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Abstract

Modern vehicles have incorporated numerous safety-
focused Advanced Driver Assistance Systems (ADAS) 
in the last decade including smart cruise control and 

object avoidance. In this paper, we aim to go beyond using 
ADAS for safety and propose to use ADAS technology to enable 
predictive optimal energy management and improve vehicle 
fuel economy. We combine ADAS sensor data with a previously 
developed prediction model, dynamic programming optimal 
energy management control, and a validated model of a 2010 
Toyota Prius to explore fuel economy. First, a unique ADAS 
detection scope is defined based on optimal vehicle control 
prediction aspects demonstrated to be relevant from the litera-
ture. Next, during real-world city and highway drive cycles in 
Denver, Colorado, a camera is used to record video footage of 
the vehicle environment and define ADAS detection ground 

truth. Then, various ADAS algorithms are combined, modified, 
and compared to the ground truth results. Lastly, the impact 
of four vehicle control strategies on fuel economy is evaluated: 
1) the existing vehicle control, 2) actual ADAS detection for 
prediction and optimal energy management (we consider two 
variants ADAS1 and ADAS2 for this strategy), 3) ground truth 
ADAS detection for prediction and optimal energy manage-
ment, and 4) 100% accurate prediction and optimal energy 
management. Results show that the defined ADAS scope and 
algorithms provide close correlation with ADAS ground truth 
and can enable fuel economy improvements as part of a predic-
tion based optimal energy management strategy. Our proposed 
approach can leverage existing ADAS technology in modern 
vehicles to realize prediction based optimal energy manage-
ment, thus obtaining fuel economy improvements with 
minor modifications.

Introduction

Fuel economy (FE) is a significant contributor to energy 
consumption, where an increase in FE would signifi-
cantly decrease our energy footprint [1]. This reduc-

tion would lower greenhouse gas emissions and air pollution. 
One leading method to increase fuel economy is vehicle 
electrification [2], where hybrid electric vehicles (HEV) have 
helped bridge the gap between electric vehicles (EV) and 
combustion engines. For HEV, many control strategies have 
been researched and implemented to increase FE, e.g., by 
combining the usage of the combustion engine and the 
electric motor [3], [4], [5]. A significant FE improvement is 
possible with a control strategy that utilizes the fact that 
electric motors are significantly more efficient than combus-
tion engines at slower speeds.

FE improvement can occur for a fixed route through 
driver feedback to promote efficient habits (known as 
Eco-driving [6]) and there is emerging research into inte-
grating ADAS and Eco-driving [7]. Conversely, for fixed 
speeds, the powertrain efficiency can be improved by opti-
mizing the use of engine power and battery power [8], which 
is known as an Optimal Energy Management Strategy 
(Optimal EMS). The Optimal EMS is derived by applying the 

principles of optimal control to a fixed drive cycle, i.e., the 
engine power is controlled to provide the minimal fuel 
consumption. For a known Optimal EMS, recent research 
demonstrated real world results by including various aspects 
of physical vehicles [9], [10], [11], [12], [13], [14]. Note that 
research has also begun to show that the largest FE improve-
ments are possible when Eco-Driving and an Optimal EMS 
are combined [15]. But, typically these FE improvement strate-
gies require significant prediction of future events in the drive 
cycle, which is not straightforward. This work is novel in that 
we focus on the practical aspects of prediction to inform an 
Optimal EMS derivation.

Another aspect that is receiving growing attention in 
emerging vehicles is safety. The World Health Organization 
has indicated that 1.25 million deaths occur from traffic acci-
dents [16], with global costs of up to US $528 billion yearly [17]. 
These staggering numbers have become an incentive to 
increase the focus on safety for automotive systems. Active 
safety systems have become a significant area of growth. 
Research in such systems has led to advances in testing 
[18], [19] improvement in algorithms [20], [21] and added 
functionality [22]. Popular active safety deployments in 
vehicles include adaptive cruise control, lane detection, and 
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automatic parking. The advanced driver assistance systems 
(ADAS) used for active safety require many different types 
of sensors such as Light Detection and Ranging (LIDAR), 
Radio Detection and Ranging (RADAR), ultrasonic sensors, 
and various types of imaging cameras. Figure 1 summarizes 
the function and location of many of these sensors. ADAS 
is a highly researched area in which many topics attempt to 
reduce cost, increase accuracy, and maintain strict safety 
standards. [23] is an example of an improvemenet seen in 
the ADAS field.

The use of computer vision to identify the surrounding 
environment and the classification of objects in a video is a 
significant area of research in ADAS. The use of a camera is 
one of the easier methods to determine the type of object that 
the vehicle is approaching. The general flow for this object 
detection includes image acquisition, pre-processing, segmen-
tation, object detection and tracking, depth estimation, and 
system control. Details of how each layer works can be found 
in [24]. To more reliably accomplish the task of object detec-
tion, recent approaches are exploring deep learning algo-
rithms such as convolutional neural networks (CNN) for 
greater accuracy.

The information that ADAS requires to make decisions 
for safe driving can be repurposed to provide predictions for 
improved FE through Eco-driving, an Optimal EMS, or a 
combination of both. Eco-Driving uses ADAS in many current 
vehicles to implement applications such adaptive cruise 
control. However, an Optimal EMS requires prediction of the 
entire drive cycle to be globally optimal [16], [17]. Despite this 
seemingly difficult requirement, our initial research shows 
that FE improvements using limited prediction with an 
Optimal EMS is possible [25], [26].

In this paper, we propose the use of ADAS information 
to generate prediction data for use in an Optimal EMS. The 
ADAS generated prediction data is used to derive an Optimal 
EMS which is implemented in a vehicle model to improve FE. 
The incorporation of ADAS for prediction is novel and 
has not been explored in prior work [27]. Several ADAS 
prediction models are developed and discussed in 
this paper, with various computer vision techniques. The 
approach for obtaining ADAS information for Optimal EMS 
is presented in detail. Our work in this paper represents a 
promising solution to bridge the gap between vehicle electri-
fication and autonomous systems, for the purpose of fuel 
efficiency improvements.

Methods
In this section, we will show how we defined the fixed drive 
cycle for our Optimal EMS, methods we used to acquire our 
ADAS information, and how we used ADAS information for 
our predictions.

Drive Cycle Development
Two routes for our drive cycles were defined, where the aim 
was to test different but equally challenging road conditions 
in Denver, Colorado. Figure 2 shows the highway drive cycle, 
and Figure 3 shows the city drive cycle. Each drive cycle was 
driven four times alternating after each run, where run 1 was 
the highway cycle and run 8 was the Denver downtown (city) 
cycle. Alternating between routes was implemented to increase 
the chances of capturing different driving conditions faced 
on the road for each type of drive cycle.

Another motivation for these specific cycles was the relative 
challenge for ADAS to detect and interpret the surrounding 
environment around the vehicle. The chosen fixed routes 
contained several stop signs, many traffic lights, busy streets 
and highway traffic, reflective buildings, road construction, 
pedestrian crossings, and changing lighting conditions. Many 

 FIGURE 1  State-of-the-art ADAS and different sensors [24].
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 FIGURE 2  The highway-focused drive cycle that passes 
through two interstates in Denver, CO USA. Source: 
Google Maps.
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 FIGURE 3  The city-focused drive cycle that passes through 
downtown in Denver, CO USA. Source: Google Maps.
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of these cases can prove to be quite tricky for computer vision 
systems to analyze the environment accurately.

Data Acquisition
Several sensors were used in a test vehicle to determine vehicle 
speed, acceleration, and video feed of the driving environ-
ment. The vehicle information was captured from a data acqui-
sition (DAC) device connected to the CAN bus. Captured data 
from the CAN bus included position data from the GPS and 
vehicle speed and acceleration.

A ZED stereo vision camera [28] was used to obtain the 
video data needed for post-processing. In each drive cycle, the 
two frames of 1280x720 from the two (stereo) camera sensors 
were captured at 30 frames per second (fps) and written into 
a .mp4 video file. An ASUS laptop with an Intel i7 and a 
GeForce GTX 1070 was used both for the capture and 
processing of the data. As seen in Figure 4, the Zed Camera 
was attached to a suction cup using a 3D printed mount. The 
optimal placement for the camera was determined to be at the 
top portion of the windshield of the test vehicle near the rear-
view mirror. This placement was based on minimizing the 
effect of glare and maximizing lane line, sign, and vehicle 
visibility. A downward camera angle could be achieved by 
placing the camera on the highest point of the windshield. 
We found that this angle reduced the effect of lighting condi-
tions because the lens wasn’t overexposed from the sun and 
still had a full view of the vehicle environment.

ADAS Information for 
Optimal EMS
Traditional ADAS track and utilize data that would allow 
a vehicle to drive safer. Such data includes details of vehicle 
location, distance of objects to the driver, lane detection, 
etc. However, for Optimal EMS prediction, we have deter-
mined that only the data that would directly affect vehicle 
speed is pertinent, i.e., only this data can increase FE, based 
on our understanding of Optimal EMS. Instances where we 
know that the vehicle will need to slow down, and for how 
long, allows the control strategy to make decisions such as 

turning off the engine to save on fuel consumption. Thus, 
for example, tracking the lane in which the vehicle resides 
is not a direct factor to the change in vehicle speed. Table 1 
lists the useful prediction data features for our purposes of 
Optimal EMS.

The data features can help identify situations where a 
vehicle may need to slow down. Traffic light state and stop sign 
state were chosen to be features that were important to detect 
because of their role in regulating speed. For traffic lights, red, 
yellow, green, and N/A (not available) are states that were 
deemed to be relevant prediction data for an Optimal EMS. 
Stop signs define an upcoming event that would slow down 
the vehicle based on its relational distance. The states far, 
medium, close, and N/A provide the prediction system with 
information on how quickly the system needs to brake. A 
situation of detecting a stop sign nearby when turning onto a 
street is different from finding a stop sign down the street, 
thus requiring a distance calculation with each stop sign.

Initially, the consideration was to detect all visible 
vehicles. In most cases however, we found that the only vehicle 
that affects the driver’s speed is the one directly in the lane 
ahead. This simpler requirement is unlike many ADAS where 
almost all vehicles are tracked for safety reasons by analyzing 
the entire driving environment. In situations where a car in 
an adjacent lane merges nearby, the driver will now be in the 
main lane and tracked. Monitoring the driver before then 
would not lead to any more indication of similar situations, 
and therefore only the current lane needs to be tracked for 
vehicle activity, for our purposes. Much like the reasons stated 
for stop signs, we consider the scenario where the vehicle’s 
spatial relationship to the vehciles ahead of it changes. The 
output states for the vehicle in-front state data are defined as 
increasing, decreasing, and same regarding distance and N/A 
for no vehicles in the current lane. Brake light information 
was considered to be redundant data and therefore left out of 
the tracked ADAS prediction features.

An upcoming turn often indicates a decrease in speed for 
a driver. Significant bends in the road or turning 90° warrants 
a reduction of speed, making the turning feature a necessary 
one for Optimal EMS prediction. The speed limit and stop sign 
ahead features indicate a change in speed and were found to 
also be useful for Optimal EMS prediction. The possible 
outputs for speed signs were the listed limit value seen in 
Table 1 and a yes for positive instances and N/A for no signs 
was used for each stop sign occurrence.

 FIGURE 4  ZED stereo vision camera used for video  
capture
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TABLE 1 Prediction data features for Optimal EMS.

ADAS EMS prediction data 
features

Possible output states

Time (s)

Frame Captured Time (date-time object)

Traffic Light State (r|y|g|N/A)

Stop Sign State (far|medium|close|N/A)

Vehicle In-Front State (inc|dec|same|N/A)

Turning ((in turn lane)|turning|N/A)

Speed Limit (25|30|35|40|45|55|65|75|N/A)

Stop Sign Ahead (Y|N/A)

Output HZ 1©
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Lastly, the frequency (output Hz) of the information was 
deemed to require a 1Hz tick rate. A 30 fps video requires an 
output log entry every thirty frames. Based on [25], [26], this 
output rate would be sufficient for prediction data for an 
Optimal EMS. The running time of seconds and the frame 
captured time was also needed so that the prediction system 
allowed for syncing other data sets such as vehicle speed.

Ground Truth Development
The data required from an ADAS system as defined in the 
previous section needed as close to perfect predictions as 
possible, to validate the need for the information. This near 
perfect data is called ground truth data and is obtained by 
having a human closely analyze the environment instead of 
a computer algorithm. In this case, ground truth data at any 
point during a drive cycle can be referred to as a human’s 
interpretation of the scene at that point. Each prediction data 
feature discussed earlier requires human annotated data for 
all eight videos at a data rate of 1Hz to obtain ground truth 
data. We collect this ground truth data as it can show how an 
Optimal EMS prediction would fare with completely accurate 
ADAS data.

To obtain the ground truth data, a graphical user interface 
(GUI) app was developed to get the values for data features 
defined in Table 1. A screenshot of this app can be seen in 
Figure 5 that also shows what each group of buttons repre-
sents. The app allowed us to watch each of the eight drive cycle 
videos via the GUI, pause the video at any time, and annotate/
capture data by pressing the appropriate state buttons for each 
prediction field. After the ground truth was specified for each 
drive cycle video, a comma separated value (.csv) file was 
generated that saved the prediction data needed for the 
Optimal EMS.

The vehicle in front state was later redefined only to use 
the states decease, same, and N/A. The increasing state was a 
difficult one to define since at far distances, determining if a 
vehicle remained at the same position or deviated was not 
easy. The experiments were rerun to use the same state for all 
situations when the vehicle was moving away from the driver. 
All other states were kept the same as defined earlier.

ADAS Detection Development
In this section, we discuss a combination of custom and 
known algorithms, called ADAS1 and ADAS2 that were used 

to automatically capture the ADAS EMS prediction features 
defined in Table 1. In this section, we only consider ADAS 
information that we could obtain from a stereo vision camera. 
Although other information from sensors discussed in the 
introduction section could provide useful information, it was 
deemed to be out of this experiment’s scope.

Using the programming language Python and open 
source computer vision libraries (e.g., OpenCV) we developed 
the ADAS1 and ADAS2 strategies to obtain the data for EMS 
prediction. ADAS1 and ADAS2 included the same features 
defined for optimal ADAS EMS prediction and a few addi-
tional fields all of which can be seen in Table 2. After watching 
each video for the ground truth selection, it was determined 
that ADAS1 and ADAS2 did not need the ability to track the 
speed limit or turn state. Speed limit detection was discovered 
to have a low impact on the change in speed of the vehicle 
during developing ground truth data and therefore was 
omitted. In these drive cycles, the speed signs encountered 
did not enforce a significant reduction of vehicle speed 
(e.g., from 70mph to 40mph) that would warrant any major 
change in velocity. The turn state was also not included 
because of the difficulty of determining a turning state with 
computer vision. The state of the turn signal of the car as well 
as accelerometers provide a better indication of a vehicle 
changing lanes and turning. Signs indicating that there was 
a stop sign ahead were also not present in any of the drive 
cycle information, and therefore the inclusion of this detection 
would not lead to better prediction results and was left out of 
ADAS1 and ADAS2.

We considered two new features for our two ADAS strate-
gies in addition to our ground truth set of data features: pedes-
trian tracking and brake light tracking. Pedestrian detection 
was deemed useful in the cases, though infrequent, where 
pedestrians would jaywalk through the road and no vehicle 
was in front. Most ADAS object detection algorithms support 
pedestrian detection, and we considered it as well to explore 
the effect of false positives (detecting an object that does not 
exist in the image) for Optimal EMS predictions. In our drive 
cycles, pedestrians did not lead to vehicle speed changes, hence 
this feature was not considered in our ground truth feature 
set in Table 1. Lastly, ADAS2 utilized a brake light state for 
situations where the vehicle distance was not changing, e.g. 
when both vehicles are stopped at a light. For ground truth 
development, the idea of brake light detection was found to 
be redundant information because the vehicle speed was 
already tracked in the vehicle state. Hence this feature was 
not included in our ground truth feature set. But we included 

 FIGURE 5  Ground Ttruth Development App
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TABLE 2 Features of ADAS1 and ADAS2.

Features Ground Truth ADAS1 ADAS2
Stop Sign Detection   

Vehicle Detection   

Pedestrian Detection X  

Traffic Light State   

Brake Light State X X 

Turning Lane  X X

Speed Limit  X X

Image Filtering N/A X  ©
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this feature in ADAS2 for the same reason as that for 
considering pedestrian tracking: to capture the effect of 
mispredictions due to false positives with the ADAS algo-
rithms, during Optimal EMS prediction.

The flow chart in Figure 6 shows an overview of the ADAS 
prediction pipeline that we developed for both ADAS1 and 
ADAS2. The eight drive cycle videos were analyzed by the 
computer vision algorithms to generate the EMS prediction 
data. As discussed in an earlier section, reading every 
30th frame (for a 30 fps video capture rate) for output was a 
simplification we used, to reduce the need for extensive 
computation overhead. Various pre-processing steps were 
applied to the frame image before sending to the object detec-
tion and tracking algorithms. Once the objects were found, 
the state of each ADAS EMS data feature was determined. The 
following subsections provide more details about the the 
stages of the ADAS prediction pipeline.

Read Frame Every frame was obtained from the ZED 
camera that has a 110° wide-angle lens at an aspect ratio of 
16:9 and a frame resolution of 1280x720 captured at 30 frames 
per second (fps). The ZED camera recorded the left and right 
frame as a single image, therefore a separation step was 
required for the left and right frames to be split into separate 
image arrays. The left frame array was the only frame used 
for object detection and tracking in our work, with the right 
frame being ignored, to reduce computational overheads. An 
ASUS laptop with an Intel i7, and a GeForce GTX 1070 was 
used for post-processing to run the computer vision algo-
rithms. An NVIDIA graphics card was needed to run several 
algorithms that required CUDA support, to allow parallel 
execution with a GPU, which increases performance.

Pre-Processing The second step in ADAS1 and ADAS2 
was to crop the image to reduce the number of computations 
required. The resultant frame only included the driving and 
adjacent lanes as well as enough height to see the traffic lights. 
This frame reduction significantly reduced computation time 
as there were fewer pixels for each computation. In addition 
to reducing the frame size, several pre-processing operations 
were done such as converting to different color spaces, e.g., 
grayscale. Several functions later in the ADAS prediction 
pipeline benefitted from this conversion to achieve a higher 
accuracy in the output. In ADAS2 a filter named Gaussian-
Blur was used to prepare several frames for pixel brightness 
detection that would make the image more uniform.

Object Detection Object detection is essential to classify 
features in the image, such as vehicles, signs, and traffic lights. 

The objective of object detection in our use case is to notify 
the Optimal EMS system with any possible objects that could 
predict or detect a possible change in vehicle speed. For 
example, detecting a red traffic light ahead would provide the 
EMS a significant advantage in predicting the potential speed 
reduction ahead. A python implementation of [29] derived 
from the work of [30] was the CNN used for object classifica-
tion in our work. An image frame is sent to the CNN layer 
and returns a list of objects detected with a given confidence 
score. Different weights and training parameters were used 
for the CNN models used in ADAS1 and ADAS2. One issue 
with the CNN classifier that we used was the inability to detect 
an object at a range of over 20 meters. However, this was not 
a significant issue for our purposes of detecting vehicles, signs, 
and traffic lights that could directly affect the speed of 
the driver.

The CNN output layer indicated vehicle detection with 
the help of bounding boxes around those vehicles. Vehicles 
detected in the image were further considered only if found 
in the driver’s lane, otherwise they were ignored. This was 
accomplished with a simple comparison of the centroid of the 
vehicle seen as a red circle in figures 7-9. The vehicle detected 
was found and compared to the width of the lane. If found in 
the range, the object’s bounding box was tracked. If the 
bounding box object was found to be larger in the next frame, 
the assumption that the vehicle was approaching can be 
considered to be true. If the bounding box was the same size 

 FIGURE 6  ADAS prediction pipeline
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 FIGURE 7  Primary City Street with traffic light and vehicle 
a detection
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 FIGURE 8  City Street with stop sign and vehicle detection
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or smaller, the vehicle was considered to remain at the same 
distance. Although a stereo vision camera can determine the 
distance of the object, the bounding box area method worked 
adequately for our purposes, because an exact distance is not 
needed to detect relative vehicle movement across frames.

Traffic light state detection was done similarly to vehicle 
detection with the addition of an extra processing step. A list 
of bounding boxes from the CNN for traffic lights was iterated 
and filtered based on the confidence score to select the one 
traffic light for object state classification that had the highest 
confidence. The object filtering was performed to eliminate 
the need to find the state of the traffic light for each sign. Stop 
sign and pedestrian detection were added features to ADAS1 
and ADAS2, where if a confidence returned higher than 30%, 
the objects were identified and reported in the output file. This 
confidence score filtering was selected empirically, to reduce 
the possibility of false positives. Some segmentation tech-
niques were also used to ensure that objects such as the sky 
and road were not falsely identified as people or signs.

Object Tracking For the determination of the vehicle 
state, the object data required a method for tracking from 
frame to frame. A Kalman filter was used for cases when more 
than one type of object was detected. The Kalman filters gave 
us the ability to use a linear velocity model to classify objects. 
From one frame to the next, an objects centroid will typically 
not move a significant distance, and this information can be 
used to filter out objects such as those that can cause false 
positives. In all cases, only one type of object should be 
detected for the tracking step in one frame because of the 
filtering and detection steps discussed earlier. As also 
discussed earlier, the best traffic light was chosen to remove 
the issue of multiple detections for tracking. The vehicle state 
classification was also the only prediction feature that required 
the previous information of the tracked object.

Object State Classification Traffic lights and vehicle 
brake lights required object state classification to determine 
the state of the image. Once the CNN identified these objects, 
additional steps were required to determine what state the 
traffic light indicated and if the brake lights were on. To 
accomplish this, the bounding box information of the objects 
was taken and a sub-image was created based on the size of 
the bounding boxes. The OpenCV function Minmax() found 

the location of the brightest spot in the image which would 
be the light’s sources, which in this case is the object (traffic 
or brake light) to be detected. Then a circle of radius 41 pixels 
was used, and the average pixel color was determined after 
converting to a hue, saturation, value (HSV) color space. This 
color space conversion mitigated the effect of shadows to affect 
the resultant color detected. The color was then compared to 
find the state of the object. ADAS2 also used a Gaussian blur 
filter that would help identify the max pixel color more effi-
ciently for both traffic and brake light detection.

Output Several examples of annotated output frames in 
figures 7-9 illustrate the methods discussed in the previous 
subsection. Each figure outlines the object of interest with a 
bounding box and a red centroid representing the object. The 
information obtained for each processed frame was recorded 
into a CSV file. Figure 7 shows an example of the brightest 
point of the traffic light detected which is outlined by a blue 
circle. A positive detection of a stop sign can be seen in 
Figure 8. Figure 9 shows three detected vehicles where only 
the rightmost car is tracked for ADAS prediction data because 
it is the only vehicle in the driver’s lane.

Vehicle Model
The vehicle model chosen was a 2010 Toyota Prius due to its 
commercial prevalence and because it has the highest FE in 
its class. This model was created in the Autonomie modeling 
software, which has demonstrated a high correlation with 
real-world Toyota Prius operation [31]. Additional information 
about this model can be found in previous research [25]. Note 
that even though our drive cycles and data capture were 
performed on the test vehicle, the captured data is not tied to 
any specific features of the test vehicle and is in fact indepen-
dent of the vehicle make/year in general. This allows us to use 
data captured from an instrumented vehicle to evaluate the 
impact of ADAS on the FE for a Toyota Prius.

Optimal Energy Development 
Derivation
Details of an Optimal EMS derivation and implementation 
can be found in numerous articles [25], [32], [33]. An overall 
system-level viewpoint of an Optimal EMS implementation 
developed in previous research [27] is shown in Figure 10. 
This system consists of three subsystems: perception, planning, 
and the vehicle plant. The perception subsystem interprets the 
vehicle surroundings based on sensor inputs to then output a 
prediction of future vehicle velocity. The planning subsystem 
computes the optimal control for the provided velocity predic-
tion. This optimal control is then actuated in the vehicle plant 
via the running controller which takes into account compo-
nent level limitations including SOC limits, ramp rate 
limits, etc.

In our work, ADAS data is used along with current GPS 
location and current vehicle velocity to predict future vehicle 
operation within the perception subsystem. This vehicle oper-
ation prediction is then used in an optimal control algorithm 
that uses dynamic programming to derive the globally 

 FIGURE 9  Highway with vehicle detection
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Optimal EMS for the given prediction. This optimal control 
is then issued as a control request to the vehicle’s “running 
controller” which evaluates component limitations before 
actuating the vehicle plant. For this study, we use a vehicle 
plant based on the Autonomie vehicle model with a modifica-
tion to use the Optimal EMS rather than the baseline EMS.

Because ADAS detection provides limited (line of sight) 
future drive cycle predictions, it is not possible to predict 
speeds along the entire drive cycle from ADAS data points at 
time zero. Therefore, the process of perception, planning, and 
vehicle actuation uses second by second feedback with the 
Optimal EMS computed for 15-second predictions which has 
been shown in previous research to be an effective prediction 
window for achieving FE improvements [26]. Details about 
the prediction model and the Optimal EMS results can be 
found in a separate article [32] whereas full details about 
Optimal EMS derivations can be found in previous 
research [25].

Results
ADAS Output Comparison
Figures 11-13 show the comparison of each frame input of 
ADAS1 and ADAS2 to ground truth. As each of the two drive 
cycles were driven four times, results for a total of eight videos 
are shown with a comparison of ground truth to the Optimal 
EMS ADAS prediction with ADAS1 and ADAS2. From 
Figure 11 we can see the stop sign comparison to the ground 
truth was around 98% for ADAS1 and 99% for ADAS2. This 
difference was most likely due to the different weights and 
parameters files used during detection. The stop sign accuracy 
rate was found to be very high because only one stop sign was 
encountered in both drive cycles. The CNN used gave very 
low false positive and could detect the stop sign in most videos, 
however, it failed to detect the stop sign at large distances in 
contrast to the ground truth data. This drive cycle only 
contained one stop sign, giving very limited useful data on 

this metric for object detection for Optimal EMS. We specu-
late that with the addition of more stop signs the Optimal 
EMS may be able to predict the vehicle speed with greater 
accuracy and lead to better fuel economy increase. Further 
studies on how stop signs effect this data will be incorporated 
in future tests.

For the vehicle-in-front state, we can see from Figure 12 
that the average accuracy was around 60% for ADAS1 and 
70% for ADAS2. The accuracy improved from ADAS1 to 
ADAS2 due to the different weight and configuration files 
used for detection. This accuracy was also improved in ADAS2 
due to the slight change in the tracking algorithm that clas-
sified the vehicle state. A small buffer was added to add more 
‘same’ cases if a vehicle was detected recently. However, the 
CNN in both ADAS1 and ADAS2 failed to identify objects at 
distances farther than 20 m. The ground truth data labeled 
by hand annotated vehicles at a much more significant range.

For traffic lights, the average accuracy for the odd videos 
(highway drive cycles) was around 70% while the average 

 FIGURE 10  The system-level viewpoint of the Optimal EMS 
implementation with subsystems for perception, planning, and 
a vehicle plant [27].
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 FIGURE 11  ADAS percent accurate to ground truth - stop 
sign state
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 FIGURE 12  ADAS percent accurate to ground truth - 
vehicle in front state
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accuracy for the even videos (city drive cycles) was 40%, as 
shown in Figure 13. Counting the total traffic lights, it was 
found that 59 traffic lights were encountered in the city drive 
cycle and 16 in the highway cycles, which means that approxi-
mately 23 traffic lights were detected in the city drive cycle 
and 11 in the highway. The inaccuracies were due to the 
changing ambient lighting and diverse positioning of the 
traffic light. Many frames of the traffic light were blocked by 
cars and were detected for ground truth at a much higher 
distance (similar to the issues faced with the vehicle-in-front 
state). Most traffic lights were also of smaller size than vehicles 
and only provided positive readings during object detection 
when the vehicle was within 5 meters of the light. The accuracy 
of detection of stop light colors was also challenging to get 
correct. Relying on the average color of the pixels was found 
to be an ineffective predictor for these lights.

Fuel Economy Improvements 
with ADAS
Insights into the FE improvements that are possible when 
ADAS detection data is combined with an Optimal EMS can 
be obtained using a difference in battery charge adjusted FE [34] 
from the baseline EMS and the Optimal EMS calculated as

	 Percent Improvement
FE FE

FE
Optimal Baseline

Baseline

 =
- 	

The ADAS detection Optimal EMS FE improvements 
must also be put in context with the globally Optimal EMS 
FE improvements. The globally Optimal EMS FE improve-
ment is possible when the entire drive cycle is predicted 100% 
accurately from time zero. This serves as an important refer-
ence point to understand the scope of the FE increase that can 
be realized through ADAS detection. We also define a new 
metric called ‘prediction window optimal’, which is the 
optimal prediction of a fifteen second window used for ADAS1 
and ADAS2.

Figure 14 shows the comparison for city-focused drive 
cycle between the globally Optimal EMS strategy, the two 
ADAS strategies (ADAS1, ADAS2), and the ground truth 
ADAS strategy. All results are presented relative to the baseline 
control strategy for the 2010 Toyota Prius. The globally 
Optimal EMS FE improvement is 19.6%, which represents an 
upper bound on the improvements in FE that can be achieved. 
The prediction window optimal FE improvement is 11.9%. 
With ground truth ADAS detection, approximately half of 
this amount is realized at 6.1%, which is a very promising 
result. Using the actual algorithms developed and imple-
mented, a 4.4% improvement was realized with ADAS1, and 
a 5.3% improvement was realized with ADAS2. The difference 
between the ground truth ADAS and results from the actual 
ADAS deployments (ADAS1, ADAS2) was due to the inac-
curacies and limitations with the real-time computer vision 
algorithms. In particular, the failure to detect an object at 
great distances reduced the accuracy in many cases. Another 
source of error was with the traffic light state detection, as 
discussed earlier. There were also several difficulties in 
producing accurate results in time to make an impact on FE. 
ADAS2 give a slightly higher percentage increase in FE than 
ADAS1. As discussed earlier, this was primarily due to the 
different set of weighting and training parameters and the 
addition of vehicle brake light data.

Figure 15 shows the FE comparison for highway-focused 
drive cycle between the globally Optimal EMS strategy, the 
two ADAS strategies (ADAS1, ADAS2), and the ground truth 
ADAS strategy. All results are relative to the baseline control 
strategy for the 2010 Toyota Prius. The globally Optimal EMS 
improvement is 10.9%, which is lower than the FE available 
from the city-focused driving cycle due to the lower frequency 
of stops and starts during highway driving. The prediction 
window optimal FE improvement was found to be 8.3%. 
However, the ground truth ADAS detection realized only 
1.94%. Using the algorithms developed and implemented, a 
1.9% FE improvement was realized with ADAS1, and a 1.1% 
FE improvement was realized with ADAS2. As discussed in 
earlier sections, the decrease in FE in comparison to city 

 FIGURE 13  ADAS percent accurate to ground truth - traffic 
light state
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 FIGURE 14  City-focused drive cycle comparison of FE for 
2010 Toyota Prius with various strategies: Optimal EMS 
improvement in FE realized through 100% accurate detection 
of the entire drive cycle (globally Optimal FE Increase), 100% 
accurate ADAS detection (Ground truth ADAS FE increase), 
and the algorithms that compose ADAS 1 and ADAS 2. All 
results are relative to the baseline control strategy used in the 
2010 Toyota Prius.
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driving is in a large part due to the issue with the range of 
detection and the less frequent stops. These results illustrate 
that the highway-focused drive cycle shows significantly lower 
FE increase relative to the city-focused driving cycle, for all 
of the tested ADAS algorithms.

Conclusions
In this study, a novel prediction approach for use in Optimal 
EMS was developed using ADAS technology. A methodology 
was developed to determine what information ADAS could 
provide to improve fuel efficiency (FE). Two ADAS strategies 
(ADAS1 and ADAS2) using computer vision were developed 
and compared, and showed notable improvements in FE. 
Overall, these promising results suggest that modern commer-
cially available ADAS technology could be repurposed to 
implement an Optimal EMS in modern vehicles. As new 
sensing capabilities become commercially available as part of 
ADAS systems, the FE improvements possible through an 
Optimal EMS may start to approach the globally Optimal 
EMS results.
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Definitions/Abbreviations
ADAS - Advanced Driver Assistance System
FE - Fuel Economy
EMS - Energy Management Strategy
HEV - Hybrid Eelectric Vehicle
Ground Truth - A set of measurements that are provided by 
direct (human) observation
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