
Dynamically Reconfigurable On-Chip Communication Architectures for Multi Use-
Case Chip Multiprocessor Applications

Sudeep Pasricha†, Nikil Dutt, Fadi J. Kurdahi,
University of California, Irvine, CA
{spasrich, dutt, kurdahi}@uci.edu

Abstract – The phenomenon of digital convergence and
increasing application complexity today is motivating the design
of chip multiprocessor (CMP) applications with multiple use
cases. Most traditional on-chip communication architecture
design techniques perform synthesis and optimization only for a
single use-case, which may lead to sub-optimal design decisions
for multi-use case applications. In this paper we present a
framework to generate a dynamically reconfigurable crossbar-
based on-chip communication architecture that can support
multiple use-case bandwidth and latency constraints. Our
framework generates on-chip communication architectures
with a low cost, low power dissipation, and with minimal
reconfiguration overhead. Results of applying our framework
on several networking CMP applications show that our
approach is able to generate a crossbar solution with
significantly lower cost (2.4× to 3.8×), and lower power
dissipation (1.5× to 3.1×), compared to the best previously
proposed approach.

I. Introduction

In the near future, emerging applications particularly in the
multimedia and networking domains will be implemented as
chip multiprocessors (CMPs) that consist of several on-chip
components such as programmable processors, memories,
peripherals and network interfaces [1]. These CMP
implementations will have to support several application
operating modes (called use-cases) because of the trend towards
digital convergence [2]. For instance, portable handheld global
positioning systems (GPS) today operate not only as
navigational devices, but can also play MP3 songs, support 3D
games, act as personal organizers, support wireless internet
browsing and display streaming video. Each of these
functionalities has a distinct performance requirement. 3D
gaming, for instance, requires high performance to render
graphics and maintain a high frame display rate, otherwise user
experience is compromised. In contrast, playing MP3/WAV
songs requires simpler audio codec decoding and has a much
lower performance requirement. Some functionalities, such as
H.264 video playback, may even have multiple performance
requirements (i.e., multiple use cases), depending on the chosen
decoding parameters and display modes. With the number of
use-cases increasing rapidly in applications today, designers are
finding it extremely challenging to create CMP implementations
that can support multiple heterogeneous use-cases.

On-chip communication architectures play a critical role in
supporting diverse communication requirements across
application use-cases [3]-[5]. Whether bandwidth and/or latency
constraints in CMP applications can be satisfied depends to a
significant extent on the design of the underlying
communication architecture fabric that facilitates the entire on-
chip inter-component data communication. Several research
efforts have proposed techniques for designing hierarchical
† author currently with Colorado State University, Fort Collins, CO

shared bus, crossbar (or matrix), and networks-on-chip (NoC)
communication architectures for single use-case applications.
However, very few works have looked at designing
communication architectures for applications with multiple use-
cases. In particular, no existing work has looked at designing
crossbar based on-chip communication architectures customized
for multi use-case applications. Since crossbar based
communication architectures are beginning to be widely used in
CMP designs [6], there is a need to explore techniques to design
low cost and low power dissipation crossbar communication
architectures that meet multi use-case application performance
requirements. This paper addresses such a need.

 (a) (b)

 (c) (d)
Fig. 1. Use cases for networking application (a) use-case1, (b) use-
case2, (c) use-case3, (d) compound use-case (use-case2+use-case3)

Fig. 1 shows an example of a networking router subsystem
with multiple use-cases. The application is implemented as a
CMP with three processors, on-chip memories and network
interfaces (I/O). Fig. 1 (a)-(c) show three use cases of the
application that have vastly different bandwidth requirements
between components. It is also possible for the application to
execute multiple use cases simultaneously, as shown in Fig. 1
(d), where use cases 2 and 3 execute at the same time. Typically,
switching between (individual or compound) use cases takes
place during application execution when users interact with the
application or if there is a change in the environment (e.g.,
change in wireless signal strength, or battery level) [7]. Such a
switch in use cases results in the temporal switch of application
task and communication graphs. It is very likely that a
communication architecture customized for a single use case
may not meet the performance requirements for another use
case. Thus there is a need to enhance traditional on-chip
communication architecture synthesis techniques to handle multi
use-case applications.

In this paper we propose a framework for designing crossbar-

978-1-4244-2749-9/09/$25.00 ©2009 IEEE

1A-5

25
Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on August 22, 2009 at 14:23 from IEEE Xplore. Restrictions apply.

based on-chip communication architectures to meet performance
requirements for multi-use case applications. Our framework
synthesizes a low cost and low power dissipation crossbar
architecture that supports dynamic (runtime) reconfiguration to
match dynamically changing use-case requirements. Every time
a use case switch occurs during application execution, attributes
of the crossbar are modified dynamically so that the
performance requirements of the new use case can be supported.
Results from experiments on several networking CMP designs
show how our approach generates crossbar architectures with up
to 3.8× lower cost and up to 3.1× lower power dissipation
compared to the best previously proposed technique. To the best
of our knowledge, this is the first piece of work that focuses on
synthesizing and optimizing crossbar on-chip communication
architectures for multi use-case applications.

II. Related Work

There has been a lot of work done in the area of on-chip
communication architecture synthesis. Research efforts have
looked at synthesizing hierarchical shared bus architectures [8]-
[10], crossbar or bus matrix architectures [11]-[12] and
networks-on-chip (NoC) [13]-[15]. The synthesis techniques
used in these works optimize for different design goals such as
power, performance, cost and area. However, these techniques
optimize the on-chip communication architecture assuming only
a single operating mode for the application (i.e., a single use
case). Since today’s digital convergence devices must perform
multiple functions, applications being designed today are
beginning to incorporate multiple use cases. It is extremely
important to consider these multiple use-cases during on-chip
communication architectures synthesis to avoid sub-optimal
designs [23].

A few approaches have proposed using dynamic
reconfiguration of on-chip communication architectures, to cope
with changing traffic patterns during application execution.
Sekar et al. [16] proposed the FLEXBUS bus architecture that
dynamically changes the topology from a single shared bus to a
dual shared bus to cope with changing performance
requirements of the application. Lahiri et al. [17] and
Richardson et al. [18] proposed shared bus architectures with
dynamically varying arbitration priorities and TDMA (Time
Division Multiple Access) slot allocations to cope with changing
traffic demands. A few works such as Pandey et al. [19] propose
dynamic voltage scaling (DVS) for shared buses at runtime to
reduce power dissipation in the communication architecture.
Our multi use-case crossbar synthesis framework makes use of a
combination of dynamic arbitration scheme reconfiguration and
dynamic voltage and frequency scaling (DVFS) to adapt to the
changing requirements across multiple use-cases.

Recent work [20]-[23] has begun to focus on designing and
optimizing on-chip communication architectures to meet
performance constraints of multiple use-cases. Murali et al. [20]
proposed creating a single synthetic worst case from multiple
use cases and designing a mesh NoC architecture for it. The
authors also incorporated dynamic voltage and frequency
scaling (DVFS) to reduce NoC power dissipation. This approach
was enhanced by the same authors in [21] with a greedy
mapping heuristic for better dataflow path selection. Hansson et
al. [22]-[23] described an optimization technique to reduce
switching time between use cases on a mesh NoC fabric. Our
proposed approach in this paper is different from these existing
works in the following ways: (i) we focus on synthesizing and

optimizing a crossbar communication architecture instead of a
mesh NoC for multi use-case applications, (ii) we incorporate an
early physical layout tool to obtain more accurate performance
and power estimates during synthesis, and (iii) our proposed
synthesis technique creates a crossbar architecture with low
dynamic reconfiguration overhead, instead of the high overhead
of updating several distributed slot/routing tables with new
paths/schedules from memory for a mesh NoC in [20]-[23]
every time a use case switch occurs. Results from experiments
on several CMP designs (Section VI) show how our synthesis
framework has low reconfiguration overhead and also
outperforms these approaches.

 (a) full crossbar (b) partial crossbar
Fig. 2. CMP with crossbar on-chip communication architecture

III. Crossbar based CMP Architectures

CMP architectures consist of multiple processing cores, each
with one or more ports that can behave as either a master or a
slave. Masters initiate data transfer transactions by issuing
requests and slaves receive the requests and process the
transactions (either manipulating and storing data, or returning
data or an acknowledgement to the initiating master). Crossbar
communication architectures (e.g., AXI PL300 [24] or STBus
[25]) are often used to connect masters and slaves in a CMP
architecture, and support data transfers. Fig. 2 (a) shows an
example of a CMP architecture with a full crossbar
communication architecture. The crossbar consists of a source
router block (SRouter) at every master interface that buffers data
received from the master, decodes the destination address and
then sends the data to the appropriate destination router via a
bus. At the destination router (DRouter), the data is buffered and
arbitration is performed to select one out of the possibly several
waiting data items (from different source routers) to send to the
appropriate slave. Since a full crossbar as shown in Fig. 2 (a)
may be too costly for large CMP systems because of an
excessive number of buses, and buffers/routers, designers
typically make use of partial crossbar architectures as shown in
Fig. 2 (b). Partial crossbars have fewer buses and
routers/buffers, but still satisfy application constraints, resulting
in lower cost and lower power dissipation [11]-[12].

IV. Problem Description

For a given multi use-case application, we assume that
hardware/software partitioning has already taken place and the
computation tasks have been mapped to appropriate processing
cores in the CMP architecture. Let be a superset
of all n application use-cases For each use
case we are given a communication constraint graph

 where represents a processing element
(master or slave core) and the directed edge

denotes the data communication from core to . For
every in graph , denotes the bandwidth
constraint in bits per second, and denotes the latency
constraint for data transfer from core to . For every ,
the height and width of the core is also known, and denoted by

and , respectively.

1A-5

26
Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on August 22, 2009 at 14:23 from IEEE Xplore. Restrictions apply.

Let denote the set of buses connecting masters (or source
routers) to slaves (or destination routers), represent the set of
buses connecting slaves to the destination routers, and
represents the set of arbiters at the destination routers. Let
denote the clock frequency of all the buses in the matrix, and
denote the arbitration scheme used in an arbiter. The objective
of the multi-use case crossbar design problem is to determine a
topology with appropriate core to bus mapping,
protocol parameters and a chip layout, such that: (i) for
every use case that has a corresponding
communication constraint graph ,

 there exists a path in that satisfies and (ii)
crossbar cost (number of buses) is minimized, and (iii) overall
system-level power dissipation for inter-core communication is
minimized.

V. MUCSYN: Multi Use-Case Crossbar Synthesis

A. Synthesis Strategies
In this subsection we discuss different approaches for

designing crossbar communication architectures that can support
applications with multiple use-cases.
Traditional Approach: Out of all the approaches, the simplest is
the traditional approach [11]-[12] which constructs the crossbar
for the most communication intensive use-case. The partial
crossbar is optimized to support the selected use-case
performance constraints. However, such an approach does not
guarantee that performance constraints of other use-cases will be
satisfied. As an example, a crossbar architecture designed for
the use-case in Fig. 1 (a) with the traditional approach was
found to be unable to support performance requirements of the
use-cases in Fig. 1 (c)-(d).
WC Approach: Another approach is to create a synthetic worst-
case use case and optimize a partial crossbar for it, as done in
[20]. The synthetic worst-case use case consists of the most
stringent bandwidth and latency constraints from all the
application use cases. Consequently, a crossbar architecture
optimized for such a use case satisfies the constraints of all the
use cases of an application. However such an approach is
typically very conservative and overdesigns the system,
especially for applications in which traffic characteristics of use
cases are very different, or if the number of use cases is large
[21]. For instance, for a 35 core, 13 use-case CMP design that
we experimented with (Section VI), the crossbar architecture
designed with this approach was around 3× larger compared
with our proposed approach.
WC Approach with DVFS: The previous approach can be
enhanced by adding dynamic voltage and frequency scaling
(DVFS) [20]-[21]. In this approach, the voltage and frequency
for buses are scaled down when a use case with less stringent
performance constraints is executing. Such an approach may
reduce power dissipation compared to the WC Approach, but
does not reduce crossbar cost. It may even increase area
overhead due to additional circuitry required for DVFS.
Proposed Approach (MUCSYN): In contrast to the previous
approaches, our proposed approach does not limit itself by
creating a synthetic WC, and instead considers crossbar
topology generation, arbitration policy selection and layout
generation in an integrated manner to create a low cost and low
power dissipation crossbar architecture. Unlike previous
approaches [20]-[21], the integrated layout allows an accurate
estimation of power and performance numbers during synthesis.

Additionally, the synthesized crossbar supports low overhead
dynamic arbitration policy reconfiguration and DVFS to reduce
crossbar cost and power dissipation while satisfying use case
constraints. The framework for our proposed approach is
described in the next subsection.

Fig. 3. Multi Use Case Synthesis Framework

B. Framework Overview
Fig. 3 shows a high level overview of our multi use-case

crossbar synthesis framework. In the first step we populate the
application use-case superset with individual use-cases as
well as any compound use-cases (combinations of use-cases that
can run simultaneously) from the application. Next we perform
the initial mapping of IP cores onto a full crossbar template and
create an initial layout of the design. Subsequently, we make use
of our crossbar pruning algorithm to create a set of partial
crossbar architectures that can theoretically satisfy constraints
for all the use-cases of the application. The best solution is
selected and a layout is generated for the partial crossbar
architecture. Information obtained from the layout (e.g., wire
length, number of repeaters and wire pipelining depth) is used in
a cycle accurate SystemC [26] system-level simulation to
generate accurate power and performance results for the
solution. In this step, dynamic arbitration reconfiguration is also
explored, to ensure that all the use case constraints are satisfied.
Next, DVFS is explored for one or more use-cases with this
solution, and adjustments with the additional DVFS circuitry
made to the layout. If the solution violates one or more
constraints, it is discarded. The next best solution from the
solution database is selected and the process repeated till a
solution is found that satisfies all bandwidth and latency
constraints for the use cases. Finally, RTL and cycle accurate
SystemC code for the optimized crossbar is generated.

We now describe the synthesis framework in more detail. In
Step 1, compound use-cases are automatically generated from
individual use-cases, based on input from the designer that
specifies which use-cases can execute in parallel. Each edge of
the use case graph can have a bandwidth and/or
latency constraint. In the compound use case, the bandwidth
constraint of the combined edge is the summation of the
individual use case bandwidths, while the latency constraint is
the minimum latency of the combined edges. Such an automatic
compound use case generation is very useful and saves
considerable designer effort, especially for applications with a
large number of use cases, several of which may execute in
parallel. The individual and newly generated parallel use cases
are used to populate the use-case superset .

In the next step (Step 2), the IP cores of the CMP are mapped
and connected to a full crossbar template of a standard
communication architecture (e.g., AXI or STBus). In this

1A-5

27
Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on August 22, 2009 at 14:23 from IEEE Xplore. Restrictions apply.

initialization step, use case constraints are mapped to the buses
in the crossbar. A bandwidth use case vector BW =
(, ,…,) is created for each bus B in the
crossbar that connects any two cores and This vector
aggregates the bandwidth constraints for all n use cases of the
application pertaining to the data flow between the cores
connected by the bus. Similarly, a latency use case vector LAT
= (, ,…,) is also created for each bus. Next
an initial layout of the chip is generated using a high-level
simulated annealing floorplanner based on sequence pair
representation (PARQUET [27]). More details on the layout
generation are presented in subsection V.C.

Algorithm 1 Crossbar Pruning

1. Generate search tree ST of all possible agglomerative clusterings
2. Perform breadth first search node v ST
3. For each previously unvisited node v

a. mark v as visited
b. calculate cost c(v)
c. generate TDMA arbitration slot schedules for solution
d. check if v satisfies bandwidth constraints

 i. select a previously unselected bus B
 ii. violation = width(B)×maxfreq(B) < ,
 iii. repeat i-ii till violation == true or no more buses left
4. If node v violates constraint, remove v and all its children from ST
5. If node v satisfies constraints, S = S v
6. Continue traversal till no more unvisited nodes are left

In Step 3, we use a crossbar pruning algorithm to reduce the
number of buses and logic components in the crossbar, while
ensuring that bandwidth and latency constraints for all use-cases
are satisfied. The algorithm is an extension of our previous work
[12] that generated a low cost, non-reconfigurable crossbar for a
single use case. The pseudo code for the enhanced algorithm is
presented in Algorithm 1. The algorithm starts by creating a
search tree with each level of the tree representing a successive
agglomerative clustering of two IP cores (or groups of IP cores).
The root node represents the full crossbar solution, while other
nodes represent solutions with cores clustered together. The
clustering of cores in a node may result in buses being clustered
together, making the node a potential partial crossbar solution.
Whenever two buses are clustered together, their corresponding
bandwidth vectors are summed and the minimum latency values
from the latency vectors are selected to create vectors for the
new bus. Once the tree is created, a breadth first search is
performed on the tree. For each traversed node the solution cost
(number of buses) is calculated, and TDMA slot schedules are
derived on a per use case basis using weighted bandwidth
allocation [18]. The solution represented by the node is then
checked to ensure that it satisfies all bandwidth constraints. The
check consists of comparing the maximum bandwidth supported
by each bus (which is the product of the bus width and the
maximum clock frequency that the bus can support) against
bandwidth constraints for all the n use cases in the
bandwidth use case vector BW. There is a violation if the
bandwidth constraint for any use case exceeds the bandwidth
that can be supported by the bus. If such a violation occurs, the
node is bounded, i.e., the node and all its children are discarded
from the search tree. This is done because the node does not
represent a feasible solution, and since all the children of this
node must contain the clustering that violated the constraints,
they also do not represent feasible solutions. If on the other hand
the node does not violate any bandwidth constraints, then the
node is added to the solution database S. This process is

repeated till no more unvisited nodes remain in the search tree.
In Step 4, the best solution from the database S is selected and

a layout is created for this partial crossbar solution (subsection
V.C). In Step 5, we customize the crossbar model and IP core
connections in our SystemC [26] system-level simulation
environment and simulate the application. Information obtained
from the layout (e.g., wire length, number of repeaters and wire
pipelining depth) and power models proposed in our earlier
work [28] are used to generate statistics for crossbar power
estimation and to check if application performance constraints
are satisfied. If there are any latency violations, we explore
using dynamic arbitration reconfiguration across use-cases. This
is done because for some use-cases with stringent latency
constraints, another scheme such as the static priority (SP)
scheme might be more effective than a TDMA scheme. We
therefore explore additional arbitration schemes in the
destination routers, such as static priority (SP), first-in first-out
(FIFO), and two level TDMA/RR (round robin) schemes [5] for
use-cases with constraint violations. If any of these new
schemes satisfy previously violated constraints, we use that
scheme instead of TDMA. In Step 6, dynamic voltage and
frequency scaling (DVFS) is performed on buses to reduce
power dissipation. Our DVFS technique is applied on buses with
available slack (usually with low bandwidth and high latency
constraints) on a per use-case basis. We make use of the model
from [29] where it is assumed that the square of the voltage
scales linearly with frequency. We also perform layout
adjustment to account for the additional area of the level
up/down shifter circuitry [30] for DVFS, as well as the area
overhead of multiple arbitration schemes wherever dynamic
reconfigurable arbitration is used. If the solution is found to
violate one or more constraints, then it is discarded. The next
best solution is then selected from the database and Steps 4-6
repeated till a solution is found that satisfies all constraints.
Once such a solution is found, our framework generates the
cycle accurate SystemC and RTL code for the partial crossbar
communication architecture.

C. Layout Generation
As mentioned in the previous subsection, our multi use case

synthesis framework makes use of a high level floorplanner [27]
to generate early layouts of our crossbar based CMP
architecture, to obtain accurate performance and power
statistics. We view bandwidth and latency constraints imposed
by the application as mutually independent. For instance, many
packet forwarding or non-critical multimedia traffic streams
have high bandwidth requirements, but no stringent latency
constraints, except those imposed by the application period [5].
In contrast, control-oriented signaling events (e.g., interrupts)
and cache misses have a tight latency constraint, but no
bandwidth requirements. The floorplan of an application must
ensure that cores that have high bandwidth communication
between them are placed close to each other, to reduce power
dissipation. Additionally, cores that have tight latency
constraints must also be placed closer together, to satisfy
performance constraints. This implies a trade-off since it is not
always possible to put cores closer together to obtain minimal
power and also satisfy latency constraints. To appropriately bias
our simulated annealing (SA) floorplanner towards achieving
these goals, we use a hybrid bandwidth/latency metric as
described in [31]. In this metric, latency constraints are
considered more critical than bandwidth constraints. This is

1A-5

28
Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on August 22, 2009 at 14:23 from IEEE Xplore. Restrictions apply.

because while bandwidth constraints can be met even if cores
are somewhat further apart, tight latency constraints are highly
dependent on core distance. If is a communication edge in

 with the largest bandwidth requirement, and is
a communication edge with the most stringent (lowest) latency
constraint, then an integer k is determined, such that

Once k is determined, an edge weight is assigned to each edge,
such that

This weight is used to create ‘bias nets’ between cores that bias
the SA algorithm to place the cores based on weight values – the
higher the weight of an edge between two cores, the more likely
they are to be placed adjacent to each other in the 2D floorplan.
If two edges have the same weight, the one with the tighter
latency is given a higher priority.

D. Dynamic Reconfiguration Infrastructure
We assume that the dynamic arbitration and DVFS

reconfiguration is handled by a reconfiguration core (DRCore),
and initiated by events such as a user command to start or stop
an application, an embedded resource manager [32], or mode
switches in the incoming stream [7]. DRCore can be any
programmable processor, such as an ARM CPU, which may
also be responsible for initiating and handling other control
events in the system. It is connected to all the routers and is a
key enabler for any needed reconfiguration during use-case
switching. To ensure consistency, DRCore performs busy
waiting, till all reconfiguration requests have been sent and all
the acknowledgements received. Once acknowledgements from
all the connected routers have been received, DRCore sends
configuration words to reprogram arbitration schemes (e.g.,
TDMA slot schedules or a static priority list) and enable/disable
DVFS if needed. Signals required for indicating a use-case
switch to the routers, and for sending acknowledgement back to
DRCore are part of the control signals of the interface protocol
chosen (e.g., AXI [24] has user configurable signals that can be
used for this purpose). Since the dataflow paths do not need to
be reconfigured, the use case switching overhead is very low
(~microseconds) and there is no need for a ‘smooth switching’
between use cases as in [20]-[23], where the applicability of
DVFS and dynamic arbitration reconfiguration for critical use
cases is limited. To reduce reconfiguration overhead for systems
with large number of cores, multiple DRCores can also be used
in a distributed manner. In this work however, we only consider
a single DRCore for simplicity.

VI. Experiments

To determine the efficacy of our proposed multi use-case
crossbar synthesis framework, we performed experiments on
several CMP applications. We selected five proprietary
applications from the networking domain, each with multiple
use cases. The applications are responsible for various frame
and data packet processing operations including protocol
conversion, encryption/ decryption, forwarding, and data
packing and unpacking. These applications are parallelized and
implemented on a CMP architecture. Table I shows the
characteristics of the CMP implementation of these applications,
such as the total number of cores (memories, peripherals,

processors), the number of programmable processors (ARM
CPUs) and the number of use cases. The applications in Table I
were modeled in SystemC [26] [33] at the transaction level
based bus cycle accurate abstraction [34] to quickly and
accurately estimate performance and power consumption of the
applications. The various cores were interconnected using the
AMBA AXI [24] protocol based crossbar communication
architecture. The layout die size for these CMP applications was
assumed to be 2cm×2cm.

TABLE I
CMP applications and their characteristics

CMP Application # of cores # of
proc.

of use
cases

DHub1 18 5 8
PEncD 28 7 6
Fproc 35 10 13
PckFtr 40 14 21
DHub2 47 19 18

We synthesized crossbar communication architectures for
each of these applications using our proposed multi use-case
synthesis framework (MUCSYN) as well as with the worst case
(WC), and WC with DVFS approaches [20]-[21] (subsection
V.A) for comparison purposes. Fig. 4 shows the cost of the
crossbar (number of buses) of the best solution generated by
these approaches. It can be seen that the solution generated by
MUCSYN has significantly fewer buses (2.4× to 3.8×) than the
WC approaches. The WC with DVFS approach has the same
cost as the WC approach because DVFS only affects power
dissipation, and does not reduce crossbar cost. MUCSYN
creates a solution with a lower cost because of two main
reasons: (i) it optimizes the use cases separately during topology
selection unlike the WC approaches which combine all the use-
cases into a single synthetic use case with much more
conservative constraints, and (ii) it makes use of dynamic
arbitration reconfiguration to better match use-case
characteristics and lower the cost of the crossbar compared to
WC approaches.

Fig. 4. Cost comparison for synthesized crossbars

Fig. 5. Power dissipation for synthesized crossbars

Fig. 5 shows a comparison of the power dissipation of the
crossbar solutions generated by the approaches, normalized to
the power dissipation of a full crossbar solution. It can be seen
that MUCSYN has a much lower power dissipation compared to
the WC approaches. The WC approach has a lower power
dissipation compared to the full crossbar because of the fewer
buses and router components in its partial crossbar solution. The

1A-5

29
Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on August 22, 2009 at 14:23 from IEEE Xplore. Restrictions apply.

WC with DVFS further reduces power dissipation further by
opportunistically scaling voltage/frequency during application
execution. MUCSYN outperforms these WC approaches
because it has much fewer buses and router components, which
coupled with the DVFS technique dissipates significantly lower
power (1.5× to 3.1×).

 (a) area overhead (b) performance overhead

Fig. 6. Dynamic reconfiguration overhead

Fig. 6 (a) shows the area overhead of the dynamic
reconfiguration logic required for the solution obtained using
our proposed framework. The area overhead is due to the DVFS
circuitry and logic for multiple arbitration scheme selection and
operation. The area overhead is less than 7%, and largely due to
the DVFS circuitry. Fig. 6 (b) shows the performance overhead
of using DVFS and dynamic arbitration reconfiguration to
reduce cost and power dissipation in the crossbar solution
generated by our framework. It can be seen that the performance
overhead of runtime reconfiguration is minimal (less than 3%).
Such a low overhead framework for generating dynamically
reconfigurable crossbar architectures is extremely valuable for
designers of multi use-case CMP applications.

VII. Conclusion

In this paper, we proposed a novel framework that synthesizes
crossbar-based communication architectures for CMP
applications with multiple use cases. The generated crossbars
support dynamic reconfiguration of the arbitration schemes and
dynamic voltage and frequency scaling (DVFS) to better adapt
to the changing needs of different use cases which can
frequently switch at runtime. Experimental results on several
networking domain case studies indicate that our proposed
framework generates a lower cost crossbar (2.4× to 3.8×)
compared to traditional and previously proposed synthetic worst
case design approaches. The synthesized crossbar from our
framework dissipates much lower power (1.5× to 3.1×) than
these approaches. In addition, the dynamic reconfiguration area
and performance overhead of the synthesized crossbar solution
is minimal. Such a framework for generating dynamically
reconfigurable crossbars is invaluable for emerging CMP
applications.

Acknowledgements

This research was partially supported by grants from SRC
(2005-HJ-1330 and 1617.001) and NSF (CCF-0702797).

References

[1] K. Olukotun et al., “The Case for a Single-Chip Multiprocessor,” In
Proc. ASPLOS, 1996, pp. 2-11.
[2] A. Covell, F, Whyte, “Digital Convergence: How the Merging of
Computers, Communications and Multimedia is Transforming Our
Lives”, Aegis Publishing Group, 1999.
[3] International Technology Roadmap for Semiconductors, 2006,
http://www.itrs.net/

[4] R. Ho, W. Mai, and M. A. Horowitz, “The future of wires”, Proc. of
IEEE, 89(4):490–504, April 2001.
[5] S. Pasricha, and N. Dutt. “On-Chip Communication Architectures”,
Morgan Kauffman, Apr 2008.
[6] P. Kongetira, K. Aingaran, K. Olukotun, "Niagara: a 32-way
multithreaded Sparc processor," IEEE Micro, pp. 21-29, Mar-Apr 2005.
[7] M. Rutten et al., “Dynamic reconfiguration of streaming graphs on a
heterogeneous multiprocessor architecture,” Electron. Imag., 2005.
[8] M. Gasteier, M. Glesner “Bus-based communication synthesis on
system level”, In ACM TODAES, Jan 1999.
[9] N. Thepayasuwan, A. Doboli, “Layout conscious bus architecture
synthesis for deep submicron systems on chip”, In Proc. DATE 2004.
[10] S. Pandey, et al., “On-chip communication topology synthesis for
shared multi-bus based architecture”, In Proc. FPLA, 2005.
[11] S. Murali, G. De Micheli, “An Application-Specific Design
Methodology for STbus Crossbar Generation”, In Proc. DATE 2005.
[12] S. Pasricha, N. Dutt, M. Ben-Romdhane, "Constraint-Driven Bus
Matrix Synthesis for MPSoC", In Proc. ASPDAC 2006.
[13] A. Hansson et al., “A unified approach to constrained mapping and
routing on network-on-chip architectures””In Proc. ISSS 2005.
[14] J. Hu, R. Marculescu, “Exploiting the Routing Flexibility for
Energy/Performance Aware Mapping of Regular NoC Architectures”,
In Proc. DATE 2003.
[15] S. Murali, G. De Micheli, “Bandwidth-Constrained Mapping of
Cores onto NoC Architectures”, In Proc. DATE 2004.
[16] K. Sekar et al., “FLEXBUS: a high-performance system on-chip
communication architecture with a dynamically configurable topology”,
In Proc. DAC 2005
[17] K. Lahiri, et al., “Design of high-performance system-on-chips
using communication architecture tuners”, IEEE TCAD, May 2004.
[18] T.D. Richardson, et al., “A hybrid SoC interconnect with dynamic
TDMA-based transaction-less buses and on-chip networks”, In Proc.
VLSI Design (VLSID), 2006. pp. 8-15.
[19] S. Pandey, T. Murgan, M. Glesner, “Energy Conscious
Simultaneous Voltage Scaling and On-Chip Communication Bus
Synthesis”, In Proc. VLSI-SoC 2006.
[20] S. Murali et al. “Mapping and configuration methods for multi-use-
case networks on chips”. In Proc. ASP-DAC, 2006.
[21] S.Murali et al. “A methodology for mapping multiple use-cases on
to networks on chip”, In Proc. DATE, 2006.
[22] A. Hansson, M. Coenen, K. Goossens, "Undisrupted Quality-of-
Service during Reconfiguration of Multiple Applications in Networks
on Chip," In Proc. DATE 2007
[23] A. Hansson, K. Goossens, “Trade-Offs in the Configuration of a
Network on Chip for Multiple Use-Cases”, In Proc. of NOCS 2007.
[24] AMBA AXI PL300 www.arm.com/support/PL300_ACI.html
[25] “STBus Communication System: Concepts and Definitions”,
Reference Guide, STMicroelectronics, May 2003
[26] T. Grötker, S. Liao, G. Martin, S. Swan. “System Design with
SystemC”. Kluwer Academic Publishers, 2002.
[27] S. N. Adya, I. L. Markov, "Fixed-outline Floorplanning: Enabling
Hierarchical Design", IEEE Trans TVLSI, pp. 1120-1135, Dec. 2003.
[28] S. Pasricha, Y. Park, F. Kurdahi, N. Dutt, “System-Level Power-
Performance Trade-Offs in Bus Matrix Communication Architecture
Synthesis”, In Proc. CODES+ISSS 2006.
[29] J. M. Rabaey, “Digital Integrated Circuits”, Prentice Hall, 2002.
[30] Ji-Hoon Lim et al., “A Novel High-Speed and Low-Voltage CMOS
Level-Up/Down Shifter Design for Multiple-Power and Multiple-Clock
Domain Chips”, IEICE Trans. Electron., Mar 2007.
[31] K. Srinivasan, K. S. Chatha, G. Konjevod, “An automated
technique for topology and route generation of application specific on-
chip interconnection networks”, In Proc. of ICCAD 2005.
[32] R. J. Bril et al., “Multimedia QoS in consumer terminals,” in Proc.
SIPS, 2001.
[33] S. Pasricha, "Transaction Level Modeling of SoC with SystemC
2.0" In Proc. SNUG 2002.
[34] S. Pasricha, N. Dutt, M. Ben-Romdhane, "Extending the
Transaction Level Modeling Approach for Fast Communication
Architecture Exploration", In Proc. DAC 2004.

1A-5

30
Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on August 22, 2009 at 14:23 from IEEE Xplore. Restrictions apply.

