
DAPPER: Data Aware Approximate NoC for
GPGPU Architectures

Venkata Yaswanth Raparti, Sudeep Pasricha
Department of Electrical and Computer Engineering
Colorado State University, Fort Collins, CO, U.S.A.

yaswanth@rams.colostate.edu, sudeep@colostate.edu

Abstract – High interconnect bandwidth is crucial to achieve better
performance in many-core GPGPU architectures that execute highly
data parallel applications. The parallel warps of threads running on
shader cores generate a high volume of read requests to the main
memory due to the limited availability of data cache space at the
shader cores. This leads to scenarios with rapid arrival of reply data
from the DRAM, which creates a bottleneck at memory controllers
(MCs) that send reply packets back to the requesting cores over the
NoC. Coping with such high volumes of data requires NoC
architectures that possess high power overhead. To accomplish high
bandwidth and low energy communication in GPGPUs, we propose
Dapper, a data-aware approximate NoC architecture that increases
the utilization of the available bandwidth by using low power single
cycle overlay circuits for the reply traffic between MCs and shader
cores. Dapper also incorporates a novel MC architecture that
leverages the inherent approximability of the data values of certain
applications and reduces the number of reply packets injected into
the NoC by the MCs. Experimental results show that Dapper reduces
the energy consumed in the GPGPU by up to 50% with up to 99%
application output accuracy and minimum performance overheads
compared to a state-of-the-art approximate NoC architectures.

Index Terms—GPGPU, approximate computing, network-on-chip

I. INTRODUCTION

For today’s high-performance computing workloads, general purpose
graphical processing units (GPGPU) have become highly popular due to
their support for high thread and data level parallelism. GPGPUs
typically have many computational units within their streaming
multiprocessors (SM) [1] (also known as shader cores) that execute
hundreds of threads simultaneously. Libraries such as OpenCL [2], and
CUDA [3] have enabled programmers to efficiently parallelize a program
and reap the best performance out of the available parallel computational
resources on a GPGPU. However, highly parallel applications generate
high volumes data traffic between memory controllers (MCs) connected
to the main memory and the compute cores in the SMs. Traditional mesh-
based NoC architectures are not designed to handle such high volumes of
traffic. To facilitate the high traffic rates of GPGPUs, NoC channel
widths should be increased multifold compared to conventional NoCs,
which leads to a significant increase in NoC power dissipation. Figure 1
gives a breakdown of power consumed by various components of a
GPGPU when executing data parallel CUDA applications from the
CUDA SDK sample code suite. For memory intensive applications that
generate high volumes of memory requests, the NoC dissipates up to 20%
of the overall power. Thus, there is a critical need for a NoC architecture
that supports high volumes of data generated in GPGPUs, yet dissipates
low power (and energy) without sacrificing application performance.

Recent works [4]-[5], have demonstrated the impact of a new paradigm
called approximate computing that trades-off computation accuracy for

savings in energy consumption. Many emerging application domains like
machine learning, imagine processing, and pattern recognition-based
applications are today exploring approximate computing techniques to
save energy or improve application performance while tolerating a small
range of output errors. There is an interesting potential for using the
approximate computing paradigm in GPGPUs to design low power NoC
architectures. The applications that execute on GPGPUs also operate on
large input data sizes with a significant scope for data approximability.
The main goal of our work is to exploit approximation techniques
intelligently to minimize the energy consumed by the NoC in moving data
between MCs and cores without slowing down the application in many-
core GPGPU platforms.

Figure 1: Breakdown of power dissipated by different components of a

GPGPU when executing various parallel workloads

In a many-core GPGPU platforms, the NoC traffic consists of
load/store (LD/ST) data with LD replies forming a majority of the traffic
that causes MC bottlenecks [6]. Typically, the traffic in a NoC is skewed
with memory requests that follow a many-to-few pattern from cores to
MCs and replies that follow a few-to-many pattern from MCs to cores.
With high volume of LD reply data at MCs, a bottleneck is created which
leads to high wait times for the thread blocks executing on shader cores,
and hence a slowdown in overall performance. Hardware designers have
come up with high radix NoCs with intelligent routing schemes [7], or
complicated warp scheduling techniques [8] to hide, or minimize, the
high latency due to the MC bottleneck. However, these techniques incur
high power and area overheads. Several applications that use GPGPUs
generate high volumes of data with redundant or similar values that can
be approximated to reduce the number of packets transmitted from MCs
to cores. In this paper, we leverage this observation and propose a high-
speed circuit overlay NoC architecture, called Dapper, that overcomes
the MC bottleneck issue and minimizes energy consumption by up to
50% compared to the state-of-the art techniques with around 99%
accuracy in the output. Our novel contributions are as follows:

• We introduce a novel memory controller (MC) architecture that
approximates the read reply data arriving from main memory. The
approximable data is processed and flagged for transmission on the
fast overlay circuits created by NoC;

• We also propose a novel asynchronous fast overlay circuit
architecture for transmitting both general and approximate data

978-1-5386-4893-3/18/$31.00 ©2018 IEEE

between MCs and cores in 3 cycles. The transmission along X and
Y axes are done in 1 cycle each, stopping only at turns;

• We further propose a novel NoC router architecture, and a global
overlay manager (GOM) that are utilized in setting up and tearing
down overlay circuits that transmit data between MCs and cores;

• We conduct rigorous experimentation of our proposed Dapper NoC
architecture with CUDA applications to compare the performance
and energy consumption against the state-of-the art.

II. RELATED WORK

Several prior works have addressed the issue of NoC energy
consumption for traditional many-core processors. In [9], the authors
propose a small world NoC that utilizes machine learning to establish fast
connections between cores that generate high volumes of data. In [10],
the authors propose an application criticality-aware packet routing
scheme that prioritizes memory requests of time-critical applications. In
[11], a fault-tolerant and energy-aware NoC routing schemes are
proposed. In [25]-[28] reliability and energy-aware NoC routing schemes
are proposed. These techniques perform well in CPU based platforms
with lighter traffic conditions, but they cannot be used to minimize the
bottleneck caused at MCs in GPGPU platforms.

Approximate (or inexact) computing has been studied by researchers
from academics and industry to save energy by trading off the correctness
of the output. A few works [19]-[20] have demonstrated the use of
compiler support for programmers to mark and treat approximate
variables differently from other variables and enabling inexact computing
on those variables at the hardware level. A few prior works have used
approximate computing at the circuit level [12]-[13] to trade-off accuracy
of the logic circuits for shorter critical paths and low operating voltages
that save power and area footprint. A few other works have introduced
approximate last level caches [14]-[15]. In these works, the authors
reduce the amount of data stored in the caches, and increase the cache hit
rate by associating tags of multiple approximately similar blocks to the
same data line. In [17], the authors use approximate computing in
conjunction with spatial and temporal locality to increase the benefit of
instruction reuse in GPGPUs. None of these techniques can be applied
for energy efficient data transmission between MCs and cores, to resolve
MC bottleneck issues in GPGPUs.

In [18], the authors attempt to minimize the NoC congestion in many-
core CPUs by introducing a new method of approximate compression and
decompression of packets at network interfaces of each router to reduce
the number of flits entering the NoC. This work utilizes dictionary-based
compression/decompression technique that consumes high energy and
leads to performance overheads when the network traffic is high. To
address these shortcomings, we propose Dapper, a data-aware
approximate low power NoC that establishes overlay circuits using
asynchronous links and repeaters. As part of Dapper, we also introduce
a NoC router architecture that ensures the traversal of flits on the overlay
circuits, and an approximation-aware MC architecture.

III. BACKGROUND AND MOTIVATION

A. Baseline Configuration
We use a heterogeneous accelerator-based system with an x86 CPU

and a grid of shader-cores of GPGPUs that have private L1 caches
(shared, texture, instruction, and data) to support data parallel
multithreaded application execution. A shader core consists of parallel
integrated pipelines with a common instruction fetch unit that executes a
single instruction on multiple data (SIMD) simultaneously. Each
integrated pipeline has an integer arithmetic logic unit and a floating-
point unit. A shader core also has several load store units that fetch data
from a private L1 cache or from the main memory. A GPGPU based

accelerator has a shared L2 cache bank located at the MCs that caches
data coming from the main memory. All the shader cores and MCs are
connected to an on-chip interconnection network.

Typically, there is little to no communication between the shader cores
on the chip. The communication between CPU and GPU cores takes
place through main memory. The shader cores send read/write requests
(via LD/ST instructions) to MCs over the NoC. A memory reply takes
several cycles based on the location of and availability of data (either at
L2 or DRAM). The baseline NoC architecture between the shader cores
and the MCs has a channel width of 128-bits, twice the size of 64 bit NoC
channels in traditional CPU based platforms, and consists of 4-stage
routers (stage 1: buffer write; stage 2: route computation, stage 3: virtual-
channel/switch allocation; stage 4: switch/link traversal). There are 5
virtual channels (VCs) per input port and 4 flit buffers for each VC,
connected to each shader core. Flits are routed along the XY path from
source to destination. In this work we only focus on optimizing the NoC
that connects shader-cores and MCs. Henceforth, the term cores implies
shader-cores for the remainder this article.

(a)

(b)

Figure 2: (a) Example image showing similar data values in pixels (b) RGB
values of the marked locations as stored in texture memory

B. Data value approximability

Several types of data parallel applications are typically executed on
GPGPU platforms. Many of them belong to the domain of image
processing, signal processing, pattern recognition, and machine learning.
There also exist other scientific and financial applications that use
GPGPUs that operate on large input data sets. The data used for executing
image and signal processing applications in many cases is highly
approximable. For example, as shown in figure 2(a), the areas in boxes
contain pixels that are very similar to their adjacent pixels. The RGB
values of two pixels for each box are shown in figure 2(b). These values
(for each box) are quite similar and it is not energy efficient to save and
transmit cache lines containing similar RGB values separately from
DRAM to the cores. Instead, if cache lines with same or similar data can
be identified at MCs, we can avoid their repeated transmissions to the
cores, to save energy. Dapper is designed to realize this idea.

The next logical question one may ask is: how approximable are
typical applications that run on GPGPUs? Figure 3 (a) shows the
percentage of approximable data in different parallel CUDA applications.

Image processing applications such as DCT, Hist, ConvTex have up to
80% of approximable data that can be exploited to save NoC energy
consumption. By making use of the programming paradigm proposed in
EnerJ [19], one can label the variables using the @approx keyword as
highlighted in green in figure 3(b). These approximate variables are
predetermined to contain approximate values. Approximable variables
will have a distinct set of instructions for load and store that are used
when compiling the C++ code to machine code. These instructions can
be used by cores to identify approximable data, and accept inexact values
for them from main memory.

(a)

(b)

Figure 3: (a) Normalized percentage of approximable data transmitted from
main memory to cores in different CUDA applications. (b) Example of
marking approximable variables using ENERJ [19]

C. Overlay circuits for low latency traversal

As discussed earlier, in GPGPUs, read reply data is the main source of
MC bottlenecks. Minimizing read reply latency is crucial for application
performance. Also, read reply data forms most of the traffic from MCs to
cores in few-to-many traffic scenario. To ensure that MCs do not get
clogged by a heavy influx of reply data, it is intuitive to design a NoC
with all-to-all connections. However, the area and power constraints of a
chip limits such architectures. Hence, researchers have come up with
smart solutions in [6], [7] where they propose intelligent NoC routing
schemes in tandem with MC placement to create conflict free paths in
NoCs for packets to traverse from MCs to cores. However, the complex
router design in such architectures add to the NoC power dissipation.

In our work, we make use of the few-to-many traffic pattern of the
reply packets and utilize an overlay circuit topology that forms dedicated
circuits for each MC. An overlay circuit connects an MC to all the cores,
forming return paths for read reply packets. Figure 4 shows how the
circuits are established from two MCs (represented as colored circles) to
cores. These overlay circuits are established from each MC to all the
cores, on top of the underlying 2D mesh-based NoC. An overlay circuit

formed between an MC to the cores stays for a fixed time window during
which it transmits the reply packets of that MC, before switching to the
next overlay circuit (for another MC). On overlay circuits, shown in red
and green colored arrows in the figure, each MC transmits flits of packets
waiting in its buffers in just 3 cycles using asynchronous links and
repeaters that pass through NoC routers. Flits traverse in X and Y
directions in one cycle each, stopping only at the turns. Hence, flits
traversing over overlay circuits do not go through switch arbitration and
route compute logic at every hop. This leads to a low energy consumption
NoC that establishes high-throughput, congestion-free paths for read
reply packets. More details about how overlay circuits are established and
used for data traversal are discussed in the following sections.

Figure 4: A 4x4 NoC showing overlay circuit for each MC in a
few-to-many traffic scenario

IV. DAPPER OVERVIEW

In Dapper, we use a combination of approximate computing together
with overlay circuits to reduce the number of packets injected into the
NoC, and to provide the bandwidth required by MCs to deliver read reply
packets to cores, without increasing the energy consumption of the NoC.
Dapper has two components, (1) Data approximation support at the
memory controller (MC), that identifies the approximable data waiting in
its buffers and marks them for coalescence, and (2) overlay NoC that
delivers flits of coalesced packets to the respective destinations
simultaneously on overlay circuits that are established for each MC. We
define coalescence as a group of data packets whose read reply data from
MCs are approximable and within an error threshold. These packets are
then coalesced into a single packet, to reduce the number of packets
transmitted into the NoC for delivery to multiple destinations.

Dapper employs a 2D-mesh based NoC to connect its cores and MCs.
The network is divided into two planes, request and reply planes, each
with 64-bit channel width, to avoid protocol deadlock. The NoC routes
packets with an XY turn-based routing scheme to avoid routing deadlock.
The request packets are transmitted on a request plane and the reply
packets are transmitted via overlay circuits of the reply plane. A majority
of the reply plane traffic consists of read reply packets. Hence, Dapper
performs packet coalescing using approximation only on read reply data
that is received from DRAM or L2 cache. The reply plane of the NoC
contains a novel router architecture that enables establishing and tearing
down of the overlay circuits. More details of the above-mentioned
modules are discussed in the following sub-sections.

A. Data approximation at the memory controller

MCs are connected to the NoC through a network interface (NI) and
a router. An MC receives memory requests from cores and creates
commands to be sent to the DRAM or L2 cache. Figure 5 shows how an
MC handles a read request. Before sending a read request to an MC, a
core sets an approximable flag for the memory request, if the load
operation is on an approximable variable. The NI that connects the core
to the router generates flits from the memory request packet and adds an
approximable flag to the header flit. The receiver side NI generates a

memory request from these flits and sets an approximable flag for the
memory request before sending to the memory subsystem, as shown in
figure 5. Once the reply is received from DRAM or L2 cache, it is
matched with the corresponding request and saved in the output buffer.
In Dapper, each MC is equipped with a data approximator. The function
of the data approximator is go through each of the data packets waiting
at the output buffer of the MC, find the approximable data among the
waiting data, and check if any data can be coalesced before sending to
the NI for delivery to the destination cores. The granularity of
approximable data waiting in the output buffer is an L1 cache line
because a read reply from MC contains a cache line of the address that
leads to a cache miss which should be replaced. The data approximator
tries to coalesce cache lines waiting in buffer entries only if each of the
variable contained in the cache line is approximable.

Figure 5: Overview of approximation done at memory controller (MC)

Algorithm 1: Data Approximator
Inputs: Error threshold, Check_depth
1: while Output_buffer.size() > 0 do
2: ð ← 1
3: dest_list ← Ø
4: pkt ← Output_buffer. Front()
5: if pkt.approximable == 0 then
6: send to NI(pkt)
7: else
8: While ð < Check_depth do
9: nxt_pkt ← Output_buffer.get(ð)
10: nxt_data ← nxt_pkt.get_data()
11: if nxt_pkt.approximable == 1 then
12: if (pkt.data – nxt_data)/pkt.data < Error threshold then
13: dest_list. Add(nxt_pkt.dest)
14: Output_buffer.erase(ð)
15: end
16: end
17: ð++
18: end
19: pkt.add_dest(dest_list)
20: end
21: send to NI(data)
22: Output_buffer.pop()
23: end

Algorithm 1 explains the steps involved in data approximation in our
framework. Algorithm 1 takes information about the MC output buffers,
as well as two parameters (error_threshold, check_depth) as inputs. It
iterates over each entry in the output buffer and checks if the data is
approximable (line 5). If the data is not approximable, it sends the data
unaltered to the NI for delivery (line 6). If the data is approximable, the

algorithm iterates through subsequent data entries to find other
approximable data (lines 8-9). If an approximable data is found, the
difference between the first approximable data and the found data is
calculated (lines 11-12). If the difference is within the error_threshold,
the found data entry is erased from the output buffer, and its destination
address is saved (lines 13-14). This iteration process stops once it reaches
the check_depth, which is defined as the maximum number of packets
that are coalesced if their data values are within an error threshold. The
list of destination addresses along with the original address is appended
to the first reply (line 19). The approximated data and the list of addresses
are then sent to the NI (line 21) to generate a packet that is broadcast to
the list of destination nodes on the overlay circuits as explained in the
following sections. The cleared entries in the output buffer are reused for
incoming data from DRAM or L2 cache.

The data types considered for approximation include the integer and
floating point types. For floating point data, only the mantissa is
approximated for a faster computation. The overhead involved in data
approximation is minimal. Algorithm 1 takes a small (constant) time for
execution, and requires logic for division, a comparator, and storage for
the parameters check_depth and error_threshold. The NI connected to an
MC is often fully occupied at run-time, resulting in a wait time for data
at MCs in most cases, before they are sent to the NI. This wait time helps
to mask the overhead involved in data approximation. A packet is only
sent to the NI after it passes the data approximation stage.

B. Overlay circuits for memory controllers
The reply plane of Dapper establishes dedicated overlay circuits from

MCs to cores as shown by green and red arrows in figure 4. Each MCs
overlay circuit is a predefined mapping of input and output ports in the
reply plane NoC routers, during which flits traverse from source (MC) to
destinations (cores) in 3 cycles. An overlay circuit assigned to an MC
lasts for a time duration determined at run-time. To establish overlay
circuits, the reply plane NoC is equipped with (i) a Global overlay
controller that decides the time duration for which an overlay circuit is
established, and (ii) modified routers called bypass routers through which
flits traverse in X or Y axes in a single cycle stopping only at a turn.

B.i. Global overlay controller (GOC)

 The job of a global overlay controller (GOC) is to determine and
assign time durations for overlay circuits for each MC. The execution
time is divided into epochs, and each epoch is further divided into time
windows which are computed at the beginning of every epoch by the
GOC. A time window for an MC is determined at run-time based on the
number of reply packets waiting at the MCs output buffers, and the reply
arrival rate at the MC from the previous epoch. Each MC sends the stats
collected during an epoch to the GOC at the end of that epoch, using the
overlay circuits. The GOC uses this received information to compute a
weight function as shown in equation (1):
(݉)ߦ = .ߙ (݉)ܣ + .ߛ (1) 						(݉)ܤ

where A(m) is the reply arrival rate and B(m) is the average buffer
occupancy at the MC m in the previous epoch. α and γ are coefficients of
the weight function. The GOC compares ξ’s of each MC and computes
time window durations T1, T2, T3…, Tm for the next epoch as: ܶ݅ = ܭ ∗ (1)ߦ]/(݅)ߦ + (2)ߦ + (3)ߦ + ⋯+ (2)																									[(݉)ߦ

where Ti is the time window of the ith MC overlay and ߦ(݅) is its weight
function. The ratio of the weight functions is then multiplied by a constant
K which is equal to the periodicity of the time windows in an epoch. The
time windows repeat periodically for E/K iterations in an epoch, where E
is the epoch interval duration and K is the periodicity of the time window
set. By having the time windows repeat and overlay circuits switch

multiple times in an epoch, MCs send flits in multiple bursts across an
epoch. The time window durations are broadcast by the GOC at the
beginning of an epoch, which is saved by the reply plane routers in
dedicated buffers, and then used for setup and tear down of circuits.

B.ii. Bypass router architecture

The reply plane NoC is made up of bypass routers that support flits
passing through them without stopping at each hop for arbitration or route
computation. Figure 6 shows an overview of a bypass router architecture.
A bypass router has asynchronous links connecting output ports to input
ports and latches via an asynchronous switch and a crossbar. Each input
port is connected to a latch to save the flit that is coming over the X axis.
The router also saves time windows of each overlay circuit received from
the GOC in a local overlay controller as shown in figure 6. The crossbar
is configured at the beginning of each time window and reset at the end
of the window to establish a different overlay configuration. The crossbar
configuration of a router is based on its location on the 2D NoC and is
selected dynamically by the selection unit based on the current overlay
circuit. The output ports of a bypass router are connected to either input
ports or input latches to enable the 3 cycle flit transmission. In the first
cycle, a flit traverses along the bypass routers along the X axis through
asynchronous links and gets latched at the input latches. In the second
cycle, when the output ports are connected to input latches, the flit
traverses along the bypass routers in the Y direction and gets latched
again at the input latches. In the third cycle, the flit is sent from an input
latch to the local (core) port. Two important components of a bypass
router are the overlay controller and selection unit. The overlay
controller keeps track of the time windows and calls the selection unit to
dynamically configure the crossbar to establish the overlay circuits.

Figure 6: Overview of bypass router architecture

Algorithm 2: Overlay controller operation
Inputs: {time windows}, epoch_duration
1: e_counter ← 0; // reset counter value
2: {T1…Tk} ← {time windows} // initialize time window durations
3: selection unit ({T1…Tk})
4: for every cycle do
5: if (e _counter < epoch_duration) then
6: e _counter ++
7: else if (e _counter == epoch_duration) then
8: {T1…Tk} ← read_values(GOC_input) // save time windows
9: selection unit({T1…Tk})
10: e _counter ← 0; // reset counters
11: end if
12: end for

Algorithm 2 provides an overview of the overlay controller operation.
The controller gets the list of time window durations and epoch duration
as inputs from the GOC. It sends the list of time windows to the selection

unit as input (line 3). At every cycle, it increments a local counter to keep
track of the epoch duration (lines 5-6). At the end of an epoch duration,
updated time window values are received from the GOC which are sent
to the selection unit, and the local counter is reset (lines 8-10).

Algorithm 3: Selection unit operation
Inputs: {T1…Tk}, {MC1…MCk}
1: ŧ←0, i←1
2: for each cycle do
3: if ŧ == Ti then
4: i ← (i+1)%k
5: if local.(X,Y) == MCi.(X,Y) then // scenario 1
6: Lin→Eout,Wout,La(L) and La(L) →As(Nout,Sout)
7: else if local.(Y) == MCi.(Y) then // scenario 2
8: Ein→Wout, La(E) and Win→Eout, La(W)
9: La(E) →As(Nout,Sout,Lout) and La(W) →As(Nout,Sout,Lout)
10: else if local.(Y) > MCi.(Y) then
11: Nin→Sout, La(N) and La(N) →As(Lout) // scenario 3
12: else if local.(Y) < MCi.(Y) then // scenario 4
13: Sin→Nout, La(S) and La(S) →As(Lout)
14: end if
15: else
16: ŧ ++
17: end if
18: end for

Algorithm 3 provides an overview of the selection unit operation. The
inputs to the selection unit are the time window durations {T1…Tk} for k
overlay circuits (corresponding to the k MCs). The selection unit
possesses knowledge of the coordinates of the MCs in the 2D mesh NoC
along with its own coordinates. With the given inputs, the selection unit
creates connections for an overlay circuit. At the beginning of each time
window, the selection unit compares the coordinates of the current router
and the MC for which the overlay is being established. Based on the
location of the router, there are 4 possible scenarios for each MC as
shown in figure 6. Scenario 1: If the router and MC are at the same NoC
point, the local input port is connected to the east and west output ports
and local latch (line 5). Scenario 2: If the router and the MC are along
the same X axis, the east and west inputs are connected to the west and
east output ports, and to their corresponding latches (line 7). Scenario 3:
If the router and MC are not along the same X axis and the router’s Y
coordinate is greater than the MCs Y coordinate, the north input is
connected to the south output and north latch (line 10). Scenario 4: If the
router and MC are not along the same X axis and the routers Y coordinate
is less than the MCs Y coordinate, the south input is connected to the
north output and south latch (line 12). All the input latches are connected
to output ports through an asynchronous switch, represented as
‘As(Nout/Sout/Lout)’ in Algorithm 3, and are used for routing the flits along
the Y axis. At the end of a time window, the selection unit implements
connections for the overlay circuit of the next MC and its corresponding
time duration. This entire operation takes around 2 cycles at the
beginning of each epoch.

Routing: For conflict free routing using bypass routers, each row in the
2D NoC should only have one MC. A packet that is approximable might
have more than one destinations based on the check depth parameter of
the MC. To accommodate more than one destinations, the header flit of
the packet has more than one destination fields, and a destination length
field. When a packet is ready to be transmitted at the NI of an MC, it is
sent to the NI interface buffer based on the availability of the buffer
space. At each cycle, the router transmits flits along the asynchronous
links along the X direction and saves them at the corresponding input
latches of each bypass router (shown via the yellow line in figure 6). The
Y-compare unit (figure 6) then compares the destination Y coordinates
of the flits with its own coordinates and sends a signal to the
asynchronous switch to establish connections between input latches, and

the north/south/local output ports, based on the location of the router.
Once the connections between latches and output ports are established,
the flits traverse in the Y direction (shown via the red line in figure 6) and
reach the destination router where they are sent to the local output port.
When the tail flit passes the bypass router, the asynchronous switch is
reset to tear down the connections between latches and output ports.

Overheads: The overhead involved with the overlay controller,
selection unit and Y-compare are very minimal. The overlay controller
uses a counter, and a register to store the time window values received
from the GOC, while the selection unit uses a counter, a cyclic register,
and five 3-bit comparator circuits. The bypass router also has an
additional Y-comparator, and an asynchronous switch. All of these
components together take up a very small fraction of the power and area
of a router. The bypass routers also do not have input buffers to save
incoming flits, VCA, SA, and route computation logic. Hence, a bypass
router consumes up to 50% less power compared to traditional router.

V. EXPERIMENTS
A. Experimental setup

We target a 16-core GPGPU based accelerator to test the performance,
energy consumption, network latency, and output error of Dapper
compared to the state-of-the-art. Table 1 lists the platform configurations.
We used GPGPU-Sim [21] to collect detailed application traces and
simulated the network and memory traffic on a customized Noxim NoC
simulator [22] that integrates our Dapper architecture model. We use
trace driven simulation as it is fairly accurate for architectural analysis.
We obtained traces for 6 CUDA-based applications [1], 4 of which
belong to the image processing domain {Discrete Cosine Transform 4x4,
Histogram, Convolution Texture, Direction texture compressor}, and the
other two are scientific applications {Blackscholes, Fast Walsh
Transform}, each with a different number of kernels and memory
intensity. As mentioned earlier, we use the programming paradigm
proposed in EnerJ [19] to specify the variables in these applications that
are potentially approximable. We set the epoch duration in Dapper as
10,000 cycles, the values of α, γ coefficients of the weight function from
equation (1) to 0.6, 0.4, and K = 1000 in equation (2). The power,
performance, and area values for our NoC architecture, modified MCs,
and cores at the 22nm node are obtained using the open source tools
DSENT [23] and GPUWATTCH [24], along with gate-level analysis.

We compare our proposed Dapper architecture with the baseline NoC
of the configuration shown in Table 1, and a prior work that utilizes
dictionary-based approximate compression and decompression at each
network interface, called Approx-NoC [16]. The baseline NoC has
channel width of 128-bits which is twice the size of the L1 cache line, to
provide high throughput to MCs. Approx-NoC uses dictionary-based
inexact compression using approximation at the sending NI to reduce the
number of flits that are injected into the NoC and save the overall energy
consumed. All the three techniques use XY routing, with Dapper
incorporating overlay circuit-based flit transmission in the reply plane.
The size of the MC output buffer is set to accommodate 66 data packets,
as used in GPGPU-Sim, for all the comparison works.

TABLE 1 GPGPU-SIM PARAMETERS
Parameters Value

Shader Cores/MCs 12 / 4 (16-core)
Shader core pipeline 1536 Threads, warp size = 32
Shader registers 32768 per core
Constant / Texture Cache 8KB / 8KB per core
L1, L2 cache 16KB L1 per core, 128KB L2 per MC
NoC Topology 4×4, XY Routing
Channel width 128 bits
Base case router architecture 4-stage router, 5 VC/port, 4 buffers/VC

B. Dapper Sensitivity Analysis

We first carry out experiments to find the best values of buffer check
depth and error threshold parameters used in our data approximation
stage in the MCs in Algorithm 1. We compare Dapper with different
check depths and error thresholds to analyze the tradeoffs between energy
saved and the output error observed at the end of the application
execution. Output error is computed using equations (3) and (4):

 ݁ = (ܸ − ܸ′)/ܸ (3)

ݎ݋ݎݎ݁ = ଵெ ∗ ∑ |݁௜|ெ௜ୀ଴ (4)

where for each point in the output that comprises of images or matrices,
V and V’ are the actual and inexact points and M is the total number of
output points. Equation 4 gives the value of output error obtained at the
end of the simulation using approximation.

(a)

(b)

Figure 7: Comparison of energy consumption and output error observed with
Dapper across (a) check depths (CDs), and (b) error thresholds

Figure 7(a) shows the plots of normalized energy consumption and
normalized output error observed with Dapper across different values of
output buffer check depths (3, 6, 9) for data approximation at MCs. Check
depth is the maximum number of packets that are coalesced if their data
values are within an error threshold. The bars in the figure show the
energy consumption for the three configurations being compared and the
red dots indicate the output error. Both results are normalized to the result
for the check_depth = 3 configuration. From figure 7(a), on average, a
check depth of 6 gives up to 10% less output error compared to check
depths of 3 and 9. All the check depths give similar energy consumption
within a 1-2% range. The best check depth value varies for each
application based on the spatial locality of the data being requested from
memory and the computation being performed on the approximable data.
The DXTC application shows a decreasing trend in output error as the
check depth increases, as the number of inexact output values and their
sum do not increase proportionally to increase the error value in equation
(4). For the FWT application, the trend for output error is opposite to that
observed for the DXTC application.

Figure 7(b) shows the plots of normalized energy consumption and
output error values observed by Dapper across different error thresholds

(10%, 15%, 20%). The bars in the figure show the energy consumption
for the three configurations being compared and the red dots indicate the
output error. Both results are normalized to the result for the 10% error
threshold configuration. Not surprisingly, increasing the error threshold
leads to more output error for all the applications. For the DCT and Hist
applications, the increase in output error is high due to the high volume
of approximable variables present in the memory reply data. For DXTC,
the increase in output error is due to the computational error that increases
exponentially with the magnitude of error in the data values received.

Although the number of packets injected into the reply plane network
changes with changing check depth and error threshold values, due to the
low power consumption by bypass routers, the NoC consumes similar
energy across the three chosen values of check depth and error threshold.
Based on our sensitivity analysis, we use an error threshold of 10% and
a check depth of 6 for our Dapper architecture, when comparing with
other NoC architectures, as discussed in the following subsections.

(a)

(b)

(c)

Figure 8: Comparative analysis of Dapper with Approx-NoC [16], and a
baseline NoC architecture for (a) application execution time, (b) energy
consumption, and (c) network latency, across various CUDA applications.

C. Comparative Analysis

Figure 8(a) shows the application performance of different CUDA
applications executing on the GPGPU with three different NoC
architecures: Baseline, Dapper, and Approx-NoC [16]. It can be observed
that Approx-NoC has a 5-10% slowdown in application execution time

compared to the baseline. In contrast, Dapper has only ~1% slowdown
in application execution time compared to the baseline. As the baseline
NoC is twice the size of a traditional NoC, it consumes higher power and
area, to provide the bandwidth necessary to cope with the high data
arrival rate at MCs. Although Approx-NoC reduces the number of flits
using approximate compression, the latency overhead for compressing
and decompressing packets at the source and destination NIs consumes a
significant chunk of the time saved by transmitting fewer flits. This
impact is particularly high in the Hist application where the latency
overhead becomes prohibitively large.

Figure 8(b) shows the energy consumption of the comparison works
across different benchmarks. On average, Dapper consumes up to 50%
less energy compared to the Baseline architecture, due to its low power
router architecture in the reply plane, and transmission of fewer flits
compared to baseline. Approx-NoC on the other hand consumes higher
energy due to higher power consumption in its routers that need
additional logic and CAS-based storage for saving the most used values
for compression and decompression. In Dapper, energy savings are
higher for applications that generate lower to medium ratio of
approximable data such as Hist and ConvTex. For DCT, Blackscholes,
and DXTC, which have a high percentage of approximable data, energy
savings are relatively lower due to the high volume of reply data, where
the resulting congestion ends up dominating overall latency.

Figure 8(c) shows the network latency of the comparison works across
various application. Network latency is high when the data influx rate is
high. For applications with high incoming data rates, such as DCT, FWT,
and DXTC, Approx-NoC shows high network latency due to the high
compression and decompression overheads involved for the high volume
of packets. Dapper on the other hand shows network latency similar to
the baseline NoC although with less energy consumption as shown in
figure 8(b). Hence, we can conclude that Dapper in GPGPUs achieves
similar performance to the baseline, while consuming 50% less energy.

Figure 9: (a) Comparison of output error values across executed applications
for Approx-NoC [16] and Dapper configurations.

D. Error percentage

Obviously, it is also important to analyze the error in applications that
are subjected to approximation. Figure 9 shows the comparison of output
error % for Approx-NoC and three configurations of Dapper with
different error threshold values. Note that the baseline NoC is not shown,
as it has no output error. The error percentage is computed as 100 × error
from equation (4). Approx-NoC shows high percentage of error in its
output due to a flaw (right shift division) in its error threshold
computation which is used for identifying the approximable data before
compression. This results in a very high error percentage when data
values are incorrectly marked for approximation. Dapper on the other
hand incurs less than 1% error with 10% threshold, around 2% error with
a 15% threshold, and around 3% error with a 20% threshold due to more
accurately marking approximable data that can be coalesced before

sending to destinations. Thus, Dapper presents a promising NoC-centric
solution to save energy consumption in GPGPUs for applications that
have a potential for being approximated (i.e., applications that can
tolerate some output error). As an illustrative example, Figure 10 shows
the DCT application output under no error (when using the baseline
NoC), and when using the Dapper. It can be observed from figure 10 that
the output for the configuration of Dapper with 10% error threshold is
virtually indistinguishable from the no error case, while saving almost
40% energy (figure 8(b)). This example highlights the exciting potential
of Dapper to save energy in GPGPUs.

 (a) (b)

 (c) (d)
Figure 10: DCT output: (a) original (no error), (b) with 10% error threshold
in Dapper, (c) with 15% error threshold in Dapper (d) with 20% error
threshold in Dapper

VI. CONCLUSIONS
In this paper, we propose a novel data-aware approximate NoC for

GPGPU architectures that identifies the approximable data waiting in the
output buffers of memory controllers and coalesces them to reduce the
number of packets injected into the NoC. Also, we advocate for a fast
overlay circuit based NoC architecture in the reply plane of the NoC for
the reply packets to reach the destinations in 3 cycles. To enable the
establishment of overlay circuits, we propose a novel low power router
architecture in the reply plane NoC called bypass router. Experimental
results show that Dapper dissipates up to 50% less energy compared to
baseline NoC, with only 1% slowdown in application performance and
less than 1% error in the application output. Thus, for the class of
emerging applications that have the ability to tolerate a small error in their
outputs, Dapper can provide significant savings at the NoC level. These
savings are orthogonal to (and can be combined with) further
approximation strategies at the computation components (e.g., using
approximate adders) to further expand the design space of trade-offs
between application output error, energy costs, and execution time.

REFERENCES

[1] NVIDIA GPUs, [Online]: https://developer.nvidia.com/cuda-gpus

[2] E. S. John, D. Gohara, and G. Shi. "OpenCL: A parallel programming
standard for heterogeneous computing systems." Computing in science &
eng., Vol. 12, no. 3, pp: 66-73, 2010.

[3] NVIDIA CUDA, [Online]: https://developer.nvidia.com/about-cuda

[4] K. Palem, and A. Lingamneni. "Ten years of building broken chips: The
physics and engineering of inexact computing." ACM Transactions on
Embedded Computing Systems (TECS), vol 12, no. 2s, pp: 87, 2013.

[5] S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghunathan.
"Approximate computing and the quest for computing efficiency." Proc.
ACM DAC, June 2015.

[6] H. Kim, et al. “Providing cost-effective on-chip network bandwidth in
GPGPUs.” Proc. ICCD, Sept 2012.

[7] H. Jang, et al. “Bandwidth-Efficient On-Chip Interconnect Designs for
GPGPUs.” Proc. DAC, June 2015.

[8] Y. Yu, et al. “A Stall-Aware Warp Scheduling for Dynamically Optimizing
Thread-level Parallelism in GPGPUs.” Proc. ICS, 2015.

[9] S. Das, J. R. Doppa, P. P. Pande, and K. Chakrabarty. “Design-Space
Exploration and Optimization of an Energy-Efficient and Reliable 3-D
Small-World Network-on-Chip.” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, Vol. 36, No. 5, pp:719-732, 2017.

[10] T. Pimpalkhute, S. Pasricha, “An Application-Aware Heterogeneous
Prioritization Framework for NoC based Chip Multiprocessors”, IEEE
ISQED, Mar. 2014.

[11] Y. Zou, S. Pasricha, “Reliability-Aware and Energy-Efficient Synthesis of
NoC based MPSoCs”, IEEE International Symposium on Quality Electronic
Design (ISQED), Mar. 2013.

[12] V. Gupta, D. Mohapatra, S.P. Park, A. Raghunathan. and K. Roy.” IMPACT:
imprecise adders for low-power approximate computing.” Proc. IEEE/ACM
ISLPED, Aug 2011.

[13] M. Shafique, W. Ahmad, R. Hafiz, and J. Henkel. “A low latency generic
accuracy configurable adder.” Proc. IEEE/ACM DAC, June 2015.

[14] J.S. Miguel, J. Albericio, A. Moshovos, and N.E. Jerger. “Doppelgänger: a
cache for approximate computing.” Proc. ACM MICRO, Dec 2015.

[15] J.S Miguel, J. Albericio, N.E. Jerger, and A. Jaleel. “The bunker cache for
spatio-value approximation.” Proc. IEEE/ACM MICRO, Oct 2016.

[16] R. Boyapati, J. Huang, P. Majumder, K.H. Yum, and E.J. Kim. “APPROX-
NoC: A Data Approximation Framework for Network-On-Chip
Architectures.” Proc. ACM ISCA, June 2017.

[17] A. Rahimi, L. Benini, and R.K. Gupta. “CIRCA-GPUs: increasing
instruction reuse through inexact computing in GP-GPUs.” IEEE Design &
Test, Vol. 33, no. 6, pp:85-92, 2016.

[18] C.H.O. Chen, et al. “SMART: a single-cycle reconfigurable NoC for SoC
applications.” Proc. DATE, Mar 2013.

[19] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and D.
Grossman. “EnerJ: Approximate data types for safe and general low-power
computation.” ACM SIGPLAN Notices, Vol. 46, No. 6, pp. 164-174, 2011.

[20] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. “Neural acceleration
for general-purpose approximate programs.” Proc. of the 2012 IEEE/ACM
MICRO, Dec 2012.

[21] A. Bakhoda, et al. “Analyzing CUDA workloads using a detailed GPU
simulator.” Proc. IEEE ISPASS April 2009.

[22] V. Catania, et al. “Noxim: An open, extensible and cycle-accurate network
on chip simulator.” Proc. IEEE ASAP, July 2015.

[23] C. Sun, et al. “DSENT-a tool connecting emerging photonics with
electronics for opto-electronic networks-on-chip modeling.” Proc IEEE
NOCS, May 2012.

[24] J. Leng, et al. “GPUWattch: enabling energy optimizations in GPGPUs.” In
ACM SIGARCH Computer Arch. News, Vol. 41, no. 3, pp: 487-498, 2013.

[25] V. Y. Raparti, S. Pasricha, “Memory-Aware Circuit Overlay NoCs for
Latency Optimized GPGPU Architectures,” Proc. IEEE ISQED, Mar. 2016.

[26] V. Y. Raparti, N. Kapadia, S. Pasricha, “ARTEMIS: An Aging-Aware
Runtime Application Mapping Framework for 3D NoC-based Chip
Multiprocessors”, IEEE TMSCS, Vol. 3, No. 2, pp. 72-85, Apr-Jun 2017.

[27] V. Y. Raparti, S. Pasricha, “PARM: Power Supply Noise Aware Resource
Management for NoC based Multicore Systems in the Dark Silicon Era,”
Proc IEEE/ACM DAC, Jun. 2018.

[28] N. Kapadia, S. Pasricha, “VERVE: A Framework for Variation-Aware
Energy Efficient Synthesis of NoC-based MPSoCs with Voltage Islands”,
Proc IEEE ISQED, Mar. 2013.

