
Dynamically Reconfigurable On-Chip Communication Architectures for Multi Use-
Case Chip Multiprocessor Applications

Sudeep Pasricha†, Nikil Dutt, Fadi J. Kurdahi,
University of California, Irvine, CA 
{spasrich, dutt, kurdahi}@uci.edu 

Abstract – The phenomenon of digital convergence and 
increasing application complexity today is motivating the design 
of chip multiprocessor (CMP) applications with multiple use 
cases. Most traditional on-chip communication architecture 
design techniques perform synthesis and optimization only for a 
single use-case, which may lead to sub-optimal design decisions 
for multi-use case applications. In this paper we present a 
framework to generate a dynamically reconfigurable crossbar-
based on-chip communication architecture that can support 
multiple use-case bandwidth and latency constraints. Our 
framework generates on-chip communication architectures 
with a low cost, low power dissipation, and with minimal 
reconfiguration overhead. Results of applying our framework 
on several networking CMP applications show that our 
approach is able to generate a crossbar solution with 
significantly lower cost (2.4× to 3.8×), and lower power 
dissipation (1.5× to 3.1×), compared to the best previously 
proposed approach. 

I. Introduction 

In the near future, emerging applications particularly in the 
multimedia and networking domains will be implemented as 
chip multiprocessors (CMPs) that consist of several on-chip 
components such as programmable processors, memories, 
peripherals and network interfaces [1]. These CMP 
implementations will have to support several application 
operating modes (called use-cases) because of the trend towards 
digital convergence [2]. For instance, portable handheld global 
positioning systems (GPS) today operate not only as 
navigational devices, but can also play MP3 songs, support 3D 
games, act as personal organizers, support wireless internet 
browsing and display streaming video. Each of these 
functionalities has a distinct performance requirement. 3D 
gaming, for instance, requires high performance to render 
graphics and maintain a high frame display rate, otherwise user 
experience is compromised. In contrast, playing MP3/WAV 
songs requires simpler audio codec decoding and has a much 
lower performance requirement. Some functionalities, such as 
H.264 video playback, may even have multiple performance 
requirements (i.e., multiple use cases), depending on the chosen 
decoding parameters and display modes. With the number of 
use-cases increasing rapidly in applications today, designers are 
finding it extremely challenging to create CMP implementations 
that can support multiple heterogeneous use-cases. 

On-chip communication architectures play a critical role in 
supporting diverse communication requirements across 
application use-cases [3]-[5]. Whether bandwidth and/or latency 
constraints in CMP applications can be satisfied depends to a 
significant extent on the design of the underlying 
communication architecture fabric that facilitates the entire on-
chip inter-component data communication. Several research 
efforts have proposed techniques for designing hierarchical
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shared bus, crossbar (or matrix), and networks-on-chip (NoC) 
communication architectures for single use-case applications. 
However, very few works have looked at designing 
communication architectures for applications with multiple use-
cases. In particular, no existing work has looked at designing 
crossbar based on-chip communication architectures customized 
for multi use-case applications. Since crossbar based 
communication architectures are beginning to be widely used in 
CMP designs [6], there is a need to explore techniques to design 
low cost and low power dissipation crossbar communication 
architectures that meet multi use-case application performance 
requirements. This paper addresses such a need. 

              
                     (a)                     (b) 

              
                       (c)                   (d) 
Fig. 1. Use cases for networking application (a) use-case1, (b) use-
case2, (c) use-case3, (d) compound use-case (use-case2+use-case3) 

Fig. 1 shows an example of a networking router subsystem 
with multiple use-cases. The application is implemented as a 
CMP with three processors, on-chip memories and network 
interfaces (I/O). Fig. 1 (a)-(c) show three use cases of the 
application that have vastly different bandwidth requirements 
between components. It is also possible for the application to 
execute multiple use cases simultaneously, as shown in Fig. 1 
(d), where use cases 2 and 3 execute at the same time. Typically, 
switching between (individual or compound) use cases takes 
place during application execution when users interact with the 
application or if there is a change in the environment (e.g., 
change in wireless signal strength, or battery level) [7]. Such a 
switch in use cases results in the temporal switch of application 
task and communication graphs. It is very likely that a 
communication architecture customized for a single use case 
may not meet the performance requirements for another use 
case. Thus there is a need to enhance traditional on-chip 
communication architecture synthesis techniques to handle multi 
use-case applications. 

In this paper we propose a framework for designing crossbar-
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based on-chip communication architectures to meet performance 
requirements for multi-use case applications. Our framework 
synthesizes a low cost and low power dissipation crossbar 
architecture that supports dynamic (runtime) reconfiguration to 
match dynamically changing use-case requirements. Every time 
a use case switch occurs during application execution, attributes 
of the crossbar are modified dynamically so that the 
performance requirements of the new use case can be supported. 
Results from experiments on several networking CMP designs 
show how our approach generates crossbar architectures with up 
to 3.8× lower cost and up to 3.1× lower power dissipation 
compared to the best previously proposed technique. To the best 
of our knowledge, this is the first piece of work that focuses on 
synthesizing and optimizing crossbar on-chip communication 
architectures for multi use-case applications.  

II. Related Work 

There has been a lot of work done in the area of on-chip 
communication architecture synthesis. Research efforts have 
looked at synthesizing hierarchical shared bus architectures [8]-
[10], crossbar or bus matrix architectures [11]-[12] and 
networks-on-chip (NoC) [13]-[15]. The synthesis techniques 
used in these works optimize for different design goals such as 
power, performance, cost and area. However, these techniques 
optimize the on-chip communication architecture assuming only 
a single operating mode for the application (i.e., a single use 
case). Since today’s digital convergence devices must perform 
multiple functions, applications being designed today are 
beginning to incorporate multiple use cases. It is extremely 
important to consider these multiple use-cases during on-chip 
communication architectures synthesis to avoid sub-optimal 
designs [23]. 

A few approaches have proposed using dynamic 
reconfiguration of on-chip communication architectures, to cope 
with changing traffic patterns during application execution. 
Sekar et al. [16] proposed the FLEXBUS bus architecture that 
dynamically changes the topology from a single shared bus to a 
dual shared bus to cope with changing performance 
requirements of the application. Lahiri et al. [17] and 
Richardson et al. [18] proposed shared bus architectures with 
dynamically varying arbitration priorities and TDMA (Time 
Division Multiple Access) slot allocations to cope with changing 
traffic demands. A few works such as Pandey et al. [19] propose 
dynamic voltage scaling (DVS) for shared buses at runtime to 
reduce power dissipation in the communication architecture. 
Our multi use-case crossbar synthesis framework makes use of a 
combination of dynamic arbitration scheme reconfiguration and 
dynamic voltage and frequency scaling (DVFS) to adapt to the 
changing requirements across multiple use-cases. 

Recent work [20]-[23] has begun to focus on designing and 
optimizing on-chip communication architectures to meet 
performance constraints of multiple use-cases. Murali et al. [20] 
proposed creating a single synthetic worst case from multiple 
use cases and designing a mesh NoC architecture for it. The 
authors also incorporated dynamic voltage and frequency 
scaling (DVFS) to reduce NoC power dissipation. This approach 
was enhanced by the same authors in [21] with a greedy 
mapping heuristic for better dataflow path selection. Hansson et 
al. [22]-[23] described an optimization technique to reduce 
switching time between use cases on a mesh NoC fabric. Our 
proposed approach in this paper is different from these existing 
works in the following ways: (i) we focus on synthesizing and 

optimizing a crossbar communication architecture instead of a 
mesh NoC for multi use-case applications, (ii) we incorporate an 
early physical layout tool to obtain more accurate performance 
and power estimates during synthesis, and (iii) our proposed 
synthesis technique creates a crossbar architecture with low 
dynamic reconfiguration overhead, instead of the high overhead 
of updating several distributed slot/routing tables with new 
paths/schedules from memory for a mesh NoC in [20]-[23] 
every time a use case switch occurs. Results from experiments 
on several CMP designs (Section VI) show how our synthesis 
framework has low reconfiguration overhead and also 
outperforms these approaches. 

 (a) full crossbar                      (b) partial crossbar 
Fig. 2. CMP with crossbar on-chip communication architecture 

III. Crossbar based CMP Architectures 

CMP architectures consist of multiple processing cores, each 
with one or more ports that can behave as either a master or a 
slave. Masters initiate data transfer transactions by issuing 
requests and slaves receive the requests and process the 
transactions (either manipulating and storing data, or returning 
data or an acknowledgement to the initiating master). Crossbar 
communication architectures (e.g., AXI PL300 [24] or STBus 
[25]) are often used to connect masters and slaves in a CMP 
architecture, and support data transfers. Fig. 2 (a) shows an 
example of a CMP architecture with a full crossbar 
communication architecture. The crossbar consists of a source 
router block (SRouter) at every master interface that buffers data 
received from the master, decodes the destination address and 
then sends the data to the appropriate destination router via a 
bus. At the destination router (DRouter), the data is buffered and 
arbitration is performed to select one out of the possibly several 
waiting data items (from different source routers) to send to the 
appropriate slave. Since a full crossbar as shown in Fig. 2 (a) 
may be too costly for large CMP systems because of an 
excessive number of buses, and buffers/routers, designers 
typically make use of partial crossbar architectures as shown in 
Fig. 2 (b). Partial crossbars have fewer buses and 
routers/buffers, but still satisfy application constraints, resulting 
in lower cost and lower power dissipation [11]-[12].  

IV. Problem Description 

For a given multi use-case application, we assume that 
hardware/software partitioning has already taken place and the 
computation tasks have been mapped to appropriate processing 
cores in the CMP architecture. Let  be a superset 
of all n application use-cases  For each use 
case  we are given a communication constraint graph 

 where  represents a processing element 
(master or slave core) and the directed edge

denotes the data communication from core  to . For 
every  in graph ,  denotes the bandwidth 
constraint in bits per second, and  denotes the latency 
constraint for data transfer from core  to . For every ,
the height and width of the core is also known, and denoted by 

and , respectively. 
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Let  denote the set of buses connecting masters (or source 
routers) to slaves (or destination routers), represent the set of 
buses connecting slaves to the destination routers, and 
represents the set of arbiters at the destination routers. Let 
denote the clock frequency of all the buses in the matrix, and 
denote the arbitration scheme used in an arbiter. The objective 
of the multi-use case crossbar design problem is to determine a 
topology  with appropriate core to bus mapping, 
protocol parameters  and a chip layout, such that: (i) for 
every use case  that has a corresponding 
communication constraint graph ,

 there exists a path in  that satisfies  and (ii)
crossbar cost (number of buses) is minimized, and (iii) overall 
system-level power dissipation for inter-core communication is 
minimized.

V. MUCSYN: Multi Use-Case Crossbar Synthesis 

A.   Synthesis Strategies 
In this subsection we discuss different approaches for 

designing crossbar communication architectures that can support 
applications with multiple use-cases. 
Traditional Approach: Out of all the approaches, the simplest is 
the traditional approach [11]-[12] which constructs the crossbar 
for the most communication intensive use-case. The partial 
crossbar is optimized to support the selected use-case 
performance constraints. However, such an approach does not 
guarantee that performance constraints of other use-cases will be 
satisfied. As an example, a crossbar architecture designed for 
the use-case in Fig. 1 (a) with the traditional approach was 
found to be unable to support performance requirements of the 
use-cases in Fig. 1 (c)-(d).  
WC Approach: Another approach is to create a synthetic worst-
case use case and optimize a partial crossbar for it, as done in 
[20]. The synthetic worst-case use case consists of the most 
stringent bandwidth and latency constraints from all the 
application use cases. Consequently, a crossbar architecture 
optimized for such a use case satisfies the constraints of all the 
use cases of an application. However such an approach is 
typically very conservative and overdesigns the system, 
especially for applications in which traffic characteristics of use 
cases are very different, or if the number of use cases is large 
[21]. For instance, for a 35 core, 13 use-case CMP design that 
we experimented with (Section VI), the crossbar architecture 
designed with this approach was around 3× larger compared 
with our proposed approach.
WC Approach with DVFS: The previous approach can be 
enhanced by adding dynamic voltage and frequency scaling 
(DVFS) [20]-[21]. In this approach, the voltage and frequency 
for buses are scaled down when a use case with less stringent 
performance constraints is executing. Such an approach may 
reduce power dissipation compared to the WC Approach, but 
does not reduce crossbar cost. It may even increase area 
overhead due to additional circuitry required for DVFS. 
Proposed Approach (MUCSYN): In contrast to the previous 
approaches, our proposed approach does not limit itself by 
creating a synthetic WC, and instead considers crossbar 
topology generation, arbitration policy selection and layout 
generation in an integrated manner to create a low cost and low 
power dissipation crossbar architecture. Unlike previous 
approaches [20]-[21], the integrated layout allows an accurate 
estimation of power and performance numbers during synthesis. 

Additionally, the synthesized crossbar supports low overhead 
dynamic arbitration policy reconfiguration and DVFS to reduce 
crossbar cost and power dissipation while satisfying use case 
constraints. The framework for our proposed approach is 
described in the next subsection.  

Fig. 3. Multi Use Case Synthesis Framework 

B.   Framework Overview 
Fig. 3 shows a high level overview of our multi use-case 

crossbar synthesis framework. In the first step we populate the 
application use-case superset  with individual use-cases as 
well as any compound use-cases (combinations of use-cases that 
can run simultaneously) from the application. Next we perform 
the initial mapping of IP cores onto a full crossbar template and 
create an initial layout of the design. Subsequently, we make use 
of our crossbar pruning algorithm to create a set of partial 
crossbar architectures that can theoretically satisfy constraints 
for all the use-cases of the application. The best solution is 
selected and a layout is generated for the partial crossbar 
architecture. Information obtained from the layout (e.g., wire 
length, number of repeaters and wire pipelining depth) is used in 
a cycle accurate SystemC [26] system-level simulation to 
generate accurate power and performance results for the 
solution. In this step, dynamic arbitration reconfiguration is also 
explored, to ensure that all the use case constraints are satisfied. 
Next, DVFS is explored for one or more use-cases with this 
solution, and adjustments with the additional DVFS circuitry 
made to the layout. If the solution violates one or more 
constraints, it is discarded. The next best solution from the 
solution database is selected and the process repeated till a 
solution is found that satisfies all bandwidth and latency 
constraints for the use cases. Finally, RTL and cycle accurate 
SystemC code for the optimized crossbar is generated. 

We now describe the synthesis framework in more detail. In 
Step 1, compound use-cases are automatically generated from 
individual use-cases, based on input from the designer that 
specifies which use-cases can execute in parallel. Each edge of 
the use case graph  can have a bandwidth and/or 
latency constraint. In the compound use case, the bandwidth 
constraint of the combined edge is the summation of the 
individual use case bandwidths, while the latency constraint is 
the minimum latency of the combined edges. Such an automatic 
compound use case generation is very useful and saves 
considerable designer effort, especially for applications with a 
large number of use cases, several of which may execute in 
parallel. The individual and newly generated parallel use cases 
are used to populate the use-case superset .

In the next step (Step 2), the IP cores of the CMP are mapped 
and connected to a full crossbar template of a standard 
communication architecture (e.g., AXI or STBus). In this 
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initialization step, use case constraints are mapped to the buses 
in the crossbar. A bandwidth use case vector BW = 
( , ,…, ) is created for each bus B in the 
crossbar that connects any two cores  and This vector 
aggregates the bandwidth constraints for all n use cases of the 
application pertaining to the data flow between the cores 
connected by the bus. Similarly, a latency use case vector LAT
= ( , ,…, ) is also created for each bus. Next 
an initial layout of the chip is generated using a high-level 
simulated annealing floorplanner based on sequence pair 
representation (PARQUET [27]). More details on the layout 
generation are presented in subsection V.C.  

Algorithm 1 Crossbar Pruning

1. Generate search tree ST of all possible agglomerative clusterings  
2. Perform breadth first search  node v  ST
3. For each previously unvisited node v

a. mark v as visited 
b. calculate cost c(v) 
c. generate TDMA arbitration slot schedules for solution 
d. check if v satisfies bandwidth constraints 

         i.   select a previously unselected bus B  
         ii. violation = width(B)×maxfreq(B) < ,
         iii. repeat i-ii till violation == true or no more buses left 
4. If node v violates constraint, remove v and all its children from ST
5. If node v satisfies constraints, S = S  v
6. Continue traversal till no more unvisited nodes are left 

In Step 3, we use a crossbar pruning algorithm to reduce the 
number of buses and logic components in the crossbar, while 
ensuring that bandwidth and latency constraints for all use-cases 
are satisfied. The algorithm is an extension of our previous work 
[12] that generated a low cost, non-reconfigurable crossbar for a 
single use case. The pseudo code for the enhanced algorithm is 
presented in Algorithm 1. The algorithm starts by creating a 
search tree with each level of the tree representing a successive 
agglomerative clustering of two IP cores (or groups of IP cores). 
The root node represents the full crossbar solution, while other 
nodes represent solutions with cores clustered together. The 
clustering of cores in a node may result in buses being clustered 
together, making the node a potential partial crossbar solution. 
Whenever two buses are clustered together, their corresponding 
bandwidth vectors are summed and the minimum latency values 
from the latency vectors are selected to create vectors for the 
new bus. Once the tree is created, a breadth first search is 
performed on the tree. For each traversed node the solution cost 
(number of buses) is calculated, and TDMA slot schedules are 
derived on a per use case basis using weighted bandwidth 
allocation [18]. The solution represented by the node is then 
checked to ensure that it satisfies all bandwidth constraints. The 
check consists of comparing the maximum bandwidth supported 
by each bus (which is the product of the bus width and the 
maximum clock frequency that the bus can support) against 
bandwidth constraints for all the n use cases in the 
bandwidth use case vector BW. There is a violation if the 
bandwidth constraint for any use case exceeds the bandwidth 
that can be supported by the bus. If such a violation occurs, the 
node is bounded, i.e., the node and all its children are discarded 
from the search tree. This is done because the node does not 
represent a feasible solution, and since all the children of this 
node must contain the clustering that violated the constraints, 
they also do not represent feasible solutions. If on the other hand 
the node does not violate any bandwidth constraints, then the 
node is added to the solution database S. This process is 

repeated till no more unvisited nodes remain in the search tree. 
In Step 4, the best solution from the database S is selected and 

a layout is created for this partial crossbar solution (subsection 
V.C). In Step 5, we customize the crossbar model and IP core 
connections in our SystemC [26] system-level simulation 
environment and simulate the application. Information obtained 
from the layout (e.g., wire length, number of repeaters and wire 
pipelining depth) and power models proposed in our earlier 
work [28] are used to generate statistics for crossbar power 
estimation and to check if application performance constraints 
are satisfied. If there are any latency violations, we explore 
using dynamic arbitration reconfiguration across use-cases. This 
is done because for some use-cases with stringent latency 
constraints, another scheme such as the static priority (SP) 
scheme might be more effective than a TDMA scheme. We 
therefore explore additional arbitration schemes in the 
destination routers, such as static priority (SP), first-in first-out 
(FIFO), and two level TDMA/RR (round robin) schemes [5] for 
use-cases with constraint violations. If any of these new 
schemes satisfy previously violated constraints, we use that 
scheme instead of TDMA. In Step 6, dynamic voltage and 
frequency scaling (DVFS) is performed on buses to reduce 
power dissipation. Our DVFS technique is applied on buses with 
available slack (usually with low bandwidth and high latency 
constraints) on a per use-case basis. We make use of the model 
from [29] where it is assumed that the square of the voltage 
scales linearly with frequency. We also perform layout 
adjustment to account for the additional area of the level 
up/down shifter circuitry [30] for DVFS, as well as the area 
overhead of multiple arbitration schemes wherever dynamic 
reconfigurable arbitration is used. If the solution is found to 
violate one or more constraints, then it is discarded. The next 
best solution is then selected from the database and Steps 4-6 
repeated till a solution is found that satisfies all constraints. 
Once such a solution is found, our framework generates the 
cycle accurate SystemC and RTL code for the partial crossbar 
communication architecture. 

C.   Layout Generation 
As mentioned in the previous subsection, our multi use case 

synthesis framework makes use of a high level floorplanner [27] 
to generate early layouts of our crossbar based CMP 
architecture, to obtain accurate performance and power 
statistics. We view bandwidth and latency constraints imposed 
by the application as mutually independent. For instance, many 
packet forwarding or non-critical multimedia traffic streams 
have high bandwidth requirements, but no stringent latency 
constraints, except those imposed by the application period [5]. 
In contrast, control-oriented signaling events (e.g., interrupts) 
and cache misses have a tight latency constraint, but no 
bandwidth requirements. The floorplan of an application must 
ensure that cores that have high bandwidth communication 
between them are placed close to each other, to reduce power 
dissipation. Additionally, cores that have tight latency 
constraints must also be placed closer together, to satisfy 
performance constraints. This implies a trade-off since it is not 
always possible to put cores closer together to obtain minimal 
power and also satisfy latency constraints. To appropriately bias 
our simulated annealing (SA) floorplanner towards achieving 
these goals, we use a hybrid bandwidth/latency metric as 
described in [31]. In this metric, latency constraints are 
considered more critical than bandwidth constraints. This is 
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because while bandwidth constraints can be met even if cores 
are somewhat further apart, tight latency constraints are highly 
dependent on core distance. If  is a communication edge in 

  with the largest bandwidth requirement, and  is 
a communication edge with the most stringent (lowest) latency 
constraint, then an integer k is determined, such that 

Once k is determined, an edge weight is assigned to each edge, 
such that 

This weight is used to create ‘bias nets’ between cores that bias 
the SA algorithm to place the cores based on weight values – the 
higher the weight of an edge between two cores, the more likely 
they are to be placed adjacent to each other in the 2D floorplan. 
If two edges have the same weight, the one with the tighter 
latency is given a higher priority. 

D.   Dynamic Reconfiguration Infrastructure 
We assume that the dynamic arbitration and DVFS 

reconfiguration is handled by a reconfiguration core (DRCore), 
and initiated by events such as a user command to start or stop 
an application, an embedded resource manager [32], or mode 
switches in the incoming stream [7]. DRCore can be any 
programmable processor, such as an ARM CPU, which may 
also be responsible for initiating and handling other control 
events in the system. It is connected to all the routers and is a 
key enabler for any needed reconfiguration during use-case 
switching. To ensure consistency, DRCore performs busy 
waiting, till all reconfiguration requests have been sent and all 
the acknowledgements received. Once acknowledgements from 
all the connected routers have been received, DRCore sends 
configuration words to reprogram arbitration schemes (e.g., 
TDMA slot schedules or a static priority list) and enable/disable 
DVFS if needed. Signals required for indicating a use-case 
switch to the routers, and for sending acknowledgement back to 
DRCore are part of the control signals of the interface protocol 
chosen (e.g., AXI [24] has user configurable signals that can be 
used for this purpose). Since the dataflow paths do not need to 
be reconfigured, the use case switching overhead is very low 
(~microseconds) and there is no need for a ‘smooth switching’ 
between use cases as in [20]-[23], where the applicability of 
DVFS and dynamic arbitration reconfiguration for critical use 
cases is limited. To reduce reconfiguration overhead for systems 
with large number of cores, multiple DRCores can also be used 
in a distributed manner. In this work however, we only consider 
a single DRCore for simplicity. 

VI. Experiments 

To determine the efficacy of our proposed multi use-case 
crossbar synthesis framework, we performed experiments on 
several CMP applications. We selected five proprietary 
applications from the networking domain, each with multiple 
use cases. The applications are responsible for various frame 
and data packet processing operations including protocol 
conversion, encryption/ decryption, forwarding, and data 
packing and unpacking. These applications are parallelized and 
implemented on a CMP architecture. Table I shows the 
characteristics of the CMP implementation of these applications, 
such as the total number of cores (memories, peripherals, 

processors), the number of programmable processors (ARM 
CPUs) and the number of use cases. The applications in Table I 
were modeled in SystemC [26] [33] at the transaction level 
based bus cycle accurate abstraction [34] to quickly and 
accurately estimate performance and power consumption of the 
applications. The various cores were interconnected using the 
AMBA AXI [24] protocol based crossbar communication 
architecture. The layout die size for these CMP applications was 
assumed to be 2cm×2cm.  

TABLE I 
CMP applications and their characteristics 

CMP Application # of cores # of 
proc. 

# of use 
cases

DHub1 18 5 8 
PEncD 28 7 6 
Fproc 35 10 13 
PckFtr 40 14 21 
DHub2 47 19 18 

We synthesized crossbar communication architectures for 
each of these applications using our proposed multi use-case 
synthesis framework (MUCSYN) as well as with the worst case 
(WC), and WC with DVFS approaches [20]-[21] (subsection 
V.A) for comparison purposes. Fig. 4 shows the cost of the 
crossbar (number of buses) of the best solution generated by 
these approaches. It can be seen that the solution generated by 
MUCSYN has significantly fewer buses (2.4× to 3.8×) than the 
WC approaches. The WC with DVFS approach has the same 
cost as the WC approach because DVFS only affects power 
dissipation, and does not reduce crossbar cost. MUCSYN 
creates a solution with a lower cost because of two main 
reasons: (i) it optimizes the use cases separately during topology 
selection unlike the WC approaches which combine all the use-
cases into a single synthetic use case with much more 
conservative constraints, and (ii) it makes use of dynamic 
arbitration reconfiguration to better match use-case 
characteristics and lower the cost of the crossbar compared to 
WC approaches. 

Fig. 4. Cost comparison for synthesized crossbars 

Fig. 5. Power dissipation for synthesized crossbars 

Fig. 5 shows a comparison of the power dissipation of the 
crossbar solutions generated by the approaches, normalized to 
the power dissipation of a full crossbar solution. It can be seen 
that MUCSYN has a much lower power dissipation compared to 
the WC approaches. The WC approach has a lower power 
dissipation compared to the full crossbar because of the fewer 
buses and router components in its partial crossbar solution. The 
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WC with DVFS further reduces power dissipation further by 
opportunistically scaling voltage/frequency during application 
execution. MUCSYN outperforms these WC approaches 
because it has much fewer buses and router components, which 
coupled with the DVFS technique dissipates significantly lower 
power (1.5× to 3.1×). 

                (a) area overhead                        (b) performance overhead

Fig. 6. Dynamic reconfiguration overhead 

Fig. 6 (a) shows the area overhead of the dynamic 
reconfiguration logic required for the solution obtained using 
our proposed framework. The area overhead is due to the DVFS 
circuitry and logic for multiple arbitration scheme selection and 
operation. The area overhead is less than 7%, and largely due to 
the DVFS circuitry. Fig. 6 (b) shows the performance overhead 
of using DVFS and dynamic arbitration reconfiguration to 
reduce cost and power dissipation in the crossbar solution 
generated by our framework. It can be seen that the performance 
overhead of runtime reconfiguration is minimal (less than 3%). 
Such a low overhead framework for generating dynamically 
reconfigurable crossbar architectures is extremely valuable for 
designers of multi use-case CMP applications. 

VII. Conclusion 

In this paper, we proposed a novel framework that synthesizes 
crossbar-based communication architectures for CMP 
applications with multiple use cases. The generated crossbars 
support dynamic reconfiguration of the arbitration schemes and 
dynamic voltage and frequency scaling (DVFS) to better adapt 
to the changing needs of different use cases which can 
frequently switch at runtime. Experimental results on several 
networking domain case studies indicate that our proposed 
framework generates a lower cost crossbar (2.4× to 3.8×) 
compared to traditional and previously proposed synthetic worst 
case design approaches. The synthesized crossbar from our 
framework dissipates much lower power (1.5× to 3.1×) than 
these approaches. In addition, the dynamic reconfiguration area 
and performance overhead of the synthesized crossbar solution 
is minimal. Such a framework for generating dynamically 
reconfigurable crossbars is invaluable for emerging CMP 
applications.  
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