KB/Direct Mapped Cache
L1 D-Cache size/Associativity 32 KB/Direct Mapped Cache
L2 Cache size/ Associativity 128 KB/ Direct Mapped Cache
L2 Coherence MOESI
Frequency 5 GHz
Issue Policy In-order
Memory controllers 1
Main memory 8 GB; DDR4@30 ns

2404 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 11, NOVEMBER 2018

3.3). There is also a power waveguide that runs in parallel
with the SWMR and MWSR waveguides. This power wave-
guide carries all the wavelengths used for data traversal in
the waveguides. A 1� 2 splitter is used to split power from
the power waveguide to SWMR waveguides as shown in
Fig. 2a. In addition, a series of 1� 2 splitters along the
power waveguide are used to supply power to the modula-
tors that are used to write data on to the MWSR wave-
guides. The splitting losses due to these splitters are
considered in the laser power calculations of MSNoC (see
Section 6). Our MSNoC with a group of 16 nodes (with
64 cores) has dedicated access to main memory via a mem-
ory controller at the MN. This is similar to the processor
used in Sunway TaihuLight [34], which has dedicated main
memory access for every 64 cores. The micro-architectural
parameters of nodes and cores in an MSNoC cluster are
summarized in Table 1. In addition. the functionalities of
MNs and SNs are assumed to be correct in the MSNoC.
Therefore, this work does not consider the impact of mis-
takes fromMNs and SNs.

In the following three subsections, we present more
details about the interconnects that are used to enable com-
munication between the MNs and SNs of anMSNoC cluster.

3.1 MN-to-SN Communication in MSNoC Cluster

As discussed earlier, the interconnection network between
the master and servant cores plays a crucial role towards
achieving faster execution of large-scale data analytics
applications on an MSNoC cluster. As the communication
from master cores to servant cores has significant periods of
multicast traffic, this motivates us to use multicast enabled

photonic waveguides in our MSNoC cluster, to enable faster
master-servant communication. As shown in Fig. 2a, in an
MSNoC cluster we use a multicast enabled Single-Write-
Multiple-Read (SWMR) waveguide group to enable com-
munication from a single MN to multiple SNs, where each
waveguide group has four SWMR waveguides. The SWMR
waveguide group in an MSNoC starts from an MN and
passes through all of the SNs (i.e., SN1 � SN15) in the cluster
(Fig. 2a) to enable MN-to-SN communication. An MN has
the ability to write on the SWMR waveguide group using its
ring modulators (see Fig. 2b, which shows modulators of an
MN on SWMR waveguide), and all the SNs are capable of
reading from the SWMR waveguide group using their ring
detectors (see Fig. 2c, which shows detectors of an SN on
SWMR waveguide). To power these SWMR waveguides,
we use a broadband off-chip laser source and a 1� 4 splitter
to split the laser power across the four SWMR waveguides.
We also use 64 DWDM wavelengths in each of the four
SWMR waveguides of the SWMR waveguide group. There-
fore, in an SWMR waveguide group there are 256 modula-
tors and 256 detectors in each MN and SN, respectively.

As all SNs are capable of receiving (reading) from an
SWMR waveguide group during MN-to-SN communica-
tion, there is a need for receiver selection between SNs to
ensure that only the designated receiver will receive data
from the shared waveguide group. For receiver selection,
each SWMR waveguide group is divided into a fixed num-
ber of time slots, based on the time taken by light to traverse
the length of the waveguide on a die. Based on the geomet-
ric calculations considering a 100mm2 chip area for a 64
core CMP at 22 nm technology node, traversal of light
through an SWMR waveguide group takes 2 cycles (i.e.,
0.4 ns) in an MSNoC cluster at 5 GHz clock frequency.
Therefore, we divide the SWMR waveguide group into
2 time slots, and each time slot is spread across 8 nodes (the
node can either be an MN or SN), as shown in Fig. 3. These
time slots are further classified into two types: reservation
cycle slots (RCS), and data cycle slots (DCS).

In our reservation assisted MN-to-SN communication
process, MNs send data to SNs in two cycles (Fig. 3). In the
reservation cycle, the MN reserves the SWMR waveguide
group for an SN. Once the reservation is done, the MN
sends data to the selected SN in the next cycle (i.e., data
cycle). To perform the reservation, the MN uses the first
SWMR waveguide in the SWMR waveguide group (this
waveguide is shown in Fig. 3). The remaining three SWMR
waveguides in the SWMR waveguide group are used only
in the data cycle to transfer data. Each SNi is assigned a
receiver selection wavelength �i, that is available in the first
SWMR waveguide of the SWMR waveguide group. For
example, in an MSNoC cluster with 16 nodes (see Fig 2a),

Fig. 2. (a) MSNoC layout with SWMR, MWSR, and power waveguides
(b) master gateway interface (MGI) (c) servant gateway interface (SGI).

Fig. 3. Distribution of reservation cycle and data cycle slots within
SWMR waveguide to enable MN-to-SN communication.

CHITTAMURU ETAL.: BIGNOC: ACCELERATING BIG DATA COMPUTINGWITH APPLICATION-SPECIFIC PHOTONIC NETWORK-ON-CHIP... 2405

�1 � �15 are assigned as receiver selection wavelengths to
SN1 � SN15, respectively. When an MN wants to send data
to an SN, it gets access to the next RCS, which initially has
all of the receiver selection wavelengths from the power
waveguide. In this RCS, the MN uses its modulator bank to
remove all of the receiver selection wavelengths except the
one corresponding to the SN of interest. Subsequently, in
the next DCS, the MN modulates data on the 256 wave-
lengths in four SWMR waveguides (as each SWMR wave-
guide uses 64 DWDM wavelengths ð�1 � �64Þ) of each
SWMR waveguide group assigned for data transfer. There-
fore, our receiver selection mechanism prudently reuses the same
set of wavelengths in the first SWMR waveguide of an SWMR
waveguide group for reservation and data transmission. On the
receiving side of the SWMR waveguide group, whenever
an RCS reaches an SNi, it only switches on the detector
which corresponds to its receiver selection wavelength �i

located on the first SWMR waveguide of the SWMR wave-
guide group. Whenever an SNi detects its receiver selection
wavelength in the RCS, it switches on its remaining detec-
tors not only on the first SWMR waveguide but also on the
remaining three SWMR waveguides of the SWMR wave-
guide group to receive data in the next DCS.

We illustrate this sending and receiving process with a
simple example. In Fig. 4a, suppose an MN needs to send
data to SN8 that has a corresponding receiver selection
wavelength �8. The MN modulates in the next RCS, such
that only �8 (the dedicated wavelength for receiver selection
of SN8) is made available by removing all of the wave-
lengths except �8 (using its modulators) in the first SWMR
waveguide of the SWMR waveguide group. On the receiv-
ing end, all of the SNs which are in the RCS switch-on their
detectors for the corresponding receiver selection wave-
lengths (e.g., nodes SN8 to SN15 switch-on detectors with
resonance wavelengths �8 to �15, respectively) in the first
SWMR waveguide of the SWMR waveguide group. There-
fore, at SN8 only the detector for wavelength �8 is switched
on in the RCS. Once �8 is detected, SN8 prepares to receive
data in the next DCS by switching on the remaining

detectors not only on the first SWMR waveguide but also on
the remaining three SWMR waveguides in the SWMR
waveguide group in that node.

The receiver selection mechanism presented above can
only transmit unicast messages, but while executing big
data applications the MN will send not only unicast mes-
sages to a single SN but also multicast messages to multiple
SNs. One possible solution is to translate these multicast
messages into several unicast messages and send them to
their respective SNs. But this can cause network congestion
and reduce network performance [30]. Therefore, for MN to
multiple SN communication in an MSNoC, we avoid such
repeated unicast messages by providing multicasting sup-
port in theMSNoC’s SWMR waveguides.

Unlike Corona [10] and Firefly [9] PNoCs, where all mul-
ticast messages are broadcast and transmitted to all nodes
in the network, MSNoC enables multicasting to specific
nodes in the network. This is realized as follows: the MN in
an MSNoC releases multiple receiver selection wavelengths
into the first SWMR waveguide of the SWMR waveguide
group (see Fig. 4b) corresponding to multiple SNs in the
next RCS. In the immediately following DCS, the MN mod-
ulates the data which needs to be multicast to different SNs
on to four SWMRwaveguides within the SWMRwaveguide
group. To enable photonic multicast of data in SWMR
waveguides, we partially de-tune the ring detectors from
their resonating wavelengths [8], such that a portion of the
photonic energy in the SWMR waveguide group continues
to be absorbed in subsequent ring detectors. Multicasting
thus requires higher laser power compared to unicasting so
as to maintain sufficient photonic signal intensity for detec-
tion in the worst case, i.e., for the detectors of the last receiv-
ing node which receives the multicast data.

Interestingly, the laser power injected in the SWMR
waveguide group for multicasting in an MSNoC does not
change with the number of nodes that need to receive the
multicast message. We designed the laser source for the
worst-case power loss, which occurs when all of the SNs
receive a multicast message (i.e., broadcast message) from
an MN. We have considered this extra laser power over-
head when presenting energy-delay-product and energy-
per-bit results for the MSNoC cluster in our experimental
results section. In this work, we do not consider optimizing
laser power through a laser power management scheme.
However, it is possible to integrate previously proposed
laser power management schemes [31], [32], as these works
are orthogonal to our work.

Figs. 4a and 4b illustrate the difference between transmis-
sion of unicast andmulticast messages in ourMSNoC cluster.
Suppose an MN needs to multicast data to SN8; SN10; SN12,
and SN15 whose corresponding receiver selection wave-
lengths are �8; �10; �12, and �15, respectively. The MNmodu-
lates in the next RCS, such that only �8; �10; �12, and �15 are
made available by removing all the wavelengths except
�8; �10; �12, and �15 (using the MN’s modulators; Fig. 4b)
from the first SWMR waveguide of SWMR waveguide
group. At the receiver end at SN8; SN10; SN12, and SN15, the
detectors for wavelengths �8; �10; �12, and �15 respectively on
the first SWMR waveguide of the SWMR waveguide group
are switched on when these SNs are in the RCS. At SN8, once
�8 is detected in the receiver selection slot, the node prepares

Fig. 4. (a) Transmission of unicast data from an MN to SN8 in MSNoC,
which shows receiver selection wavelength �8 in RCS of the SWMR
waveguide; (b) Multicast of data from an MN to multiple SNs
SN8;SN10;SN12, and SN15 in MSNoC, which shows respective receiver
selection wavelengths �8; �10; �12, and �15 in RCS of the SWMR
waveguide.

2406 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 11, NOVEMBER 2018

to receive data from all of the four SWMRwaveguideswithin
the SWMRwaveguide group in the next DCS by partially de-
tuning the ring detectors (partial detuning of ring resonators
is employed to receive both unicast and multicast data in
SN8) from their corresponding resonating wavelengths in
that node. The partial de-tuning of ring detectors of SN8 will
remove a portion of light available in the SWMRwaveguide,
leaving the remaining portion of light for the other detectors
to absorb. Similarly, on detection of �10; �12, and �15, nodes
SN10, SN12, and SN15 respectively prepare to receive data in
the next DCS. Note that our architecture does not differenti-
ate between unicast andmulticast transmissions, as it always
employs partial detuning to receive both unicast and multi-
cast messages.

3.2 SN-to-MN Communication in MSNoC Cluster

All the SNs send data back to an MN in the aggregation
phase, for which our MSNoC uses a Multiple-Write-Single-
Read (MWSR) waveguide group for SN-to-MN communica-
tion, with each waveguide group having four MWSR wave-
guides. As shown in Fig. 2a, this MWSR waveguide group
starts from the last SN (i.e., SN15) and traverses all of the
remaining SNs (i.e., SN1 � SN14) and finally terminates at
the MN. In contrast to the SWMR waveguide group, all SNs
have the ability to write on the MWSR waveguide group
using their ring modulators (see Fig. 2c which shows modu-
lators of an SN on an MWSR waveguide) and the MN has
the ability to read from the MWSR waveguide group using
its ring detectors (see Fig. 2b which shows detectors of an
MN on an MWSR waveguide).

As all SNs are capable of modulating (writing) in an
MWSR waveguide group, there is a need for arbitration
between SNs to ensure that the data from different SNs
does not destructively overlap on the shared MWSR wave-
guide group. We use a centralized electrical arbiter to
avoid contention between SNs when writing to an MWSR
waveguide group. This arbiter uses a round-robin arbitra-
tion scheme. However, by virtue of being a centralized
arbiter, it lacks scalability beyond a certain cluster size. We
address this drawback of the centralized arbiter in Section
5. Furthermore, MSNoC exploits the centralized arbiter to
enable flow control in the SN-to-MN communication. We
employ an Xon/Xoff flow control mechanism to control
packet flow from an SN to MN. Whenever, the receiving
buffer in the MN is full then a signal is sent to the central-
ized arbiter, such that this arbiter stops assigning MWSR
waveguide groups to the SNs. Otherwise, if the buffer is
not full then the centralized arbiter allocates MWSR wave-
guide groups to SNs to transmit packets to MNs. As per
the explanation provide in Section 3, a power waveguide
(see Fig. 2a) that runs in parallel with the MWSR wave-
guide group uses a series of splitters to supply photonic
signals to the ring modulators to write data on to the
MWSR waveguide group. As each of four MWSR wave-
guides within this MWSR waveguide group carries 64
wavelengths, therefore, each MWSR waveguide group
requires 256 modulators and 256 detectors in the SN and
MN to write and read data, respectively. The total amount
of photonic hardware required for the MSNoC architec-
ture is quantified in Section 6.

3.3 SN-to-SN Communication in MSNoC Cluster

SN-to-SN communication occurs in the MSNoC when the
execution of high-performance data analytics applications
is in the ‘shuffle’ phase. OurMSNoC enables SN-to-SN com-
munication via the MN. We illustrate this SN-to-SN com-
munication with a simple example. When SN15 wants to
send data to SN5, first SN15 sends data to the MN using an
MWSR waveguide group, and then the MN sends the
received data to SN5 using an SWMR waveguide group. We
show the SN15 � to� SN5 communication path in Fig. 2a as
a dotted line. This process thus involves two O/E (optical to
electrical) and two E/O (electrical to optical) conversions
for each SN-to-SN transfer. The next section presents a per-
formance analysis for an MSNoC cluster with different SN
counts. In Section 5, we describe how multiple MSNoC clus-
ters are combined to form the BiGNoC architecture.

4 MSNOC: SENSITIVITY ANALYSIS

In an MSNoC cluster, with the increase in number of SNs,
contention between SNs to access an MWSR waveguide
group increases. One possible solution to reduce this con-
tention is to increase the number of MWSR waveguide
groups in the MSNoC cluster. To understand the impact of
this change, we performed a sensitivity analysis by varying
the number of MWSR waveguide groups within anMSNoC,
for different cluster sizes (8, 16, 32 nodes; each cluster has 1
MN and the remainder of the nodes are SNs). We modeled
and simulated these variants of MSNoC at a cycle-accurate
granularity with a SystemC-based NoC simulator. We con-
sidered three applications: Text Mining [12], Financial Time
Series [13], and Airline Query Processing [14]. The goal
with these workloads was to emulate an environment with
different intensities of MN-to-SN, SN-to-MN, and SN-to-SN
traffic with diverse bandwidth needs.

Figs. 5a, 5b, 5c show the variation of average packet
latency with increase in number of MWSR waveguide
groups (x-axis) for the three sizes of the MSNoC cluster,
across the three big data applications. It can be observed
that for a specific MWSR waveguide group count within an
MSNoC, increase in cluster size (i.e., increase in node count)
increases the average packet latency for all big data applica-
tions. Increase in number of nodes within a cluster increases
contention between SNs to access the MWSR waveguide
groups while sending data to an MN, which increases
packet wait time in the buffers of SNs and ultimately

Fig. 5. Variation of average packet latency in MSNoC cluster with (a) 32
nodes (b) 16 nodes, and (c) 8 nodes having different MWSR waveguide
groups (each group has 4 waveguides) across three big data
applications.

CHITTAMURU ETAL.: BIGNOC: ACCELERATING BIG DATA COMPUTINGWITH APPLICATION-SPECIFIC PHOTONIC NETWORK-ON-CHIP... 2407

increases overall packet latency. From Figs. 5a, 5b, 5c, it can
also be seen that with the increase in MWSR waveguide
groups, the average packet latency first decreases until the
waveguide group count reaches two. When MWSR wave-
guide group count is increased beyond two, the latency
starts increasing. Intuitively, increase in number of MWSR
waveguide groups from one to two increases the SN-to-MN
data rate (as two MWSR waveguide groups enable two
packets to be sent simultaneously from two SNs to an MN),
which decreases packet waiting time in the buffers of SNs
and reduces the average packet latency. Despite the increase
in data rate from SN-to-MN, with the increase in number of
MWSR waveguide groups beyond two, there is saturation
in the data channel to the MN (as this data channel is capa-
ble of sending only one packet per cycle from the concentra-
tor to a master core). This increases the waiting time of
packets at the receiving buffers of MGIs and increases aver-
age packet latency across all the big data applications.

Based on the analysis presented above, we optimally
select two MWSR waveguide groups for MSNoCs with clus-
ter sizes of 32 and 16 nodes. Additionally, from the Figs. 5a,
5b, 5c it can also be seen that average latency for an MSNoC
with 8 nodes remains constant for all MWSR waveguide
group counts across all the benchmark applications. From
this result, it can be concluded that in an MSNoC with 8
nodes, a single MWSR waveguide group is sufficient and
optimal for SN-to-MN communication. Furthermore, for
these optimal MWSR waveguide group counts used within
MSNoC clusters the buffers in concentrators of MNs and
SNs will seldom become performance bottlenecks. We
use these optimally determined MWSR waveguide group
counts for different cluster sizes in our homogeneous and
heterogeneous master-servant multi-cluster architecture
(BiGNoC) which we describe in detail in the next section.

5 BIGNOC ARCHITECTURE

5.1 Homogeneous BiGNoC Architecture

In Section 3, we presented an MSNoC architecture that aims
to effectively connect an MN and many SNs within a
master-servant cluster using MWSR and SWMR waveguide
groups. Typically, large-scale data analytics applications
require a greater number of servant cores than can be
accommodated in a single MSNoC cluster. There are two
ways to address the requirement for additional servant
cores: increase the cluster size or use multiple inter-
connected clusters. We prefer the latter solution as increase
in cluster size leads to: (i) increase in power dissipation of
the SWMR and MWSR waveguide groups (see Table 3 later
in the paper), (ii) increase in average packet latency (see
Fig. 5), and (iii) increase in MWSR waveguide group arbiter
complexity. These drawbacks suppress the power and per-
formance benefits of photonic interconnects. Moreover,
increase in cluster size limits the number of available mas-
ters within a cluster as the MSNoC is designed to have only
one master node. Therefore, we propose a homogeneous
multi-cluster architecture (BiGNoC-HOM) with four uni-
form clusters represented as C0;C1;C2, and C3, as shown in
Fig. 6a, where each cluster has 16 nodes (i.e., 64 cores).

Each 16-node cluster in the BiGNoC-HOM architecture
uses one SWMR waveguide group for MN-to-SN

communication. As explained in Section 3.1, each SWMR
waveguide group is divided into two time slots to enable
receiver selection. Furthermore, based on the sensitivity
analysis presented in the previous section, we optimally
select two MWSR waveguide groups in each cluster for SN-
to-MN communication. This architecture considers a single
broadband laser source to power all of its SWMR and
MWSR waveguides and uses 64 wavelengths in each wave-
guide for data communication. We add three more splitters
to the power waveguide, to distribute laser power to the
SWMR and MWSR waveguide groups of the four clusters
in BiGNoC-HOM.

EachMNhas amemory controller to send and receive data
from off-chipmainmemorywith dedicated channels for com-
munication. Therefore, BigNoC-HOM uses four memory con-
trollers, where each is associatedwith anMNwithin a cluster.
In addition, as shown in Fig. 6, all the four MNs within the
four clusters of BiGNoC-HOM are connected to a single 4� 4
electrical router using their external electrical I/O ports
(shown at the top left of Fig. 2a). This electrical router is used
for inter-cluster communication. We have considered a four-
stage pipelined electrical router with 4 I/O ports that are con-
nected to four MNs with the following pipeline stages: buffer
write/route computation, region validation/switch alloca-
tion, switch traversal, and link traversal. This router has an
input and output queued crossbar and uses double buffering
with an 8-flit buffer size to more effectively cope with the
higher photonic path throughput. Each master node is provi-
sioned with an additional buffer which receives and stores
packets from other clusters.

Intuitively, inter-cluster MN-to-MN communication
occurs in one hop through the electrical router. Inter-cluster
MN-to-SN and SN-to-MN communication require two
hops: inter-cluster MN-to-SN communication requires MN-
to-MN (inter-cluster) and MN-to-SN (intra-cluster) hops,
whereas inter-cluster SN-to-MN communication requires
SN-to-MN (intra-cluster) and MN-to-MN (inter-cluster)
hops. Further, inter-cluster SN-to-SN communication
requires three hops: SN-to-MN (intra-cluster), MN-to-MN
(inter-cluster), and MN-to-SN (intra-cluster). We illustrate
the SN-to-SN communication across different clusters with
a simple example. If node N2 (i.e., SN) of C0 needs to send a
packet to node N10 (i.e., SN) of cluster C1, then N2 of C0 first
sends data to N0 (i.e., MN) of C0 using an MWSR waveguide
group. Then from this node the packet is sent to N0 (i.e.,
MN) of C1 through the electrical router that enables inter-
cluster communication. Lastly, the packet is sent to N10 of
C1 using the SWMR waveguide group in that cluster. Thus,
inter-cluster SN-to-SN communication incurs minimal over-
head with only two O/E and two E/O conversions, which
is similar to intra-cluster SN-to-SN communication.

5.2 Heterogeneous BiGNoC Architecture

As explained in the previous subsection, BiGNoC-HOM
with four uniform clusters can enable inter-cluster commu-
nication between MNs and SNs. While executing applica-
tions with larger servant core count requirements, BiGNoC-
HOM incurs higher inter-cluster traffic. This increase in
inter-cluster traffic via slower electrical links may reduce
the performance of the proposed BiGNoC-HOM architec-
ture. This motivates us to design a heterogeneous version of

2408 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 11, NOVEMBER 2018

BiGNoC (BiGNoC-HET) with four clusters, but with different
cluster sizes.

A larger cluster size with more number of SNs in BiGNoC
always improves the performance of a big data application
requiring higher number of servant cores. This is because a
larger cluster size reduces the inter-cluster traffic through
slower electrical links of the 4� 4 electrical router. But SWMR
waveguides within a BiGNoC cluster cannot support multi-
casting beyond 32-nodes, due to the limitations in receiver
sensitive and TIA circuit bandwidth [8]. Therefore, we have
considered a cluster with a maximum of 32 nodes (with 128
cores) for BiGNoC-HET. Furthermore, after analyzing the
master and servant core requirements of big data benchmark
applications, we concluded that these applications have dif-
ferent scales which require different cluster sizes. Therefore,
to execute medium and small applications, we have consid-
ered a 16-node cluster with 64 cores and an 8-node cluster
with 32 cores, respectively. Therefore, in BiGNoC-HET, we
use clusters C0, C1, C2, and C3 with 32, 16, 8, and 8 nodes,
respectively, as shown Fig. 6b. To enable receiver selection in
SWMR waveguide groups of these clusters, we divided the
waveguides in clusters C0;C1;C2, and C3 into 4, 2, 1, and 1
time slots respectively, based on the time taken by light to tra-
verse these waveguides on a die. Based on the sensitivity

analysis presented in Section 4, we use 2, 2, 1, and 1 MWSR
waveguide groups for clustersC0;C1;C2, andC3 respectively.
Similar to BiGNoC-HOM, we use four memory controllers to
control off-chipmemory and an electrical router to connect all
four clusters ofBiGNoC-HET.

In BiGNoC (especially BiGNoC-HET), scheduling of appli-
cations plays a crucial role in enhancing overall performance.
For example, BiGNoC-HET can achieve better performance
when an application with a greater servant core requirement
is scheduled to a cluster with more servant cores. In contrast,
scheduling a larger application on multiple smaller clusters
will increase inter-cluster communication, which in turn
may degrade performance. This motivates us to design an
application scheduling algorithm for BiGNoC which is pre-
sented in the next subsection.We perform a detailed compar-
ative study between BiGNoC-HOM and BiGNoC-HET in
Section 6.3.

Algorithm 1. Application scheduling in BiGNoC

Inputs: Applications ðAPiÞ with master cores ðMAiÞ and ser-
vant cores ðSAiÞ requirements, and BiGNoC with clusters
ðCjÞ, master cores ðMCjÞ, and servant cores ðSCjÞ
1: Sort APi (highest SA to lowest SA)
2: Sort BigNoC clusters (highest SC to lowest SC)
3: for all i do NSAi ¼ SAi; NMAi ¼ MAi;
4: for all j do FSCj ¼ SCj; FMCj ¼ MCj;
5: for each APi do
6: for each Cj do
7: if FSCj > 0 then // Checks for free cores in clusters
8: if FSCj �NSAi � 0 then
9: Do_ Scheduling (APi ! NSAi servant cores of

Cj) //Map servants
10: FSCj ¼ FSCj �NSAi; NSAi ¼ 0;
11: if FMCj > 0 and FMCj �NMAi � 0 then
12: Do_Scheduling (APi ! NMAi master cores of

Cj)//Map masters
13: FMCj ¼ FMCj �NMAi;NMAi ¼ 0;
14: else if FMCj > 0 and FMCj �NMAi < 0 then
15: Do_ Scheduling (APi ! ðNMAi � FMCj) mas-

ter cores of Cj)
16: NMAi ¼ NMAi � FMCj; FMCj ¼ 0;
17: else
18: Do_ Scheduling (APi ! ðNSAi � FSCj) servant

cores of Cj)
19: NSAi ¼ NSAi � FSCj; FSCj ¼ 0;
20: if FMCj > 0 and FMCj �NMAi � 0 then
21: Do_ Scheduling (APi ! NMAi master cores of

Cj)
22: FMCj ¼ FMCj �NMAi;NMAi ¼ 0;
23: else if FMCj > 0 and FMCj �NMAi < 0 then
24: Do_ Scheduling (APi ! ðNMAi � FMCj) mas-

ter cores of Cj)
25: NMAi ¼ NMAi � FMCj; FMCj ¼ 0;
Output: Scheduled master-servant cores of app onto clusters
of BiGNoC

5.3 Application Scheduling in BiGNoC

Algorithm1 shows the pseudo-code for the application sched-
uling procedure in BiGNoC. Our scheduling algorithm will
schedule a combination of applications if the total number of
master and servant cores within a BigNoC-HET architecture

Fig. 6. (a) Homogeneous BiGNoC with four uniform clusters
C0;C1;C2;C3, with each cluster having 16 nodes, (b) Heterogeneous
BiGNoC with four clusters C0;C1;C2, and C3 having 32, 16, 8, and 8
nodes, respectively.

CHITTAMURU ETAL.: BIGNOC: ACCELERATING BIG DATA COMPUTINGWITH APPLICATION-SPECIFIC PHOTONIC NETWORK-ON-CHIP... 2409

is more than or equal to the required number of master and
servant cores for these applications. Applications ðAPiÞ are
assumed to have master core ðMAiÞ and servant core ðSAiÞ
requirements. The target BiGNoC platform is characterized by
its clusters ðCjÞ, master cores ðMCjÞ, and servant cores ðSCjÞ.
First, the applications and BiGNoC platform clusters are
sorted in the descending order of their SAi and SCj counts,
respectively (steps 1-2). In steps 3-4, the algorithm initializes
the required number of master cores ðNMAiÞ and servant
cores ðNSAiÞ that are to be scheduled for each application,
and also initializes the number of available free master cores
ðFMCjÞ and free servant cores ðFSCjÞ in each cluster of
BiGNoC, respectively. A nested loop iterates over all applica-
tions ðAPiÞ and clusters ðCjÞ in steps 5-6. If FSCj are available
in clusterCj at step 7, then in steps 8-25, we assignmaster and
servant cores of BiGNoC to applications. We compare the
number of available free servant cores within a cluster with
the number of servant cores required by an application. If the
number of free servant coreswithin a cluster are greater (steps
8-10), thenwe assign the required free servant cores in the cur-
rent cluster to the current application, else we assign all the
free servant cores in the current cluster to the current applica-
tion (steps 17-19). For every free servant core assignment to an
application in a cluster, we also compare the number of avail-
able free master cores within the cluster with the number of
master cores required by an application. If the number of free
master cores within a cluster are greater (steps 11-13 and 20-
22), then we assign the required free master cores in the cur-
rent cluster to the current application, else we assign all the
free master cores in current cluster to the current application
(steps 17-19 and 23-25). The proposed algorithm is used to
schedule applications on both variants ofBiGNoC.

6 EXPERIMENTS

6.1 Experimental Setup

To evaluate the proposed BiGNoC architecture, we com-
pared it with a traditional electrical mesh NoC (EMesh) and
a broadcast optimized electrical mesh NoC (BO-EMesh) [33]
as well as with two state-of-the-art photonic crossbar NoCs:
Flexishare with token stream arbitration [11] and Firefly
with a reservation assisted SWMR (R-SWMR) waveguide
groups [9]. We modeled and simulated the NoC architec-
tures at a cycle-accurate granularity with a SystemC-based

NoC simulator for a 256-core CMP platform. We used this
NoC simulator to emulate the execution of big data bench-
marks across different architectures. In Flexishare, Firefly,
BO-EMesh, and EMesh architectures with 256-cores, we
have considered 16 master cores (similar to the number of
master cores in BiGNoC; recall that BiGNoC has 4 MNs,
which corresponds to 16 master cores) and the remaining
cores are considered as servant cores for a fair comparison
with the BiGNoC architecture. We used five big data bench-
marks [7], [12], [13], [14], [15] (Table 2) to create multi-
application workloads. The goal with these workloads is to
emulate an environment that executes future large-scale
data analytics applications having different master and ser-
vant combinations with diverse bandwidth needs.

Table 2 shows the variants of big data benchmarks with
different master-servant requirements considered for our
analysis. We created 12 multi-application workloads from
these benchmarks. Each workload combines 2 to 4 bench-
marks, such that the summation of all the master cores and
servant cores within the multi-application workload is lower
than the number of available cores (i.e., 256) in the CMP. As
an example, the T (1-40)-A (5-50)-F (2-100)-N (1-50) workload
combines variants of Text Mining with 1-master and
40-servants (T (1-40)), Airline Query Processing with 5-mas-
ters and 50-servants (A (5-50)), Financial Time Series with 2-
masters and 100-servants (F (2-100)), and Netflix Movie Rat-
ing with 1-master and 50-servants (N (1-50)), and schedules
them to clusters C0;C1;C2, and C3 of BiGNoC-HOM and
BiGNoC-HET using the application scheduling algorithm pre-
sented in Section 5.3. We analyzed the actual execution char-
acteristics of the big data applications presented in Table 2
(such as the master processing time, servant processing time,
etc.) that are measured using an Amazon’s Elastic Compute
Cloud (EC2) instance [35], to generate traces that were fed
into our network simulator. We set a “warm-up” period of
1M cycles and executed the applications for 100M cycles.

We targeted a 22 nm process technology for the 256-core
system. Based on geometric calculations of the waveguides
for a 20mm� 20mm chip dimension, we estimated the time
needed for light to travel in a photonic waveguide with a
length of 12 cm from the first to the last node in a single
pass of the MWMR waveguide group in Flexishare as 8
cycles (i.e., 1.6 ns) at 5 GHz clock frequency. Throughout
our analysis we use a flit size of 64 bits for BO-EMesh and
EMesh and a total packet size of 512 bits for all PNoC archi-
tectures. We consider data modulation at both clock edges
to enable simultaneous transfer of 512 bits in a single cycle,
in the BiGNoC-HOM, BiGNoC-HET, Flexishare, and Firefly
PNoCs. We considered an on-off switching time of 3.1 ps
for a ring modulator and ring detector [11], which is less
than one clock cycle (i.e., 200 ps) at 5 GHz frequency.

The static and dynamic energy consumption of the elec-
trical routers is based on results obtained from the DSENT
tool [29]. Energy consumption of various photonic compo-
nents for all the photonic NoC architectures are adopted
from photonic device characterizations in line with state-of-
the-art proposals [16], [36], [36], [37] and shown in Table 3.
Here Edynamic is the energy per bit for modulators and photo-
detectors and Elogic�dyn is the energy per bit for the driver
circuits of modulators and photodetectors. PSWMR�FY and
PMWMR�FX are the static power dissipation of SWMR and

TABLE 2
Big Data Application Benchmarks, With Three Variants Each,

Based on Their Master-Servant Requirements
[7], [12], [13], [14], [15]

Application Representation Application variants

Netflix Movie
Rating

N
(Masters-Servants)

N (1-50), N (1-70), N (1-100)

Text Mining T
(Masters-Servants)

T (1-40), T (1-60), T (1-80)

Gray Sort
Contest

G
(Masters-Servants)

G (5-200), G (7-200), G (10-200)

Financial Time
Series

F
(Masters-Servants)

F (2-100), F (3-110), F (4-120)

Airline Query
Process

A
(Masters-Servants)

A (5-50), A (5-60), A (5-70)

2410 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 11, NOVEMBER 2018

MWMR waveguide groups in Firefly and Flexishare archi-
tectures, respectively. Further, the PMWSR andPSWMR rows
in Table 3 show static power dissipation of MWSR and
SWMR waveguide groups of clusters in BiGNoC with sizes
32, 16, and 8 nodes, respectively. Also, we calculate power
dissipation overheads of 75 mW, 35 mW, and 15 mW in the
electrical circuits of the SWMR waveguide groups in clus-
ters of BiGNoC with sizes 32, 16, and 8 nodes, respectively,
to realize partial detuning based on estimates from prior
work [8]. All the static power dissipation values for wave-
guides presented in Table 3 include the power overhead of
MR thermal tuning. We consider an MR heating power of
15 mW per MR and receiver sensitivity of -20 dBm [42], [43].
To compute laser power dissipation, we calculated photonic
loss in components, which sets the photonic laser power
budget and correspondingly the electrical laser power.
Lastly, based on our gate-level analysis, we estimate area
overheads of 0:0065 mm2 and 0:008 mm2, and power over-
heads of 0.12W and 0.16W in the electrical arbiters for the
MWSR waveguide groups of BiGNoC-HOM and BiGNoC-
HET, respectively.

6.2 BiGNoC: Sensitivity Analysis

Our first set of experiments presents a sensitivity analysis to
explore the optimal buffer size of the electrical router that is
used for inter-cluster communication in two variants of our
BiGNoC architecture with 256 cores: BiGNoC-HOM and
BiGNoC-HET. BiGNoC-HOM has four homogeneous clus-
ters with each cluster having 16 nodes; and BiGNoC-HET
has four clusters with 32, 16, 8, and 8 nodes, respectively.

Figs. 7a and 7b show the average packet latency for three
multi-application big data workloads on BiGNoC-HOM and
BiGNoC-HET, with buffer depth of the electrical router vary-
ing from 8 to 40. The range of buffer depths (i.e., from 8 to 40)
explored in this sensitivity analysis is decided based on the
buffer depths used in the prior works [9], [11]. In this analysis,
to compute average packet latency we have considered the
delay incurred by the packet to move from the source node to
the destination node along with the queuing delays in routers

and interfaces. The three workloads were chosen to possess
high, medium, and low aggregate inter-cluster traffic, to
explore the impact of application traffic on buffer depth. We
characterized inter-cluster traffic of an application by count-
ing the number of transfers through the electrical router,
which is used for inter-cluster communication.

At a particular buffer depth for both BiGNoC-HOM and
BiGNoC-HET, Fig. 7 shows higher average packet latency
for workloads with higher inter-cluster traffic (i.e., G(10-
200)-T(1-40)) compared to workloads with lower inter-
cluster traffic (i.e., T(1-40)-A(5-50)-F(2-100)-N(1-50) for
BiGNoC-HOM and A(5-70)-F(4-120)-N(1-50) for BiGNoC-
HET) as queuing of packets occurs at the master nodes for
workloads with higher inter-cluster traffic, which increases
their queueing delay and average packet latency. Also, for
all workloads executing on both BiGNoC-HOM and
BiGNoC-HET, a smaller buffer size should intuitively result
in higher average packet latency, as the buffer in the
electrical router becomes more frequently full and cre-
ates back pressure on the buffers in the MN of each clus-
ter of BiGNoC-HOM and BiGNoC-HET. As a result, the
centralized arbiter within each cluster stops assigning
MWSR waveguide groups to SNs (due to Xon/Xoff flow
control mechanism used within each cluster; for explana-
tion see Section 3.2) in that cluster, which are used to
transfer packets to MN, which in turn increases packet
queuing delay within each SN and incurs higher average
packet latency.

On the other hand, beyond a particular buffer depth in
both BiGNoC-HOM and BiGNoC-HET the average packet
latency of all the applications saturate. After a particular
buffer depth, the buffer in the electrical router of both var-
iants of BiGNoC seldom gets full, which is the main reason
for this saturation. A careful observation of the plots in
Fig. 7 shows that for workloads with lower inter-cluster traf-
fic (i.e., T(1-40)-A(5-50)-F(2-100)-N(1-50) for BiGNoC-HOM
and A(5-70)-F(4-120)-N(1-50) for BiGNoC-HET) latency satu-
ration occurs at a small buffer depth, whereas for workloads
with higher inter-cluster traffic (i.e., G(10-200)-T(1-40) for
both BiGNoC-HOM and BiGNoC-HET) latency saturation
occurs at a large buffer depth. However, as shown in
Figs. 7a and 7b, there is a region (light yellow shaded
region) between saturation points of low inter-cluster traffic
application and high inter-cluster traffic application, where
both BiGNoC-HOM and BiGNoC-HET archive optimal per-
formance. Therefore, we chose to use 21 and 26 as the opti-
mal buffer depth for BiGNoC-HOM and BiGNoC-HET,

Fig. 7. Average packet latency comparison for (a) BiGNoC-HOM and (b)
BiGNoC-HET in a 256-core CMP with different buffer depths (8-40).

TABLE 3
Energy and Losses For Photonic Devices [16], [36], [37]

Cluster-wise static power per waveguide group of BiGNoC

Waveguide

Type

32-Node

Power

16-Node

Power

8-Node

Power

PMWSR 1.54W 0.62 W 0.21W
PSWMR 5.72 W 2.69 W 1.26 W

Static power per waveguide group Power

PSWMR-FY 1.15 W
PMWMR-FX 3.73 W

Energy consumption type Energy

Edynamic 0.42 pJ/bit
Elogic�dyn 0.18 pJ/bit

Photonic loss type Loss (in dB)

Microring through �0.005
Waveguide propagation per cm �0.274
Waveguide coupler/splitter �0.2
Waveguide bending loss 0.005 per 90�

CHITTAMURU ETAL.: BIGNOC: ACCELERATING BIG DATA COMPUTINGWITH APPLICATION-SPECIFIC PHOTONIC NETWORK-ON-CHIP... 2411

respectively, which are the highest buffer depths of the opti-
mal performance regions shown in Figs. 7a and 7b. We use
these optimal buffer depths for BiGNoC-HOM and BiGNoC-
HET in the rest of our analysis.

6.3 Experimental Results

Our next set of experiments presents a comparative study
between BiGNoC-HOM and BiGNoC-HET. We used the
optimal buffer depth of 21 and 26 for BiGNoC-HOM and
BiGNoC-HET, respectively (determined as per the previous
subsection) in this comparative study. Figs. 8a and 8b pres-
ent detailed simulation results that quantify the average
throughput and energy-per-bit (EPB) for BiGNoC-HOM
and BiGNoC-HET, for twelve multi-application workloads.
Results are normalized with respect to the BiGNoC-HET
results.

From Fig. 8a it can be seen that on an average BiGNoC-
HET has 30.4 percent higher average throughput compared
to BiGNoC-HOM. Variable cluster sizes in BiGNoC-HET
help reduce the inter-cluster traffic while executing big data
workloads involving different master-servant combinations.
This decrease in inter-cluster traffic improves utilization of
MWSR and SWMR waveguides within a cluster and
increases the throughput of BiGNoC-HET compared to
BiGNoC-HOM. Also, from Fig. 8b it can be observed that on
an average BiGNoC-HET has 33.3 percent lower EPB com-
pared to BiGNoC-HOM. The increase in data rate and
decrease in trimming energy (due to decrease in number of
detectors) decreases the EPB of BiGNoC-HET compared to
BiGNoC-HOM even though there is increase in laser energy
for BiGNoC-HET. From the average throughput and EPB
results presented in Fig. 8, we can summarize that BiGNoC-
HET achieves better performance with lower EPB compared

to BiGNoC-HOM, which highlights its viability for executing
future large-scale data analytics applications. Therefore, for
our next set of experiments we have used only BiGNoC-
HET to estimates benefits over electrical and photonic NoC
architectures from prior work.

In the next set of experiments, we compare network
throughput, average packet latency, and energy-per-bit
(EPB) of BiGNoC-HET with the EMesh, BO-EMesh, Flexi-
share with token stream arbitration [11], and Firefly with R-
SWMR waveguide [9] architectures. Figs. 9a, 9b, 9c show
the results of this comparative analysis, where all the results
are normalized with respect to the EMesh results. From the
throughput comparison in Fig. 9a, it can be observed that,
not surprisingly, BiGNoC-HET provides 8:7� and 7:2�
higher throughput than EMesh and BO-EMesh, respec-
tively, due to the presence of higher bandwidth photonic
links for data communication. Furthermore, as shown in

Fig. 8. (a) Normalized throughput, (b) normalized EPB comparison of
BiGNoC-HOM with BiGNoC-HET for 256-core CMP. Results are shown
for multi-application workloads and normalized w.r.t. BiGNoC-HET.

Fig. 9. Normalized (a) throughput (b) latency (c) EPB comparison of
BiGNoC-HET with other architectures for a 256-core CMP. Results are
for multi-application workloads and normalized w.r.t. EMesh.

2412 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 11, NOVEMBER 2018

Fig. 9a, throughput improvements of BiGNoC-HET are sig-
nificantly higher for most of the application combinations,
except the application combinations that have the Gray Sort
Contest (G) application. As this single large application uti-
lizes a significant portion of the BiGNoC architecture (by
utilizing 200 servant cores) for which a major portion of the
traffic traverses the 4� 4 electrical routers (for inter-cluster
communication), the bottlenecks at these routers limit
BiGNoC-HET performance.

BiGNoC-HET has nearly 9:9� greater throughput com-
pared to Flexishare. Even though Flexishare uses MWMR
waveguides and time division multiplexing (TDM), its
token stream arbitration reduces its waveguide utilization
and overall throughput compared to BiGNoC-HET. In Flexi-
share, arbitration wavelengths corresponding to MWMR
data waveguides are injected serially into the arbitration
waveguide and a node that grabs a token in the arbitration
waveguide gets exclusive access to the corresponding
MWMR data waveguide, which limits Flexishare’s ability to
perform simultaneous data transfers. In contrast, BiGNoC-
HET has dedicated photonic paths (MWSR waveguide
group for SN-to-MN communication and SWMR wave-
guide group for MN-to-SN communication) between the
master node and servant nodes within each cluster. This
helps in increasing simultaneous data transfers in BiGNoC-
HET with increase in number of clusters. BiGNoC-HET also
facilitates efficient multicasting to improve throughput over
Flexishare by using its SWMR waveguide groups from MN
to SNs, whereas in Flexishare, multiple unicast packets are
sent from the master core to servant cores instead of a single
multicast packet.

BiGNoC-HET has 4:4� higher throughput compared to
Firefly. This is due to the near light speed communications
for a majority of the path traversed by the data in BiGNoC-
HET using photonic links, whereas Firefly being a hybrid
network, utilizes slower electrical links for a significant por-
tion of the path traversed by the data. These mechanisms
also improve the average packet latency in BiGNoC-HET, as
shown in Fig. 9b, by reducing the time spent waiting for
access to the photonic waveguides. On average BiGNoC-
HET has 81 percent, 84 percent, 85 percent, and 88 percent
lower average packet delay over Flexishare, Firefly, BO-
EMesh, and EMesh, respectively for the different multi-
application workloads.

Fig. 9c shows the EPB comparison between the architec-
tures. It can be observed that on average BiGNoC-HET has
88 percent, 90 percent, 96 percent, and 98 percent lower EPB
compared to Flexishare, Firefly, BO-EMesh, and EMesh,
respectively. BiGNoC-HET has lower EPB compared to BO-
EMesh and EMesh, as it uses energy efficient photonic links
for data transfer instead of power hungry electrical links.
Most of the energy in the photonic architectures was

consumed in the form of static energy. Table 4 shows the
photonic hardware comparison between the PNoC architec-
tures. It can be seen that BiGNoC-HET has 82 percent less
photonic hardware compared to Flexishare. This reduction
in photonic hardware reduces its overall static energy con-
sumption and its EPB. Although both BiGNoC-HET and
Firefly use multicasting in their SWMR waveguides, the
lower EPB of BiGNoC-HET compared to Firefly is due to
the higher energy consumption in the electrical network of
the Firefly architecture.

7 CONCLUSION

We presented a new application-specific BiGNoC architec-
ture that features master-servant clusters with efficient utili-
zation of SWMR and MWSR waveguides to improve
performance while executing large-scale data analytics
applications. BiGNoC exploits efficient multicasting in
photonic waveguides to achieve high data rates. In particu-
lar, we showed how BiGNoC-HET, a variant of BiGNoC,
improves performance due to improved photonic channel
utilization and its ability to adapt to time-varying applica-
tion performance goals while co-running multiple large-
scale data analytics applications. BiGNoC-HET improves
throughput by up to 9:9�, packet latency by up to
88 percent, and energy-per-bit by up to 98 percent over tra-
ditional EMesh, broadcast optimized EMesh, and state-of-
the-art photonic NoC architectures (Flexishare and Firefly).
These results corroborate the excellent capabilities of our
proposed BiGNoC architecture towards executing large-
scale data analytics applications.

ACKNOWLEDGMENTS

This research is supported by grants from SRC, NSF (CCF-
1252500, CCF-1302693), and AFOSR (FA9550-13-1-0110).

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified data process-
ing on large clusters,” Comm. ACM, vol. 51, no. 1, pp. 107–113,
Jan. 2008.

[2] Hadoop. (2016). [Online]. Available: https://hadoop.apache.org
[3] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and

I. Stoica, “Spark: Cluster computing with working sets,” in Proc.
USENIX Conf. Hot Topics Cloud Comput., 2010, Art. no. 10.

[4] J. Hamilton, “Cooperative expendable micro-slice servers (CEMS):
low cost low power servers for internet-scale services,” in CIDR,
2009, pp. 1–8.

[5] Y. Xia, T. S. E. Ng, X. S. Sun, “Blast: Accelerating high-
performance data analytics applications by optical multicast,” in
Proc. IEEE Conf. Comput. Commun., 2015, pp. 1930–1938.

[6] KNN Refinement. (2013). [Online]. Available: https://www3.nd.
edu/~steve/computing_with_data/17_Refining_kNN/refining_
knn.html.

[7] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica,
“Managing data transfers in computer clusters with orchestra,” in
Proc. ACM SIGCOMM, 2011, pp. 98–109.

[8] C. Li, M. Browning, P. V. Gratz, and S. Palermo, “Energy-efficient
optical broadcast for nanophotonic networks-on-chip,” in Proc.
Optical Interconnects Conf., 64–65, 2012.

[9] Y. Pan, P. Kumar, J. Kim, G. Memik, Y. Zhang, and A. Choudhary,
“Firefly: Illuminating future network-on-chip with nano-
photonics,” in Proc. Int. Symp. Comput. Archit., 2009, pp. 429–440.

[10] D. Vantrease, R. Schreiber, M. Monchiero, M. McLaren, N. Jouppi,
M. Fiorentino, A. Davis, N. Binkert, R. Beausoleil, and J. Ahn,
“Corona: System implications of emerging nanophotonic tech-
nology,” in Proc. Int. Symp. Comput. Archit., 2008, pp. 153–164.

TABLE 4
Photonic Hardware Comparison

Architecture Waveguides Modulators Detectors

BiGNoC-HOM 12 31,744 17,408
BiGNoC-HET 10 33,280 11,776
Flexishare 33 131,080 131,648
Firefly 64 4,096 28,672

CHITTAMURU ETAL.: BIGNOC: ACCELERATING BIG DATA COMPUTINGWITH APPLICATION-SPECIFIC PHOTONIC NETWORK-ON-CHIP... 2413

https://hadoop.apache.org
https://www3.nd.edu/~steve/computing_with_data/17_Refining_kNN/refining_knn.html
https://www3.nd.edu/~steve/computing_with_data/17_Refining_kNN/refining_knn.html
https://www3.nd.edu/~steve/computing_with_data/17_Refining_kNN/refining_knn.html

[11] Y. Pan, J. Kim, and G. Memik, “Flexishare: Channel sharing for an
energy efficient nanophotonic crossbar,” in Proc. Int. Symp. High
Perform. Comput. Archit., 2010, pp. 1–12.

[12] Text Mining. (2007). [Online]. Available: https://www.cs.umb.
edu/�smimarog/textmining/datasets/

[13] R. S. Tsay, Analysis of Financial Time Series. Hoboken, NJ, USA:
Wiley, ISBN 0-471-41544-8, 2002.

[14] Airline Dataset. (2010). [Online]. Available: http://www.stat.
purdue.edu/�sguha/rhipe/doc/html/airline.html

[15] Sort Benchmark. (2009). [Online]. Available: http://sortbenchmark.
org/

[16] L.H.K. Duong, M. Nikdast, S. Le Beux, J. Xu, X. Wu, Z. Wang, and
P. Yang, “A case study of signal-to-noise ratio in ring-based opti-
cal networks-on-chip,” IEEE Des. Test, vol. 31, no. 5, pp. 55–65,
Oct. 2014.

[17] R. Morris and A. K. Kodi, “Power-efficient and high-performance
multilevel hybrid nanophotonic interconnect for multicores,” in
Proc. ACM/IEEE Int. Symp. Netw.-on-Chip, 2010, pp. 207–214.

[18] J. Psota, J. Miller, G. Kurian, H. Hoffman, N. Beckmann, J. Eastep,
and A. Agarwal, “ATAC: On-chip optical networks for multicore
processors,” in Proc. IEEE Int. Symp. Circuits Syst., 2010, pp. 3325–
3328.

[19] E. Fusella, J. Flich, and A. Cilardo, “Path setup for hybrid NoC
architectures exploiting flooding and standby,” IEEE Trans. Paral-
lel Distrib. Syst., vol. 28, no. 5, May 2017.

[20] L. Yang, W. Liu, W. Jiang, M. Li, P. Chen, and E. H. Sha,
“FoToNoC: A folded torus-like network-on-chip based many-core
systems-on-chip in the dark silicon era,” IEEE Trans. Parallel Dis-
trib. Syst., vol. 28, no. 7, Jul. 2017.

[21] A. Kulkarnl, T. Abtahi, E. Smith, and T. Mohsenin, “Low energy
sketching engines on many-core platform for big data acceler-
ation,” in Proc. Int. Great Lakes Symp. VLSI, 2016, pp. 57–62.

[22] K. Kanoun, M. Ruggiero, D. Atienza, and M. Schaar, “Low power
and scalable many-core architecture for big-data stream
computing,” in Proc. IEEE Comput. Society Annu. Symp. VLSI,
2014, pp. 468–473.

[23] E. Painkras, L. A. Plana, J. Garside, S. Temple, F. Galluppi,
C. Patterson, D. R. Lester, A. D. Brown, and S. B. Furber,
“SpiNNaker: A 1-W 18-core system-on-chip for massively-parallel
neural network simulation,” IEEE J. Solid-State Circuits, vol. 48,
no. 8, pp. 1943–1953, Aug. 2013.

[24] S. Carrillo, J. Harkin, L. J. McDaid, F. Morgan, S. Pande, S. Cawley,
and B. McGinley, “Scalable hierarchical network-on-chip architec-
ture for spiking neural network hardware implementations,”
IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 22, pp. 2451–2461,
Dec. 2013.

[25] V. Dmitri and R. Ginosar, “Network-on-chip architectures for
neural networks,” in Proc. ACM/IEEE Int. Symp. Netw.-on-Chip,
2010, pp. 135–144.

[26] A. Firuzan, M. Modarressi, and M. Daneshtalab, “Reconfigurable
communication fabric for efficient implementation of neural
networks,” in Proc. 10th Int. Symp. Reconfigurable Commun.-Centric
Syst.-on-Chip, 2015, pp. 1–8.

[27] J. Lee, S. Li, H. Kim, and S. Yalamanchili, “Design space explora-
tion of on-chip ring interconnection for a CPU-GPU heteroge-
neous architecture,” J. Parallel Distrib. Comput., vol. 73, no. 12,
pp. 1525–1538, 2013.

[28] W. Choi, K. Duraisamy, R. G. Kim, J. R. Doppa, P. P. Pande,
R. Marculescu, and D. Marculescu, “Hybrid network-on-chip
architectures for accelerating deep learning kernels on heteroge-
neous manycore platforms,” in Proc. Int. Conf. Compliers Archit.
Sythesis Embedded Syst., Oct. 2016, pp. 1–10.

[29] C. Sun, C. O. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal,
L. Peh, and V. Stojanovic, “DSENT - A tool connecting emerging
photonics with electronics for opto-electronic networks-on-chip
modeling,” in Proc. ACM/IEEE Int. Symp. Netw.-on-Chip, 2012,
pp. 207–214.

[30] N. E. Jerger, L. Peh, and M. Lipasti, “Virtual circuit tree multicast-
ing: A case for on-chip hardware multicast support,” in Proc. Int.
Symp. Comput. Archit., 2008, pp. 229–240.

[31] I. Thakkar, S. V. R. Chittamuru, and S. Pasricha, “Run-time laser
power management in photonic NoCs with on-chip semiconduc-
tor optical amplifiers,” in Proc. ACM/IEEE Int. Symp. Netw.-on-
Chip, 2016, pp. 1–4.

[32] C. Chen and A. Joshi, “Runtime management of laser power in
silicon-photonic multibus NoC architecture,” IEEE J. Select. Topics
Quantum Electron., vol. 2, no. 19, Mar./Apr. 2013, Art. no. 3700713.

[33] T. Krishna, L. Peh, B. M. Beckmann, S. K. Reinhardt, “Towards the
ideal on-chip fabric for 1-to-many andmany-to-1 communication,”
in Proc. IEEE/ACM Int. Symp.Microarchitecture, 2011, pp. 71–82.

[34] J. Dongarra, “Report on the sunway taihulight system,” in Techni-
cal Report UT-EECS-16-742, Jun. 2016.

[35] Amazon EC2. (2017). [Online]. Available: http://aws.amazon.
com/ec2.

[36] X. Zheng, D. Patil, J. Lexau, F. Liu, G. Li, H. Thacker, Y. Luo,
I. Shubin, J. Li, J. Yao, P. Dong, D. Feng, M. Asghari, T. Pinguet,
A. Mekis, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam,
E. Alon, K. Raj, R.Ho, J. E. Cunningham, andA. V. Krishnamoorthy,
“Ultra-efficient 10Gb/s hybrid integrated silicon photonic transmit-
ter and receiver,” Opt. Express, vol. 19, no. 6, pp. 5172–5186,
Mar. 2011.

[37] P. Grani and S. Bartolini, “Design options for optical ring intercon-
nect in future client devices,” ACM JETC, vol. 10, no. 4, May 2014,
Art. no. 30.

[38] Z. Wang, S. Zhang, B. He, and W. Zhang, “Melia: A mapreduce
framework on open CL-based FPGAs”, IEEE Trans. Parallel Dis-
trib. Syst., vol. 27, no. 12, pp. 3547–3560, Dec. 2016.

[39] S. V. R. Chittamuru, S. Desai, and S. Pasricha, “SWIFTNoC: A
reconfigurable silicon-photonic network with multicast enabled
channel sharing for multicore architectures,” ACM J. Emerging
Technol. Comput. Syst., vol. 13, no. 4, Feb. 2017, Art. no. 58.

[40] C. Li, M. Browning, P. V. Gratz, and S. Palermo, “LumiNOC: A
power-efficient, high-performance photonic network-on-chip,”
IEEE Trans. Comput.-Aided Des. Integrated Circuits Syst., vol. 33,
no. 6, pp. 826–838, Jun. 2014.

[41] E. Kakoulli, V. Soteriou, C. Koutsides, and K. Kalli, “Design of
high-performance, power-efficient optical NoCs using silica-
embedded silicon nanophotonics,” in Proc. IEEE Int. Conf. Comput.
Des., Oct. 2015, pp. 1–8.

[42] R. Hendry, D. Nikolova, S. Rumley, N. Ophir, and K. Bergman,
“Physical layer analysis and modeling of silicon photonic WDM
bus architectures,” in Proc. HiPEACWorkshop, 2014.

[43] I. Thakkar, S. V. R. Chittamuru, and S. Pasricha, “A comparative
analysis of front-end and back-end compatible silicon photonic
on-chip interconnects,” in Proc. of SLIP, 2016, pp. 1–8.

Sai Vineel Reddy Chittamuru (S’14) received
the BTech degree in electrical engineering from
the Indian Institute of Technology Kharagpur (IIT-
KGP) in 2011, and the PhD degree in electrical
and computer engineering, from Colorado State
University, Fort Collins, Colorado, in 2018. His
research interests include embedded system,
systems-on-chip, and optical networks-on-chip.
He is the recipient of best paper awards from
IEEE/ACM SLIP 2016 and ACM GLSVLSI 2015
conferences, and a best paper nomination from

the IEEE ISQED 2016 conference for his research contributions. He is
Student Member of the IEEE.

Dharanidhar Dang (S’15) working toward the
PhD degree in computer engineering at Texas
A&M University, College Station, Texas. His thesis
advisor is Dr.Rabi N Mahapatra. Dang’s research
area includes silicon photonics, neuromorphic
computing, computer architecture, deep learning,
and VLSI. He has seven publications in top EDA
events and several under reviews in IEEE and
ACM transactions. He has been honored as a
teaching fellow by College of Engineering, TAMU.
He won multiple national and international com-

petitions such as gold medal in Intel Embedded Challenge, 5000$ cash
prize in Youth Enterprise, 2500$ in Schneider Electric Innovation Chal-
lenge. In his PhD thesis, Dang is investigating silicon photonic architecture
for exascale computing. He is Student Member of the IEEE.

2414 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 11, NOVEMBER 2018

https://www.cs.umb.edu/∼smimarog/textmining/datasets/
https://www.cs.umb.edu/∼smimarog/textmining/datasets/
https://www.cs.umb.edu/∼smimarog/textmining/datasets/
http://www.stat.purdue.edu/∼sguha/rhipe/doc/html/airline.html
http://www.stat.purdue.edu/∼sguha/rhipe/doc/html/airline.html
http://www.stat.purdue.edu/∼sguha/rhipe/doc/html/airline.html
http://sortbenchmark.org/
http://sortbenchmark.org/
http://aws.amazon.com/ec2
http://aws.amazon.com/ec2

Sudeep Pasricha (M’02, SM’13) received the BE
degree in electronics and communication engi-
neering from the Delhi Institute of Technology,
India, in 2000, and the MS and PhD degrees
in computer science from the University of
California, Irvine, in 2005 and 2008, respectively.
He is currently a Monfort and Rockwell-Anderson
professor of Electrical and Computer Engineer-
ing, Colorado State University, Fort Collins, Colo-
rado. His research interests include energy
efficiency and fault tolerant design for network

and memory architectures in multicore computing. He is in the editorial
board of various journals such as IEEE Transactions on Computer-
Aided Design, IEEE Transactions on Multi-Scale Computing Systems,
IEEE Transactions on Embedded Computing Systems, etc. He is or has
been an Organizing Committee Member and/or Technical Program
Committee member of various IEEE/ACM conferences such as DAC,
DATE, CODESþISSS, NOCS, ISQED, VLSID, and GLSVLSI. He is the
recipient of several awards for his research contributions, including the
2015 IEEE TCSC Award for Excellence for a mid-career researcher and
the 2013 AFOSR Young Investigator Award, as well as five Best Paper
Awards. He is Senior Member of the IEEE.

Rabi Mahapatra (M’94, SM’02) is a professor in
the Department of Computer Science and Engi-
neering, Texas A&M University, Texas. He was a
faculty with the Indian Institute of Technology,
Kharagpur, India and a faculty fellow wih IBM
T. J Watson Research Center. His principal areas
of research are Embedded Systems, System on
Chip, Low-power system design, and Data ana-
lytic accelerators. He directs the Embedded Sys-
tem Research Group at Texas A&M University.
He has been on the Editorial board of ACM

Transactions on Embedded Computing, IEEE Transactions on Parallel
Distributed Systems, and EUROSIP Journal on Embedded Systems. He
is a ford fellow, BOYS-CAST fellow, and was a distinguished visitor of
IEEE Computer Society. He received Undergraduate Teaching Excel-
lence award in 2010. He is Senior Member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

CHITTAMURU ETAL.: BIGNOC: ACCELERATING BIG DATA COMPUTINGWITH APPLICATION-SPECIFIC PHOTONIC NETWORK-ON-CHIP... 2415

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

