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Abstract – High interconnect bandwidth is crucial to achieve better 
performance in many-core GPGPU architectures that execute highly 
data parallel applications. The parallel warps of threads running on 
shader cores generate a high volume of read requests to the main 
memory due to the limited availability of data cache space at the 
shader cores. This leads to scenarios with rapid arrival of reply data 
from the DRAM, which creates a bottleneck at memory controllers 
(MCs) that send reply packets back to the requesting cores over the 
NoC. Coping with such high volumes of data requires NoC 
architectures that possess high power overhead. To accomplish high 
bandwidth and low energy communication in GPGPUs, we propose 
Dapper, a data-aware approximate NoC architecture that increases 
the utilization of the available bandwidth by using low power single 
cycle overlay circuits for the reply traffic between MCs and shader 
cores. Dapper also incorporates a novel MC architecture that 
leverages the inherent approximability of the data values of certain 
applications and reduces the number of reply packets injected into 
the NoC by the MCs. Experimental results show that Dapper reduces 
the energy consumed in the GPGPU by up to 50% with up to 99% 
application output accuracy and minimum performance overheads 
compared to a state-of-the-art approximate NoC architectures.   

Index Terms—GPGPU, approximate computing, network-on-chip 
 

I. INTRODUCTION 

For today’s high-performance computing workloads, general purpose 
graphical processing units (GPGPU) have become highly popular due to 
their support for high thread and data level parallelism. GPGPUs 
typically have many computational units within their streaming 
multiprocessors (SM) [1] (also known as shader cores) that execute 
hundreds of threads simultaneously. Libraries such as OpenCL [2], and 
CUDA [3] have enabled programmers to efficiently parallelize a program 
and reap the best performance out of the available parallel computational 
resources on a GPGPU. However, highly parallel applications generate 
high volumes data traffic between memory controllers (MCs) connected 
to the main memory and the compute cores in the SMs. Traditional mesh-
based NoC architectures are not designed to handle such high volumes of 
traffic. To facilitate the high traffic rates of GPGPUs, NoC channel 
widths should be increased multifold compared to conventional NoCs, 
which leads to a significant increase in NoC power dissipation. Figure 1 
gives a breakdown of power consumed by various components of a 
GPGPU when executing data parallel CUDA applications from the 
CUDA SDK sample code suite. For memory intensive applications that 
generate high volumes of memory requests, the NoC dissipates up to 20% 
of the overall power. Thus, there is a critical need for a NoC architecture 
that supports high volumes of data generated in GPGPUs, yet dissipates 
low power (and energy) without sacrificing application performance. 

Recent works [4]-[5], have demonstrated the impact of a new paradigm 
called approximate computing that trades-off computation accuracy for 

savings in energy consumption. Many emerging application domains like 
machine learning, imagine processing, and pattern recognition-based 
applications are today exploring approximate computing techniques to 
save energy or improve application performance while tolerating a small 
range of output errors. There is an interesting potential for using the 
approximate computing paradigm in GPGPUs to design low power NoC 
architectures. The applications that execute on GPGPUs also operate on 
large input data sizes with a significant scope for data approximability. 
The main goal of our work is to exploit approximation techniques 
intelligently to minimize the energy consumed by the NoC in moving data 
between MCs and cores without slowing down the application in many-
core GPGPU platforms. 

 
Figure 1: Breakdown of power dissipated by different components of a 

GPGPU when executing various parallel workloads 

In a many-core GPGPU platforms, the NoC traffic consists of 
load/store (LD/ST) data with LD replies forming a majority of the traffic 
that causes MC bottlenecks [6]. Typically, the traffic in a NoC is skewed 
with memory requests that follow a many-to-few pattern from cores to 
MCs and replies that follow a few-to-many pattern from MCs to cores. 
With high volume of LD reply data at MCs, a bottleneck is created which 
leads to high wait times for the thread blocks executing on shader cores, 
and hence a slowdown in overall performance. Hardware designers have 
come up with high radix NoCs with intelligent routing schemes [7], or 
complicated warp scheduling techniques [8] to hide, or minimize, the 
high latency due to the MC bottleneck. However, these techniques incur 
high power and area overheads. Several applications that use GPGPUs 
generate high volumes of data with redundant or similar values that can 
be approximated to reduce the number of packets transmitted from MCs 
to cores. In this paper, we leverage this observation and propose a high-
speed circuit overlay NoC architecture, called Dapper, that overcomes 
the MC bottleneck issue and minimizes energy consumption by up to 
50% compared to the state-of-the art techniques with around 99% 
accuracy in the output. Our novel contributions are as follows: 

• We introduce a novel memory controller (MC) architecture that 
approximates the read reply data arriving from main memory. The 
approximable data is processed and flagged for transmission on the 
fast overlay circuits created by NoC; 

• We also propose a novel asynchronous fast overlay circuit 
architecture for transmitting both general and approximate data 
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between MCs and cores in 3 cycles. The transmission along X and 
Y axes are done in 1 cycle each, stopping only at turns;  

• We further propose a novel NoC router architecture, and a global 
overlay manager (GOM) that are utilized in setting up and tearing 
down overlay circuits that transmit data between MCs and cores;  

• We conduct rigorous experimentation of our proposed Dapper NoC 
architecture with CUDA applications to compare the performance 
and energy consumption against the state-of-the art. 
 

II. RELATED WORK 

Several prior works have addressed the issue of NoC energy 
consumption for traditional many-core processors. In [9], the authors 
propose a small world NoC that utilizes machine learning to establish fast 
connections between cores that generate high volumes of data. In [10], 
the authors propose an application criticality-aware packet routing 
scheme that prioritizes memory requests of time-critical applications. In 
[11], a fault-tolerant and energy-aware NoC routing schemes are 
proposed. In [25]-[28] reliability and energy-aware NoC routing schemes 
are proposed. These techniques perform well in CPU based platforms 
with lighter traffic conditions, but they cannot be used to minimize the 
bottleneck caused at MCs in GPGPU platforms.   

Approximate (or inexact) computing has been studied by researchers 
from academics and industry to save energy by trading off the correctness 
of the output. A few works [19]-[20] have demonstrated the use of 
compiler support for programmers to mark and treat approximate 
variables differently from other variables and enabling inexact computing 
on those variables at the hardware level. A few prior works have used 
approximate computing at the circuit level [12]-[13] to trade-off accuracy 
of the logic circuits for shorter critical paths and low operating voltages 
that save power and area footprint. A few other works have introduced 
approximate last level caches [14]-[15]. In these works, the authors 
reduce the amount of data stored in the caches, and increase the cache hit 
rate by associating tags of multiple approximately similar blocks to the 
same data line. In [17], the authors use approximate computing in 
conjunction with spatial and temporal locality to increase the benefit of 
instruction reuse in GPGPUs. None of these techniques can be applied 
for energy efficient data transmission between MCs and cores, to resolve 
MC bottleneck issues in GPGPUs.  

In [18], the authors attempt to minimize the NoC congestion in many-
core CPUs by introducing a new method of approximate compression and 
decompression of packets at network interfaces of each router to reduce 
the number of flits entering the NoC. This work utilizes dictionary-based 
compression/decompression technique that consumes high energy and 
leads to performance overheads when the network traffic is high. To 
address these shortcomings, we propose Dapper, a data-aware 
approximate low power NoC that establishes overlay circuits using 
asynchronous links and repeaters. As part of Dapper, we also introduce 
a NoC router architecture that ensures the traversal of flits on the overlay 
circuits, and an approximation-aware MC architecture. 

III. BACKGROUND AND MOTIVATION 

A. Baseline Configuration 
We use a heterogeneous accelerator-based system with an x86 CPU 

and a grid of shader-cores of GPGPUs that have private L1 caches 
(shared, texture, instruction, and data) to support data parallel 
multithreaded application execution. A shader core consists of parallel 
integrated pipelines with a common instruction fetch unit that executes a 
single instruction on multiple data (SIMD) simultaneously. Each 
integrated pipeline has an integer arithmetic logic unit and a floating-
point unit. A shader core also has several load store units that fetch data 
from a private L1 cache or from the main memory. A GPGPU based 

accelerator has a shared L2 cache bank located at the MCs that caches 
data coming from the main memory. All the shader cores and MCs are 
connected to an on-chip interconnection network.  

Typically, there is little to no communication between the shader cores 
on the chip. The communication between CPU and GPU cores takes 
place through main memory. The shader cores send read/write requests 
(via LD/ST instructions) to MCs over the NoC. A memory reply takes 
several cycles based on the location of and availability of data (either at 
L2 or DRAM). The baseline NoC architecture between the shader cores 
and the MCs has a channel width of 128-bits, twice the size of 64 bit NoC 
channels in traditional CPU based platforms, and consists of 4-stage 
routers (stage 1: buffer write; stage 2: route computation, stage 3: virtual-
channel/switch allocation; stage 4: switch/link traversal). There are 5 
virtual channels (VCs) per input port and 4 flit buffers for each VC, 
connected to each shader core. Flits are routed along the XY path from 
source to destination. In this work we only focus on optimizing the NoC 
that connects shader-cores and MCs. Henceforth, the term cores implies 
shader-cores for the remainder this article. 

 

 
(a) 

 
(b) 

Figure 2: (a) Example image showing similar data values in pixels (b) RGB 
values of the marked locations as stored in texture memory  

B. Data value approximability 

Several types of data parallel applications are typically executed on 
GPGPU platforms. Many of them belong to the domain of image 
processing, signal processing, pattern recognition, and machine learning. 
There also exist other scientific and financial applications that use 
GPGPUs that operate on large input data sets. The data used for executing 
image and signal processing applications in many cases is highly 
approximable. For example, as shown in figure 2(a), the areas in boxes 
contain pixels that are very similar to their adjacent pixels. The RGB 
values of two pixels for each box are shown in figure 2(b). These values 
(for each box) are quite similar and it is not energy efficient to save and 
transmit cache lines containing similar RGB values separately from 
DRAM to the cores. Instead, if cache lines with same or similar data can 
be identified at MCs, we can avoid their repeated transmissions to the 
cores, to save energy. Dapper is designed to realize this idea. 

The next logical question one may ask is: how approximable are 
typical applications that run on GPGPUs? Figure 3 (a) shows the 
percentage of approximable data in different parallel CUDA applications. 



 
 

Image processing applications such as DCT, Hist, ConvTex have up to 
80% of approximable data that can be exploited to save NoC energy 
consumption. By making use of the programming paradigm proposed in 
EnerJ [19], one can label the variables using the @approx keyword as 
highlighted in green in figure 3(b). These approximate variables are 
predetermined to contain approximate values. Approximable variables 
will have a distinct set of instructions for load and store that are used 
when compiling the C++ code to machine code. These instructions can 
be used by cores to identify approximable data, and accept inexact values 
for them from main memory.  

 
(a) 

 
(b) 

Figure 3: (a) Normalized percentage of approximable data transmitted from 
main memory to cores in different CUDA applications. (b) Example of 
marking approximable variables using ENERJ [19] 

C. Overlay circuits for low latency traversal  

As discussed earlier, in GPGPUs, read reply data is the main source of 
MC bottlenecks. Minimizing read reply latency is crucial for application 
performance. Also, read reply data forms most of the traffic from MCs to 
cores in few-to-many traffic scenario. To ensure that MCs do not get 
clogged by a heavy influx of reply data, it is intuitive to design a NoC 
with all-to-all connections. However, the area and power constraints of a 
chip limits such architectures. Hence, researchers have come up with 
smart solutions in [6], [7] where they propose intelligent NoC routing 
schemes in tandem with MC placement to create conflict free paths in 
NoCs for packets to traverse from MCs to cores. However, the complex 
router design in such architectures add to the NoC power dissipation.  

In our work, we make use of the few-to-many traffic pattern of the 
reply packets and utilize an overlay circuit topology that forms dedicated 
circuits for each MC. An overlay circuit connects an MC to all the cores, 
forming return paths for read reply packets. Figure 4 shows how the 
circuits are established from two MCs (represented as colored circles) to 
cores. These overlay circuits are established from each MC to all the 
cores, on top of the underlying 2D mesh-based NoC. An overlay circuit 

formed between an MC to the cores stays for a fixed time window during 
which it transmits the reply packets of that MC, before switching to the 
next overlay circuit (for another MC). On overlay circuits, shown in red 
and green colored arrows in the figure, each MC transmits flits of packets 
waiting in its buffers in just 3 cycles using asynchronous links and 
repeaters that pass through NoC routers. Flits traverse in X and Y 
directions in one cycle each, stopping only at the turns. Hence, flits 
traversing over overlay circuits do not go through switch arbitration and 
route compute logic at every hop. This leads to a low energy consumption 
NoC that establishes high-throughput, congestion-free paths for read 
reply packets. More details about how overlay circuits are established and 
used for data traversal are discussed in the following sections. 

 

 
Figure 4: A 4x4 NoC showing overlay circuit for each MC in a  
few-to-many traffic scenario 

IV. DAPPER OVERVIEW 

In Dapper, we use a combination of approximate computing together 
with overlay circuits to reduce the number of packets injected into the 
NoC, and to provide the bandwidth required by MCs to deliver read reply 
packets to cores, without increasing the energy consumption of the NoC. 
Dapper has two components, (1) Data approximation support at the 
memory controller (MC), that identifies the approximable data waiting in 
its buffers and marks them for coalescence, and (2) overlay NoC that 
delivers flits of coalesced packets to the respective destinations 
simultaneously on overlay circuits that are established for each MC. We 
define coalescence as a group of data packets whose read reply data from 
MCs are approximable and within an error threshold. These packets are 
then coalesced into a single packet, to reduce the number of packets 
transmitted into the NoC for delivery to multiple destinations.  

Dapper employs a 2D-mesh based NoC to connect its cores and MCs. 
The network is divided into two planes, request and reply planes, each 
with 64-bit channel width, to avoid protocol deadlock. The NoC routes 
packets with an XY turn-based routing scheme to avoid routing deadlock. 
The request packets are transmitted on a request plane and the reply 
packets are transmitted via overlay circuits of the reply plane. A majority 
of the reply plane traffic consists of read reply packets. Hence, Dapper 
performs packet coalescing using approximation only on read reply data 
that is received from DRAM or L2 cache. The reply plane of the NoC 
contains a novel router architecture that enables establishing and tearing 
down of the overlay circuits. More details of the above-mentioned 
modules are discussed in the following sub-sections. 

 

A. Data approximation at the memory controller 

MCs are connected to the NoC through a network interface (NI) and 
a router. An MC receives memory requests from cores and creates 
commands to be sent to the DRAM or L2 cache. Figure 5 shows how an 
MC handles a read request. Before sending a read request to an MC, a 
core sets an approximable flag for the memory request, if the load 
operation is on an approximable variable. The NI that connects the core 
to the router generates flits from the memory request packet and adds an 
approximable flag to the header flit. The receiver side NI generates a 



 
 

memory request from these flits and sets an approximable flag for the 
memory request before sending to the memory subsystem, as shown in 
figure 5. Once the reply is received from DRAM or L2 cache, it is 
matched with the corresponding request and saved in the output buffer. 
In Dapper, each MC is equipped with a data approximator. The function 
of the data approximator is go through each of the data packets waiting 
at the output buffer of the MC, find the approximable data among the 
waiting data, and check if any data can be coalesced before sending to 
the NI for delivery to the destination cores. The granularity of 
approximable data waiting in the output buffer is an L1 cache line 
because a read reply from MC contains a cache line of the address that 
leads to a cache miss which should be replaced. The data approximator 
tries to coalesce cache lines waiting in buffer entries only if each of the 
variable contained in the cache line is approximable.  

 

 
Figure 5: Overview of approximation done at memory controller (MC) 

 

Algorithm 1: Data Approximator 
Inputs: Error threshold, Check_depth  
1:    while Output_buffer.size( ) > 0 do 
2:        ð ← 1 
3:        dest_list ← Ø 
4:        pkt ← Output_buffer. Front( ) 
5:        if pkt.approximable == 0 then 
6:            send to NI(pkt) 
7:        else 
8:            While ð < Check_depth do 
9:                  nxt_pkt ← Output_buffer.get(ð ) 
10:                nxt_data ← nxt_pkt.get_data( ) 
11:                if nxt_pkt.approximable == 1 then 
12:                    if (pkt.data – nxt_data)/pkt.data < Error threshold then 
13:                        dest_list. Add(nxt_pkt.dest) 
14:                        Output_buffer.erase(ð) 
15:                    end 
16:                end 
17:                ð++ 
18:           end 
19:           pkt.add_dest(dest_list) 
20:      end  
21:      send to NI(data) 
22:      Output_buffer.pop( ) 
23:  end     

 

Algorithm 1 explains the steps involved in data approximation in our 
framework. Algorithm 1 takes information about the MC output buffers, 
as well as two parameters (error_threshold, check_depth) as inputs. It 
iterates over each entry in the output buffer and checks if the data is 
approximable (line 5). If the data is not approximable, it sends the data 
unaltered to the NI for delivery (line 6). If the data is approximable, the 

algorithm iterates through subsequent data entries to find other 
approximable data (lines 8-9). If an approximable data is found, the 
difference between the first approximable data and the found data is 
calculated (lines 11-12). If the difference is within the error_threshold, 
the found data entry is erased from the output buffer, and its destination 
address is saved (lines 13-14). This iteration process stops once it reaches 
the check_depth, which is defined as the maximum number of packets 
that are coalesced if their data values are within an error threshold. The 
list of destination addresses along with the original address is appended 
to the first reply (line 19). The approximated data and the list of addresses 
are then sent to the NI (line 21) to generate a packet that is broadcast to 
the list of destination nodes on the overlay circuits as explained in the 
following sections. The cleared entries in the output buffer are reused for 
incoming data from DRAM or L2 cache. 

The data types considered for approximation include the integer and 
floating point types. For floating point data, only the mantissa is 
approximated for a faster computation. The overhead involved in data 
approximation is minimal. Algorithm 1 takes a small (constant) time for 
execution, and requires logic for division, a comparator, and storage for 
the parameters check_depth and error_threshold. The NI connected to an 
MC is often fully occupied at run-time, resulting in a wait time for data 
at MCs in most cases, before they are sent to the NI. This wait time helps 
to mask the overhead involved in data approximation. A packet is only 
sent to the NI after it passes the data approximation stage.  

 

B. Overlay circuits for memory controllers 
The reply plane of Dapper establishes dedicated overlay circuits from 

MCs to cores as shown by green and red arrows in figure 4. Each MCs 
overlay circuit is a predefined mapping of input and output ports in the 
reply plane NoC routers, during which flits traverse from source (MC) to 
destinations (cores) in 3 cycles. An overlay circuit assigned to an MC 
lasts for a time duration determined at run-time. To establish overlay 
circuits, the reply plane NoC is equipped with (i) a Global overlay 
controller that decides the time duration for which an overlay circuit is 
established, and (ii) modified routers called bypass routers through which 
flits traverse in X or Y axes in a single cycle stopping only at a turn. 

  

B.i. Global overlay controller (GOC) 

 The job of a global overlay controller (GOC) is to determine and 
assign time durations for overlay circuits for each MC. The execution 
time is divided into epochs, and each epoch is further divided into time 
windows which are computed at the beginning of every epoch by the 
GOC. A time window for an MC is determined at run-time based on the 
number of reply packets waiting at the MCs output buffers, and the reply 
arrival rate at the MC from the previous epoch. Each MC sends the stats 
collected during an epoch to the GOC at the end of that epoch, using the 
overlay circuits. The GOC uses this received information to compute a 
weight function as shown in equation (1):  
(݉)ߦ  = .ߙ (݉)ܣ + .ߛ  (1)                                 						(݉)ܤ

 

where A(m) is the reply arrival rate and B(m) is the average buffer 
occupancy at the MC m in the previous epoch. α and γ are coefficients of 
the weight function. The GOC compares ξ’s of each MC and computes 
time window durations T1, T2, T3…, Tm for the next epoch as: ܶ݅ = ܭ ∗ (1)ߦ]/(݅)ߦ + (2)ߦ + (3)ߦ + ⋯+  (2)																									[(݉)ߦ

where Ti is the time window of the ith MC overlay and ߦ(݅) is its weight 
function. The ratio of the weight functions is then multiplied by a constant 
K which is equal to the periodicity of the time windows in an epoch. The 
time windows repeat periodically for E/K iterations in an epoch, where E 
is the epoch interval duration and K is the periodicity of the time window 
set. By having the time windows repeat and overlay circuits switch 



 
 

multiple times in an epoch, MCs send flits in multiple bursts across an 
epoch. The time window durations are broadcast by the GOC at the 
beginning of an epoch, which is saved by the reply plane routers in 
dedicated buffers, and then used for setup and tear down of circuits. 

B.ii. Bypass router architecture 

The reply plane NoC is made up of bypass routers that support flits 
passing through them without stopping at each hop for arbitration or route 
computation. Figure 6 shows an overview of a bypass router architecture. 
A bypass router has asynchronous links connecting output ports to input 
ports and latches via an asynchronous switch and a crossbar. Each input 
port is connected to a latch to save the flit that is coming over the X axis. 
The router also saves time windows of each overlay circuit received from 
the GOC in a local overlay controller as shown in figure 6. The crossbar 
is configured at the beginning of each time window and reset at the end 
of the window to establish a different overlay configuration. The crossbar 
configuration of a router is based on its location on the 2D NoC and is 
selected dynamically by the selection unit based on the current overlay 
circuit. The output ports of a bypass router are connected to either input 
ports or input latches to enable the 3 cycle flit transmission. In the first 
cycle, a flit traverses along the bypass routers along the X axis through 
asynchronous links and gets latched at the input latches. In the second 
cycle, when the output ports are connected to input latches, the flit 
traverses along the bypass routers in the Y direction and gets latched 
again at the input latches. In the third cycle, the flit is sent from an input 
latch to the local (core) port. Two important components of a bypass 
router are the overlay controller and selection unit. The overlay 
controller keeps track of the time windows and calls the selection unit to 
dynamically configure the crossbar to establish the overlay circuits.  
 

 
Figure 6: Overview of bypass router architecture 

 

 

Algorithm 2: Overlay controller operation 
Inputs: {time windows}, epoch_duration 
1:     e_counter ← 0; // reset counter value 
2:    {T1…Tk} ← {time windows} // initialize time window durations 
3:     selection unit ({T1…Tk}) 
4:      for every cycle do        
5:           if (e _counter < epoch_duration) then        
6:               e _counter ++ 
7:           else if (e _counter  == epoch_duration) then 
8:               {T1…Tk} ←  read_values(GOC_input) // save time windows 
9:               selection unit({T1…Tk}) 
10:             e _counter ← 0; // reset counters 
11:         end if 
12:    end for 

 

Algorithm 2 provides an overview of the overlay controller operation. 
The controller gets the list of time window durations and epoch duration 
as inputs from the GOC. It sends the list of time windows to the selection 

unit as input (line 3). At every cycle, it increments a local counter to keep 
track of the epoch duration (lines 5-6). At the end of an epoch duration, 
updated time window values are received from the GOC which are sent 
to the selection unit, and the local counter is reset (lines 8-10).  

 

Algorithm 3: Selection unit operation 
Inputs: {T1…Tk}, {MC1…MCk} 
1:   ŧ←0, i←1 
2:   for each cycle do 
3:       if ŧ == Ti then 
4:            i ← (i+1)%k  
5:            if local.(X,Y) == MCi.(X,Y) then                          // scenario 1 
6:                Lin→Eout,Wout,La(L) and La(L) →As(Nout,Sout) 
7:            else if local.(Y) == MCi.(Y) then                           // scenario 2 
8:                 Ein→Wout, La(E) and Win→Eout, La(W)  
9:                 La(E) →As(Nout,Sout,Lout) and La(W) →As(Nout,Sout,Lout) 
10:          else if local.(Y) > MCi.(Y) then 
11:               Nin→Sout, La(N) and La(N) →As(Lout)              // scenario 3  
12:           else if local.(Y) < MCi.(Y) then                             // scenario 4 
13:               Sin→Nout, La(S) and La(S) →As(Lout) 
14:           end if 
15:      else  
16:            ŧ ++ 
17:      end if 
18:   end for 

 

Algorithm 3 provides an overview of the selection unit operation. The 
inputs to the selection unit are the time window durations {T1…Tk} for k 
overlay circuits (corresponding to the k MCs). The selection unit 
possesses knowledge of the coordinates of the MCs in the 2D mesh NoC 
along with its own coordinates. With the given inputs, the selection unit 
creates connections for an overlay circuit. At the beginning of each time 
window, the selection unit compares the coordinates of the current router 
and the MC for which the overlay is being established. Based on the 
location of the router, there are 4 possible scenarios for each MC as 
shown in figure 6. Scenario 1: If the router and MC are at the same NoC 
point, the local input port is connected to the east and west output ports 
and local latch (line 5). Scenario 2: If the router and the MC are along 
the same X axis, the east and west inputs are connected to the west and 
east output ports, and to their corresponding latches (line 7). Scenario 3: 
If the router and MC are not along the same X axis and the router’s Y 
coordinate is greater than the MCs Y coordinate, the north input is 
connected to the south output and north latch (line 10). Scenario 4: If the 
router and MC are not along the same X axis and the routers Y coordinate 
is less than the MCs Y coordinate, the south input is connected to the 
north output and south latch (line 12). All the input latches are connected 
to output ports through an asynchronous switch, represented as 
‘As(Nout/Sout/Lout)’ in Algorithm 3, and are used for routing the flits along 
the Y axis. At the end of a time window, the selection unit implements 
connections for the overlay circuit of the next MC and its corresponding 
time duration. This entire operation takes around 2 cycles at the 
beginning of each epoch.  

Routing: For conflict free routing using bypass routers, each row in the 
2D NoC should only have one MC. A packet that is approximable might 
have more than one destinations based on the check depth parameter of 
the MC. To accommodate more than one destinations, the header flit of 
the packet has more than one destination fields, and a destination length 
field. When a packet is ready to be transmitted at the NI of an MC, it is 
sent to the NI interface buffer based on the availability of the buffer 
space. At each cycle, the router transmits flits along the asynchronous 
links along the X direction and saves them at the corresponding input 
latches of each bypass router (shown via the yellow line in figure 6). The 
Y-compare unit (figure 6) then compares the destination Y coordinates 
of the flits with its own coordinates and sends a signal to the 
asynchronous switch to establish connections between input latches, and 



 
 

the north/south/local output ports, based on the location of the router. 
Once the connections between latches and output ports are established, 
the flits traverse in the Y direction (shown via the red line in figure 6) and 
reach the destination router where they are sent to the local output port. 
When the tail flit passes the bypass router, the asynchronous switch is 
reset to tear down the connections between latches and output ports.  

Overheads: The overhead involved with the overlay controller, 
selection unit and Y-compare are very minimal. The overlay controller 
uses a counter, and a register to store the time window values received 
from the GOC, while the selection unit uses a counter, a cyclic register, 
and five 3-bit comparator circuits. The bypass router also has an 
additional Y-comparator, and an asynchronous switch. All of these 
components together take up a very small fraction of the power and area 
of a router. The bypass routers also do not have input buffers to save 
incoming flits, VCA, SA, and route computation logic. Hence, a bypass 
router consumes up to 50% less power compared to traditional router.  

 

V. EXPERIMENTS 
A. Experimental setup 

We target a 16-core GPGPU based accelerator to test the performance, 
energy consumption, network latency, and output error of Dapper 
compared to the state-of-the-art. Table 1 lists the platform configurations. 
We used GPGPU-Sim [21] to collect detailed application traces and 
simulated the network and memory traffic on a customized Noxim NoC 
simulator [22] that integrates our Dapper architecture model. We use 
trace driven simulation as it is fairly accurate for architectural analysis. 
We obtained traces for 6 CUDA-based applications [1], 4 of which 
belong to the image processing domain {Discrete Cosine Transform 4x4, 
Histogram, Convolution Texture, Direction texture compressor}, and the 
other two are scientific applications {Blackscholes, Fast Walsh 
Transform}, each with a different number of kernels and memory 
intensity. As mentioned earlier, we use the programming paradigm 
proposed in EnerJ [19] to specify the variables in these applications that 
are potentially approximable. We set the epoch duration in Dapper as 
10,000 cycles, the values of α, γ coefficients of the weight function from 
equation (1) to 0.6, 0.4, and K = 1000 in equation (2). The power, 
performance, and area values for our NoC architecture, modified MCs, 
and cores at the 22nm node are obtained using the open source tools 
DSENT [23] and GPUWATTCH [24], along with gate-level analysis. 

We compare our proposed Dapper architecture with the baseline NoC 
of the configuration shown in Table 1, and a prior work that utilizes 
dictionary-based approximate compression and decompression at each 
network interface, called Approx-NoC [16]. The baseline NoC has 
channel width of 128-bits which is twice the size of the L1 cache line, to 
provide high throughput to MCs. Approx-NoC uses dictionary-based 
inexact compression using approximation at the sending NI to reduce the 
number of flits that are injected into the NoC and save the overall energy 
consumed. All the three techniques use XY routing, with Dapper 
incorporating overlay circuit-based flit transmission in the reply plane. 
The size of the MC output buffer is set to accommodate 66 data packets, 
as used in GPGPU-Sim, for all the comparison works.  

 
 

TABLE 1 GPGPU-SIM PARAMETERS 
Parameters Value 

Shader Cores/MCs 12 / 4 (16-core) 
Shader core pipeline 1536 Threads, warp size = 32 
Shader registers 32768 per core 
Constant / Texture Cache 8KB / 8KB per core 
L1, L2 cache 16KB L1 per core, 128KB L2 per MC 
NoC Topology 4×4, XY Routing 
Channel width 128 bits  
Base case router architecture 4-stage router, 5 VC/port, 4 buffers/VC 

B. Dapper Sensitivity Analysis 

We first carry out experiments to find the best values of buffer check 
depth and error threshold parameters used in our data approximation 
stage in the MCs in Algorithm 1. We compare Dapper with different 
check depths and error thresholds to analyze the tradeoffs between energy 
saved and the output error observed at the end of the application 
execution. Output error is computed using equations (3) and (4): 
 

                                       ݁ = (ܸ − ܸ′)/ܸ                                         (3) 

ݎ݋ݎݎ݁                                            = ଵெ ∗ ∑ |݁௜|ெ௜ୀ଴                                   (4) 
 

where for each point in the output that comprises of images or matrices, 
V and V’ are the actual and inexact points and M is the total number of 
output points. Equation 4 gives the value of output error obtained at the 
end of the simulation using approximation. 
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Figure 7: Comparison of energy consumption and output error observed with 
Dapper across (a) check depths (CDs), and (b) error thresholds  

Figure 7(a) shows the plots of normalized energy consumption and 
normalized output error observed with Dapper across different values of 
output buffer check depths (3, 6, 9) for data approximation at MCs. Check 
depth is the maximum number of packets that are coalesced if their data 
values are within an error threshold. The bars in the figure show the 
energy consumption for the three configurations being compared and the 
red dots indicate the output error. Both results are normalized to the result 
for the check_depth = 3 configuration. From figure 7(a), on average, a 
check depth of 6 gives up to 10% less output error compared to check 
depths of 3 and 9. All the check depths give similar energy consumption 
within a 1-2% range. The best check depth value varies for each 
application based on the spatial locality of the data being requested from 
memory and the computation being performed on the approximable data. 
The DXTC application shows a decreasing trend in output error as the 
check depth increases, as the number of inexact output values and their 
sum do not increase proportionally to increase the error value in equation 
(4).  For the FWT application, the trend for output error is opposite to that 
observed for the DXTC application.  

Figure 7(b) shows the plots of normalized energy consumption and 
output error values observed by Dapper across different error thresholds 



 
 

(10%, 15%, 20%). The bars in the figure show the energy consumption 
for the three configurations being compared and the red dots indicate the 
output error. Both results are normalized to the result for the 10% error 
threshold configuration. Not surprisingly, increasing the error threshold 
leads to more output error for all the applications. For the DCT and Hist 
applications, the increase in output error is high due to the high volume 
of approximable variables present in the memory reply data. For DXTC, 
the increase in output error is due to the computational error that increases 
exponentially with the magnitude of error in the data values received.  

Although the number of packets injected into the reply plane network 
changes with changing check depth and error threshold values, due to the 
low power consumption by bypass routers, the NoC consumes similar 
energy across the three chosen values of check depth and error threshold. 
Based on our sensitivity analysis, we use an error threshold of 10% and 
a check depth of 6 for our Dapper architecture, when comparing with 
other NoC architectures, as discussed in the following subsections.  
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Figure 8: Comparative analysis of Dapper with Approx-NoC [16], and a 
baseline NoC architecture for (a) application execution time, (b) energy 
consumption, and (c) network latency, across various CUDA applications. 

C. Comparative Analysis 

Figure 8(a) shows the application performance of different CUDA 
applications executing on the GPGPU with three different NoC 
architecures: Baseline, Dapper, and Approx-NoC [16]. It can be observed 
that Approx-NoC has a 5-10% slowdown in application execution time 

compared to the baseline. In contrast, Dapper has only ~1% slowdown 
in application execution time compared to the baseline. As the baseline 
NoC is twice the size of a traditional NoC, it consumes higher power and 
area, to provide the bandwidth necessary to cope with the high data 
arrival rate at MCs. Although Approx-NoC reduces the number of flits 
using approximate compression, the latency overhead for compressing 
and decompressing packets at the source and destination NIs consumes a 
significant chunk of the time saved by transmitting fewer flits. This 
impact is particularly high in the Hist application where the latency 
overhead becomes prohibitively large.  

Figure 8(b) shows the energy consumption of the comparison works 
across different benchmarks. On average, Dapper consumes up to 50% 
less energy compared to the Baseline architecture, due to its low power 
router architecture in the reply plane, and transmission of fewer flits 
compared to baseline. Approx-NoC on the other hand consumes higher 
energy due to higher power consumption in its routers that need 
additional logic and CAS-based storage for saving the most used values 
for compression and decompression. In Dapper, energy savings are 
higher for applications that generate lower to medium ratio of 
approximable data such as Hist and ConvTex. For DCT, Blackscholes, 
and DXTC, which have a high percentage of approximable data, energy 
savings are relatively lower due to the high volume of reply data, where 
the resulting congestion ends up dominating overall latency.  

Figure 8(c) shows the network latency of the comparison works across 
various application. Network latency is high when the data influx rate is 
high. For applications with high incoming data rates, such as DCT, FWT, 
and DXTC, Approx-NoC shows high network latency due to the high 
compression and decompression overheads involved for the high volume 
of packets. Dapper on the other hand shows network latency similar to 
the baseline NoC although with less energy consumption as shown in 
figure 8(b). Hence, we can conclude that Dapper in GPGPUs achieves 
similar performance to the baseline, while consuming 50% less energy. 

 

 
Figure 9: (a) Comparison of output error values across executed applications 
for Approx-NoC [16] and Dapper configurations. 
 

D. Error percentage  

Obviously, it is also important to analyze the error in applications that 
are subjected to approximation. Figure 9 shows the comparison of output 
error % for Approx-NoC and three configurations of Dapper with 
different error threshold values. Note that the baseline NoC is not shown, 
as it has no output error. The error percentage is computed as 100 × error 
from equation (4). Approx-NoC shows high percentage of error in its 
output due to a flaw (right shift division) in its error threshold 
computation which is used for identifying the approximable data before 
compression. This results in a very high error percentage when data 
values are incorrectly marked for approximation. Dapper on the other 
hand incurs less than 1% error with 10% threshold, around 2% error with 
a 15% threshold, and around 3% error with a 20% threshold due to more 
accurately marking approximable data that can be coalesced before 



 
 

sending to destinations. Thus, Dapper presents a promising NoC-centric 
solution to save energy consumption in GPGPUs for applications that 
have a potential for being approximated (i.e., applications that can 
tolerate some output error). As an illustrative example, Figure 10 shows 
the DCT application output under no error (when using the baseline 
NoC), and when using the Dapper. It can be observed from figure 10 that 
the output for the configuration of Dapper with 10% error threshold is 
virtually indistinguishable from the no error case, while saving almost 
40% energy (figure 8(b)). This example highlights the exciting potential 
of Dapper to save energy in GPGPUs.  

 

    
                                      (a)                                                (b) 

    
                                     (c)                                                (d) 
Figure 10: DCT output: (a) original (no error), (b) with 10% error threshold 
in Dapper, (c) with 15% error threshold in Dapper (d) with 20% error 
threshold in Dapper 

VI. CONCLUSIONS 
In this paper, we propose a novel data-aware approximate NoC for 

GPGPU architectures that identifies the approximable data waiting in the 
output buffers of memory controllers and coalesces them to reduce the 
number of packets injected into the NoC. Also, we advocate for a fast 
overlay circuit based NoC architecture in the reply plane of the NoC for 
the reply packets to reach the destinations in 3 cycles. To enable the 
establishment of overlay circuits, we propose a novel low power router 
architecture in the reply plane NoC called bypass router. Experimental 
results show that Dapper dissipates up to 50% less energy compared to 
baseline NoC, with only 1% slowdown in application performance and 
less than 1% error in the application output. Thus, for the class of 
emerging applications that have the ability to tolerate a small error in their 
outputs, Dapper can provide significant savings at the NoC level. These 
savings are orthogonal to (and can be combined with) further 
approximation strategies at the computation components (e.g., using 
approximate adders) to further expand the design space of trade-offs 
between application output error, energy costs, and execution time. 
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