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A B S T R A C T   

A comprehensive investigation of the contiguous Unites States rainfall erosivity patterns in relation to the warm 
and cold phases of El Niño/southern Oscillation (ENSO) was described using a set of empirical and statistical 
analyses, such as harmonic analysis, annual cycle composites, and cross-correlation analysis. Monthly rainfall 
erosivity index (REI) composites for the first harmonic, covering 24-month ENSO events, are formed for all 
climate divisions over the United States spanning up to 29 ENSO episodes. From the harmonic vectorial maps 
plotted on the study area, each vector reveals both intensity and temporal phase of the ENSO-related REI tele
connection, and the corresponding candidate and core regions are determined using a machine learning tech
nique of Gaussian Mixture Model (GMM) based on magnitude and temporal phase of climate signal, and Köppen 
climate classification. As a result of vectorial mapping, five core regions were designated as the northwest (NW), 
the north central (NC), the northeast coastal (NEC), the southeast (SE), and the southwest/middle-inland (SWM) 
regions. During fall (0) to spring (+) seasons, the results of this analysis show negative (positive) rainfall erosivity 
response to the El Niño events at the NW and NC regions (NEC, SE, and SWM regions), while the opposite 
patterns are detected for the cold phase of ENSO. The temporal consistency values were 0.62 to 0.86 (0.73 to 
0.82), and spatial coherence values ranged from 0.93 to 0.98 (0.94 to 0.97) for the El Niño (La Niña) events. 
Comparative analyses of rainfall erosivity responses to both warm and cold ENSO events reveal the high sig
nificance level of the ENSO-REI correlation with an opposite tendency in monthly rainfall erosivity anomalies. 
Above normal rainfall erosivity anomalies during the El Niño thermal forcing are more significant than below 
normal rainfall erosivity departures during the La Niña events. Consequently, middle latitude rainfall erosivity 
responses to the El Niño and La Niña phenomena are detectable over the contiguous United States.   

1. Introduction 

The El Niño/Southern Oscillation (ENSO) is a combined phenome
non of fluctuating sea surface temperature and atmospheric circulation 
over the central and eastern Pacific Ocean. It has a critical influence on 
climate patterns all over the world (WMO, 2014). These large-scale 
naturally occurring phenomena have been investigated at regional and 
global scale since the extreme phases of the ENSO episodes can cause 
major hydrologic extremes, e.g., floods and droughts, in various parts 
throughout the world. Many scientific approaches for understanding 
these phenomena in association with hydroclimatic parameters such as 
precipitation, temperature, streamflow, rainfall erosivity, etc., have 

been providing us a chance to prepare for the disastrous natural hazards. 
Walker (1923), Walker and Bliss (1932) studied firstly the impacts of 

the Southern Oscillation (SO) on the Indian rainfall variability. Since 
then, a number of global scale studies related to the ENSO extreme 
phases showed various notable climatic links between hydroclimatic 
variable patterns and either phase of these opposite extreme events in 
many areas throughout the globe. Since Berlage (1966) found the ENSO 
extreme events correlated well with precipitation anomaly on a global 
basis, Rasmusson and Carpenter (1983) related the precipitation and 
temperature patterns to the extreme phase of Southern Oscillation and 
identified a significant link between the two variations. Also, Rope
lewski and Halpert (1987, 1989) investigated temporal and spatial 
ranges showing consistent response of the climatic pattern over a variety 
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of areas throughout the world to the extreme phases of the ENSO epi
sodes and showed significant correlations of the ENSO forcing and 
continental climatic patterns, which were also identified by Kiladis and 
Diaz (1989). More recently, Westra et al. (2013) used generalized 
extreme value (GEV) to identify trends in annual maximum daily climate 
anomalies on a global basis and found a significant correlation with 
near-surface air temperature averaged globally. 

On a regional basis, many studies found plausible evidence of the 
ENSO far-reaching effect on the low and mid latitude climate variabil
ities as documented by Douglas and Englehart (1981), Rasmusson and 
Wallace (1983), Ropelewski and Halpert (1986), Redmond and Koch 
(1991), and Kahya and Dracup (1994). For midlatitude regions, several 
studies indicated the ENSO–related hydroclimatic correlation. In the 
southeastern United States, Douglas and Englehart (1981) revealed that 
the extreme ENSO forcing modulated the increases of the seasonal 
precipitation. Ropelewski and Halpert (1986) studied the climatic links 
between the extreme southern oscillation and precipitation anomalies 
over North America and showed the ENSO-related hydroclimatic sig
nals. This finding was also confirmed by Kiladis and Diaz (1989). Kahya 
and Dracup (1993, 1994) documented the influences of tropical thermal 
forcing on streamflow patterns of the United States focusing on extra
tropical teleconnections triggered by equatorial Pacific sea surface 
temperature anomalies. The western US streamflow responses to the 
North Pacific air-sea fluctuations were discussed by Diaz and Kiladis 
(1993), Redmond and Koch (1991), and Cayan and Peterson (1989). 
Chiew et al. (1994) documented the influence of the extreme phases of 
SO on streamflow variability over southeastern Australia using monthly 
streamflow data. In Turkey, some coherent regions where streamflow 
anomaly is statistically correlated with the extreme phases of ENSO 
events were founded by Kahya and Karabörk (2001). Korea-Japan pre
cipitation patterns were investigated by Jin et al. (2005) in relation to 
the ENSO far-reaching effects. They used lead-lag correlation analysis 
for five categorized Southern Oscillation Index (SOI) and non- 
exceedance probability time series and showed evidence of the ENSO- 
related hydroclimatic correlation. In Sri Lanka, the Kelani River basin 
was examined by Chandimala and Zubair (2007) focusing on the 
streamflow probability related to the ENSO events and sea surface 
temperature using principal component and correlation analyses. Lee 
and Julien (2017) showed teleconnection of the extreme phases of ENSO 
forcing and midlatitude streamflow variability in the Korean peninsula, 
and Wang et al. (2020) investigated the role of ENSO events in climatic 
links between Chinese climatic patterns and tropical cyclones. 

For predicting the amount of soil erosion, REI is considered as a more 
accountable indicator than rainfall amount itself. Severe storm events 
with high rainfall intensity modulate increase of soil erosion in that 
heavier storm has more energy to erode soil than lighter storm. REI can 
be used as a feasible hydroclimatic determinant for potential soil erosion 
risk caused by climate fluctuations. Many numerical studies about REI- 
based soil erosion have been documented throughout the globe 

including Nearing (2001), Nearing et al. (2004), Zhang et al. (2005), 
Shiono et al. (2013), Plangoen et al. (2013), Yang et al. (2015), 
Mohammadi (2015), Hoomehr et al. (2015), and Mondal et al. (2016). 
Nearing (2001) described analytical results of the rainfall erosivity 
variation and showed that increase of soil loss can be attributed to 
climate change. Yang et al. (2003) emphasized that the potential risk of 
soil erosion might significantly increase by climate change in the future. 
Nearing et al. (2004) examined rainfall erosivity as an important indi
cator for assessing the potential soil loss associated with climate change. 
Zhang et al. (2005) analyzed long-term annual mean REI data for two 
types of climate change scenarios for predicting expected soil erosion 
risk over the Yellow River basin and concluded rainfall erosivity in
creases significantly by climate change. 

Previous studies on the ENSO-related teleconnection have more 
focused on the warm phase of extreme events and the impacts of the cold 
phase of extreme events have less scientific attention since the latter is 
considered less distinct and causes less disastrous natural hazards than 
the former. There has been rarely discussed in the literature about the 
teleconnections with a focus on comparative analysis and interpretation 
between the warm and cold phases of ENSO forcing. This study fills this 
gap by examining potential two ENSO driven rainfall erosivity anoma
lies in terms of degree of magnitude and temporal phase shift of the far- 
reaching impacts. As described in the relevant literature, many previous 
studies concentrated on global or rather broad regional scale analyses. 
Despite the various research on the ENSO-related climate tele
connection, little is known about the perspective of the ENSO forcing on 
the sub-regional rainfall erosivity variability. While studies over a 
broader area like the global or continental scale areas may yield good 
results, such results become too general and difficult to be implemented 
practically and tend to miss out localized climate variations. Therefore, 
delving into the underlying influences of the extreme phases of climatic 
variation on various scopes of rainfall erosivity patterns provides a 
constructive way to predict and prepare unexpected natural hazards. 
Thus, it is important to investigate systematically how the warm and 
cold phases of extreme ENSO events influence the sub-regional rainfall 
erosivity patterns over the United States. Recently, more comprehensive 
information about spatial and temporal variability of hydrometeoro
logical parameters is being asked by potential users of the climate in
formation as they are modulated by the extreme phases of ENSO forcing. 
Prior literature investigated the teleconnection between the extreme 
phases of Southern Oscillation and hydroclimatic anomalies over the 
United States using the observational data from 1931 to 1980 period (50 
years) covering only 11 ENSO episodes (Ropelewski and Halpert, 1986). 
However, we recently experienced noticeably severe extreme ENSO 
episodes including strong El Niño events in 1982, 1997, 2015 and strong 
La Niña events in 1988, 1999, 2010, and so on. This study is to provide 
updated climate information of the temporal phase, spatial extent, and 
intensity of ENSO-related hydroclimatic signals at each of several loca
tions over the proposed study area using updated long-term data 

Nomenclature 

List of Acronyms 
(AI) Artificial Intelligence 
(CDF) Cumulative Density Function 
(DJF) December-February 
(ENSO) El Niño/Southern Oscillation 
(GMM) Gaussian Mixture Model 
(GEV) Generalized Extreme Value 
(ITS) Index Time Series 
(JJA) June-August 
(MAM) March-May 
(NCEI) National Center for Environmental Information 

(NOAA) National Oceanic and Atmospheric Administration 
(NC) North Central 
(NEC) Northeast Costal 
(NW) Northwest 
(PNA) Pacific North American 
(SLP) Sea Level Pressure 
(SON) September-November 
(SE) Southeast 
(SWM) Southwest/middle-inland 
(SO) Southern Oscillation 
(SOI) Southern Oscillation Index 
(SPI) Standard Precipitation Index  
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(1985–2020) spanning up to 29 ENSO episodes. In addition, from the 
perspective of methodological approaches, the previous studies 
including Ropelewski and Halpert (1986, 1987) used a subjective zoning 
method for determining core regions based on visual inspection over the 
harmonic dial maps. This subjective graphical approach implies that the 
ENSO-related hydrometeorological variability may include some un
certainties caused by other factors. In the present study, to categorize 
more objectively the candidate and core regions associated with the 
extreme phases of the ENSO forcing, an AI (Artificial Intelligence) ma
chine learning technique was employed for determining the ENSO- 
related rainfall erosivity signal areas. 

The main purpose of this study is to investigate rainfall erosivity 
patterns over the United States associated with warm and cold phases of 
ENSO events, i.e., El Niño and La Niña, using composite and harmonic 
analyses. This study uses an improved description by temporal cycle and 
spatial outlook for the intensity, time shift, and areal boundary of the 
ENSO-related REI correlation. Also, the present study compares the two 
types of teleconnections induced by El Niño and La Niña considering 
magnitude and trend of the significant responses, using annual cycle and 
cross-correlation analyses. 

2. Data 

Rainfall amount, intensity, and duration are the driving factors ac
counting for the rainfall erosivity index (REI). The REI time series are 
calculated for each monthly interval as follows: 

REIj =
∑mj

k=1
(EI30)k, E =

∑n

r=1
0.29

(
1 − 0.72e− 0.082ir

)
ΔPr 

mj is total number of erosive events during a given month j (=1, 2, 
…,12), k is index number of each event with its corresponding erosivity, 
EI30 is rainfall erosivity value of an individual event (MJ mm/ha/h), E is 
total energy for a storm (MJ/ha), ir is rainfall intensity for each time 
interval (mm/h), ΔPr is rainfall amount for the r th period (mm), r is an 
index for periods during a rainstorm where intensity can be considered 
to be constant, and n is number of periods. For monthly REI time series, 
U.S. 15-minute precipitation data and monthly climate division data 

were employed covering all climate regions over the contiguous United 
States. The source of the applied dataset is National Center for Envi
ronmental Information (NCEI) which is a governmental organization 
under the National Oceanic and Atmospheric Administration (NOAA). 
NOAA monitors and operates the overall United States meteorology. As 
shown in Fig. 1 and Table 1, the monthly climate division data cover the 
contiguous United States and range from 1895 to 2020 covering the 
overall ENSO episodes (29 El Niño and 22 La Niña). 

To identify a consistent far-reaching effect of ENSO events on rainfall 
erosivity anomaly over the United States, two sets of extreme ENSO 
episodes are selected considering a comprehensive scope of criteria 
defined by Ropelewski and Halpert (1987, 1989), Rasmusson and Car
penter (1983), and Kiladis and Diaz (1989). The ENSO years for the two 
phases of extreme events selected in the present analysis are listed in 
Table 1. Southern Oscillation Index (SOI) is applied as an indicator of 
representing large-scale climate variation over the central-eastern Pa
cific Ocean (ENSO). This present analysis applied the SOI data calcu
lated and recorded by the NOAA Climate Prediction Center. These SOI 
time series are computed based on the difference of the standardized sea 
level pressure (SLP) anomaly between Tahiti and Darwin, Australia. 

3. Method 

To examine the spatiotemporal extent to which El Niño/La Niña 
affect REI patterns over the United States, an empirical method (Rope
lewski and Halpert, 1986), annual cycle and cross correlation analyses 
are employed with some changes and additions. As shown in Fig. 2, the 

Fig. 1. Climate divisions and Köppen climate classification.  

Table 1 
List of the ENSO episode years included in this study.  

El Niño years La Niña years 

1905, 1911, 1914, 1918, 1923, 1925, 
1930, 1932, 1939, 1941, 1951, 1953, 
1957, 1963, 1965, 1969, 1972, 1976, 
1982, 1986, 1991, 1994, 1997, 2002, 
2004, 2006, 2009, 
2015, 2018. 

1910, 1915, 1917, 1924, 1928, 1938, 
1950, 1955, 1964, 1971, 1973, 1975, 
1985, 1988, 1995, 1998, 2000, 2005, 
2007, 2010, 2011, 2017  

J.H. Lee et al.                                                                                                                                                                                                                                    



Catena 226 (2023) 107050

4

specific procedure of this analysis consists of mainly three steps, namely, 
data processing, spatial and temporal analyses, and comparative statis
tical assessment. In the first step, the original raw data are transformed 
into appropriate data formats, e.g., ranked percentile, modular co
efficients, and categorized SOIs. In the second step, candidate and core 
regions are determined using composite and harmonic analyses. Then, 
in the last step, El Niño/La Niña–related REI signals are compared using 
lag cross-correlation and annual cycle analyses. 

Monthly REI data over the United States are fitted to a gamma dis
tribution for calculating the Standardized Rainfall Erosivity Index (SREI) 
using a standardized method developed by McKee et al. (1993), which is 
recommended by World Meteorological Organization (WMO, 2012). 
This is a probability index based on a statistical fit to an appropriate 
probability density function and a transformation into standardized 
normal distribution. The fitted distribution can be transformed into a 
cumulative density function (CDF) of the standardized normal distri
bution by the equal-probability conversion technique as shown in Fig. 3. 
The SREI time series, which have a mean of zero and standard deviation 
of unity, are used in the composite and harmonic analyses. Monthly REI 
time series are transformed into modular coefficients for carrying out 
annual cycle analysis. These modular coefficients remove the effects of 
dispersed variance and mean values. The REI data are expressed as 
percentages for the annual mean values. The modular coefficient data 
are calculated by the rate of each monthly REI value to the monthly 
average value for the entire data. It places all divisions on a same cycle 
with unchangeable condition of the cyclic feature of the values at the 
same time. In this present study, lag cross-correlation coefficients are 
computed for REI data and categorized SOI time series on a seasonal 
basis. To do this, four seasonal REI and SOI time series are formed by 
averaging three-month values. The four seasons consist of December- 
February (DJF), March-May (MAM), June-August (JJA), and 
September-November (SON). Then, all SOI values are categorized into 
five levels based on the magnitudes of individual data (Jin et al., 2005). 
The five categories of the SOI values are strong warm phase, weak warm 
phase, normal phase, weak cold phase, and strong cold phase. On the 
other hand, the seasonal REI data are converted into percentile ranked 

probability time series to remove periodicities in REI time series and to 
deal with the disparities among climate divisions. The percentile ranked 
probability values are based on Weibull plotting position formula. All 
REI values are ranked in ascending order and then divided by n + 1 (n: 
size of data). 

Monthly REI composites on 24-month basis are computed for each 
climate division, starting with the July preceding the event, continuing 
through the June following the event year, for both high and low phases 
of the SO. The July preceding the event is designated as Jul (-), while the 
June following the event year is expressed as Jun (+). Composites are 
computed separately for each phase of the SO. The composite for each 
climate division is then fitted with the first harmonic of an idealized 24- 
month SO cycle (either warm or cold episodes). This method assumes 
one REI peak (or trough) during the duration of an SO event and that the 
SO is phase locked to the annual cycle. A 24-month compositing period 
was chosen since this defines the period during which one phase of the 
SO goes through its entire cycle (Rasmusson and Carpenter 1983). In the 
first harmonic cycle, the amplitude represents magnitude of the ENSO- 
related REI signals, and the angular phase indicates time of the peak 
anomaly from the mean value (Fig. 4). The formula of the harmonic fits 
are as follows (Wilks, 1995). 

yt = y+
∑n

2

i=1

{

Cicos
[

2πit
N

− βi

]}

= y+
∑n

2

i=1

{

Aicos
[

2πit
n

]

+Bisin
[

2πit
n

]}

Ai =
2
n
∑n

t=1
ytcos

(
2πit

n

)

, Bi =
2
n
∑n

t=1
ytsin

(
2πit

n

)

, Ci =
(
Ai

2 + Bi
2)0.5  

βi = tan− 1Bi

Ai
(Ai > 0),

π
2
(Ai = 0), tan− 1Bi

Ai
± π (Ai < 0)

where yt is monthly REI value, y is the mean REI value, t is time of 
observation, i is number of harmonic fits, n is sample size, Ci is ampli
tude of the harmonic curve (magnitude of curve), βi is time of harmonic 
peak (temporal phase of curve), and Ai and Bi are Fourier coefficients. 

��������������������

� ��

Fig. 2. Flowchart of the empirical methodology.  
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After the climate division composites are fit with a 24-month har
monic, the amplitude and phase of the curve is plotted as a vector for 
each station. In the analysis convention chosen here the vector points 
toward the positive part of the cycle, that is, higher-than-normal rainfall 
erosivity. It is only after examining the composites, described below, 
that the actual sign of the SO-REI relationship can be determined. This 
study is concerned with regional areas of the United States that exhibit 
strong SO-REI relationships over periods of many months. Therefore, 
individual, or isolated, climate division that shows strong apparent re
lationships or areas that have short-time scale relationships are not 
considered for further study. 

Plotting the harmonics as vectors on a map provides a method to 
spatially identify candidate geographic areas that appear to have a 
coherent ENSO response. We attempted to choose the largest areas of 
coherent ENSO response, where the “coherence” is estimated through 
the computation of the ratio of the magnitude of the average vector to 
the arithmetic average value of the vector magnitudes. 

SC =

[
(
∑

Vcosθ)2
+ (

∑
Vsinθ)2 ]1/2

∑
V  

where the numerator is the average vector magnitude of all harmonic 

vectors within the candidate regions, the denominator is the arithmetic 
average value of the vector magnitudes, θ is angle of the vector, and V is 
magnitude of the vector. The analysis that follows is limited to areas for 
which values of the coherence were equal to or greater than 0.80 
(Ropelewski and Halpert, 1986). This eliminates from the analysis re
gions that contain harmonic vectors with large amplitudes at a few 
stations which have little consistency in phase, i.e., low coherence. 

Aggregate composites are formed to detect the ENSO-related REI 
signal seasons. These signal seasons represent apparently consistent REI 
responses to the extreme ENSO forcing. All ENSO composite values in a 
candidate region are averaged and plotted on a 24-month period to 
cover the entire ENSO cycle and identify accurately the signal season. 
One season within the aggregate composite is found by detecting a 
group of values showing more than five consecutive months with the 
same sign. The event year and the following year are regarded as the 
responding period of ENSO phenomena, considering the distance be
tween the study area in midlatitude and the ENSO area in the Pacific 
Ocean. Index Time Series (ITS) are computed by temporally averaging 
REI values of the signal seasons for the entire years of record and by 
spatially averaging the REI data over the candidate regions. The ITS 
values are used to quantify the temporal consistency of the ENSO impact 
on REI patterns. Temporal consistency rates for the candidate regions 

Fig. 3. SREI estimation procedure. Monthly REI data (upper) are fitted to a gamma distribution (middle left) and transformed into cumulative density function of 
standardized normal distribution by the equal-probability conversion technique (middle right) for calculating the standardized rainfall erosivity index (bottom). 
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are computed using the rate of the number of years exhibiting ENSO 
signal in ITS to the number of all ENSO event years. These temporal 
consistency rates are the determinant of the core regions showing 
consistent REI responses to ENSO phenomena. In addition, extreme REI 
events are examined in association with ENSO forcing as demonstrated 
by Ropelewski and Halpert (1986), Lee et al. (2020a,b). They investi
gated climate linkage between ENSO events and extreme precipitation 
occurrences. In the present study, the number of years showing the 
ENSO-related extreme REI signal is counted during the signal season. To 
assign the highest and lowest levels of the extreme events, the ITS time 
series are ranked from the highest value to the lowest value, normalized 
by the entire data, and transformed to the probability time series (Kahya 
and Dracup, 1994; Lee et al., 2018). The highest value is assigned to the 
probability of 80% ITS, while the lowest value is assigned to the prob
ability of 20% ITS. 

A machine learning technique, Gaussian Mixture Model (GMM), was 
employed for diminishing the degree of subjectivity when candidate 
regions were determined based on the magnitude and temporal phase of 
the ENSO-related REI signals. GMM algorithm is based on a statistical 
learning technique used in identifying a subset of discrete data which 
represent a feature space. As a measurable characteristic, the feature can 
describe phenomena being observed and the corresponding feature data 
can form a feature space by defining collectively the single or multidi
mensional range. For the purpose of classifying the candidate regions 
objectively, three features are selected in this study, i.e., the intensity of 
the ENSO-related REI teleconnection, temporal cycle of each REI 
response, and Köppen climate classification. All harmonic dial vectors 
fall somewhere in the feature space. The GMM method takes advantage 
of probability model instead of objective functions of distance mea
surements as opposed to the commonly used clustering techniques, e.g., 
fuzzy C-means or k-means, which are based on distance measures. In the 
GMM algorithm, each cluster is classified by a parametric probability 
density based on a mixture model of probability distribution followed by 
dataset, and the cluster structure is modeled by finite mixture. Although 
the GMM technique has been considered a powerful tool for cluster 
analysis in many research fields, there have been little attention to its 

practical application in hydro-climatological studies. The dimension of 
the input data affects largely the results of cluster analysis because the 
GMM is based on probability model. Therefore, it is of great importance 
to select appropriate feature subset for conducting cluster analysis. 
Multivariate distribution of a given dataset can be fitted with a normal 
mixture model for cluster structure. Multivariate data, yn, which is 
composed of m independent samples with variables, comprises C clus
ters in the dataset, and a probability distribution is assigned to each 
sample with a density function. Mixture probability density function, 
pdf, is weighed for the densities of C clusters as follows. 

pdf (yn|β) =
∑C

i=1
pihi(yn|μi,Vi)

where pi is mixing proportions, hi is normal probability density function, 
μi is mean of hi, and Vi is variance matrix. If an indicator vector of y is 
d = [d1,⋯, dm] with dm = [dn1,⋯,dni], the mixture model log-likelihood 
is as follows. 

L(β|y1,⋯, ym, dni) =
∑N

n=1
ln

[
∑C

i=1
dnipihi(yn|μi,Vi)

]

Also, the parameter β = (p1,⋯, pi, μ1,⋯, μi,V1,⋯,Vi) can be selected 
for maximizing the log-likelihood. Here, many normal mixture models 
can be chosen according to the geometric features of each cluster that 
includes the expression of the cluster variance matrix. 

Hypergeometric distribution test is employed to assign the signifi
cance level of the ENSO-REI correlation. Haan (1977) conducted the 
hypergeometric distribution test calculating “the cumulative probability 
that at least m successes are obtained in n trials from a finite population 
of size N containing k successes”. A cumulative probability computed 
from the hypergeometric distribution gives an occurrence significance 
level of the relationship previously defined for both extreme phases of 
the ENSO. Kahya and Dracup (1994) used hypergeometric test in terms 
of average value and high-low extreme events. In the present test, two 
cases (I and II) are considered according to the definition of a success. In 
case I, a success is defined as the occurrence of year that an ITS value 

Fig. 4. A first harmonic fit to the rainfall erosivity ENSO composite for the climate division SC-5. The amplitude and the phase of the first harmonic are presented as a 
harmonic dial (the lower right). The inset diagram (the upper left) depicts an example illustrating several harmonic fits of annual cycle for monthly rainfall erosivity 
index (REI) from the first to the fourth harmonic. 
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associated with ENSO events is higher (lower) than the median, while in 
case II, a success is defined as the occurrence of year in which an ITS 
value associated with ENSO events falls into the upper (lower) 20% of 
the distribution. Annual cycle analysis is used as a comparative inter
pretation of two ENSO effects on the REI anomaly from the perspective 
of magnitude and annual trend of the signal. Monthly REI time series are 
transformed into modular coefficients for carrying out annual cycle 
analysis. These modular coefficients remove the effects of dispersed 
variance and mean values. The REI data are expressed as percentages for 
the annual mean values. The modular coefficient data are calculated by 

the rate of each monthly REI value to the monthly average value for the 
entire data. This annual cycle plots make it possible to determine 
whether the extreme phases of warm and cold ENSO events modulate 
REI increasingly or decreasingly. Cross-correlation coefficients are 
calculated on a seasonal basis to compare the positive and negative 
ENSO-related REI signals. Five categorized SOI data sets as ENSO index 
are correlated with the monthly REI time series expressed by percentile 
ranked probability. The resulting correlation coefficient values indicate 
the magnitude and sign of the relationship between the REI patterns and 
the ENSO forcing on a seasonal basis. More detailed explanation of the 

Fig. 5. Image map (upper left), clustering results (upper right) and harmonic dial map (lower) based on the first harmonic of the 2-year El Niño composites. Scale for 
the direction of arrows: south, July(− ); west, January(0); north, July(0); and east, January(+). The magnitude of arrows is proportional with the amplitude of 
the harmonics. 

Table 2 
Properties of the candidate regions (El Niño events).  

Region Season Coherence Total Episode Occurrence Episode Consistency Extreme Events 

NW Sep (0) – May (+)  0.93 29 23 79 % 9 
NC Nov (0) – Apr (+)  0.95 29 21 72 % 10 
NEC Nov(0) – May (+)  0.98 29 18 62 % 11 
SE Sep (0) – Mar (+)  0.98 29 22 76 % 12 
SWM Sep (0) – Apr (+)  0.98 29 25 86 % 14  
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Fig. 6. (a) El Niño aggregate composite for the candidate NW region. The dashed line box delineates the season of possible El Niño-related responses. (b) The index 
time series for the NW region for the season previously detected. El Niño years are shown by solid bars. The dashed horizontal lines are the upper (80%) and lower 
(20%) limits for the distribution of ITS values. 
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data conversion and correlation procedure was described in the first 
section of data processing. 

4. Results 

4.1. El Niño-rainfall erosivity relationship 

Fig. 5 shows the harmonic dial map with the detected candidate 
regions from the results of composite and harmonic analyses. The 
vectorial map for REI indicates six regions of the United States that 
appear to have ENSO-related signals. The candidate regions are the 
northwest (NW), the north central (NC), the northeast inland (NEL), the 
northeast coastal (NEC), the southeast (SE), and the southwest/middle- 
inland (SWM) regions. As shown in Table 2, composite rainfall erosivity 
indices for each region indicate that the NW, NC, NEC, SE, and SWM 
regions have an ENSO-related response. The REI composites for the five 
candidate regions show clearly defined positive and negative signal 
seasons within the ENSO cycle and thus they are explained in detail for 
further consideration in this analysis. However, the composite for the 
NEL region shows no significant signals within the ENSO cycle and thus 
this region is eliminated from further consideration. 

The North-West region (NW) includes 26 climate divisions, 

extending from Washington and northern Oregon to western Montana 
and northern Wyoming, and including almost all of Idaho. The time 
series of the September (0) to May (+) REI indices averaged over all 
climate divisions in the NW region (Fig. 6) illustrates the notable con
sistency in the rainfall erosivity with respect to the ENSO in this part of 
the United States. This season showed below normal, i.e., lower than the 
average REI for 23 out of 29 ENSO events. Further, of the 25 occurrences 
of index values equal to or lower than the lowest ITS limit (20%), 9 of 
them occurred in association with ENSO. One of the occurrences in the 
highest ITS limit (80%) was associated with ENSO. The spatial coher
ence and temporal consistency were 0.93 and 0.79. 

The North Central region (NC) occupies all of North Dakota, the 
southern part of South Dakota, the northern part of Minnesota, parts of 
Idaho and Montana, and almost all of Wyoming. REI time series of the 
NC region based on the climate division data for the November (0) to 
April (+) season (Fig. 7) shows below normal REI for 21 out of the 29 
ENSO events. While the index shows values of lower than or equal to the 
lowest ITS limit (20%) for 10 of the ENSO years, negative values of the 
same magnitude or lower also occur during 13 non-ENSO-related years. 
None of the ENSO-related seasons in the NC area falls into the highest 
ITS limit (80%). The spatial coherence and temporal consistency were 
0.95 and 0.72. 

Fig. 7. As in Fig. 6, except for the candidate NC region.  
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The Northeast Coastal region (NEC) has the smallest area but con
tains the largest number of climate divisions among all candidate re
gions. The NEC regions contains 47 climate divisions and covers almost 
all of North Carolina and Virginia, eastern Pennsylvania and New York, 
and all of Maryland, Delaware, New Jersey, Connecticut, Massachusetts, 
Rhode Island. REI time series of the NEC region based on the climate 
division data for the November (0) to May (+) season (Fig. 8) shows 
above normal REI for 18 out of the 29 ENSO events. While the index 
shows values of greater than or equal to the highest ITS limit (80%) for 
11 of the ENSO years, positive values of the same magnitude or greater 
also occur during 12 non-ENSO-related years. Only two of the ENSO- 
related seasons in the NEC area fall into the lowest ITS limit (20%). 
The spatial coherence and temporal consistency were 0.98 and 0.62. 

The Southeast region (SE) covers 37 climate divisions, and includes 
all of Florida, Georgia, South Carolina, parts of Louisiana and Mis
sissippi, and almost all of Alabama. The time series of the September (0) 
to March (+) REI indices averaged over all stations in the SE region 
(Fig. 9) illustrates the notable consistency in the REI with respect to the 
ENSO in this part of the United States. This season showed above 
normal, i.e., greater than the average REI for 22 out of 29 ENSO events. 
Further, of the 25 occurrences of index values equal to or greater than 
the highest ITS limit (80%), 12 of them occurred in association with 
ENSO. Only one of the occurrences in the lowest ITS limit (20%) was 
associated with ENSO. The spatial coherence and temporal consistency 
were 0.98 and 0.76. 

The Southwest/Middle-Inland region (SWM) consists of southern 
California, eastern Colorado, western Kansas and Oklahoma, part of 
Nevada and Nebraska, and all of Arizona, New Mexico and Texas, and 
covers 46 climate divisions. Time series of the rainfall erosivity for the 
SWM region, September (0) to March (+) in Fig. 10, shows another 
example of conclusive result. 25 out of 29 ENSO seasons are associated 
with above median REI in the time series based on the climate division 
data. Since the probability of getting 25 observations of the same sign 

strictly by chance is relatively low, the result is statistically significant. 
The REI index exceeded the 80% index value with 14 ENSO episodes, 
and only one of the occurrences in the lowest ITS limit (20%) was 
associated with ENSO. The spatial coherence and temporal consistency 
were 0.98 and 0.86. Thus, it appears that ENSO is a reliable discrimi
nator of the REI anomalies of the SWM region. 

4.2. La Niña-rainfall erosivity relationship 

For 22 La Niña episodes, which is the cold phase of ENSO, the 
composite and harmonic analyses were performed on the monthly REI 
data. The resulting map of harmonic dial vectors (Fig. 11) indicates 
notable responses within the six outlined regions, the northwest (NW), 
the north central (NC), the northeast inland (NEL), the northeast coastal 
(NEC), the southeast (SE), and the southwest/middle-inland (SWM) 
regions. ENSO composites of REI indices for each of the regions 
(Figs. 12-16) indicate that the five regions have well-defined seasons of 
potentially significant ENSO-related response except for the NEL region. 
The composite for the NEL region shows no significant signals within the 
ENSO cycle and thus this region is eliminated from further consider
ation. The overall results of the composite and harmonic analyses are 
outlined in Table 3. 

The Northwest region (NW) occupies all of Washington, Oregon, 
Idaho, Montana, and the northwestern part of Wyoming, and covers 37 
climate divisions. Time series of the standardized REI departure aver
aged over the all climate divisions in the NW region for the October (0) 
to February (+) season (Fig. 12) shows positive REI departure for 17 out 
of 22 ENSO events. The index values equal or exceed the highest ITS 
limit (80%) in 12 of the ENSO years. Only two of the occurrences in the 
lowest limit (20%) was associated with ENSO. The spatial coherence and 
temporal consistency were 0.96 and 0.77. 

The North Central region (NC) includes 22 climate divisions, 
extending from North Dakoda to northern Michigan, and including part 
of South Dakoda and almost all of Minnesota. In the NC region the 
apparent ENSO-related REI response occurs in August (0) to February 
(+). The time series of spatially averaged standardized REI departures 
for this season (Fig. 13) shows positive departures for 16 out of 22 ENSO 
events. The index shows values of higher than or equal to the highest ITS 
limit (80%) for 6 of the ENSO years. Only two of the ENSO-related 
seasons in the NC area fall into the lowest ITS limit (20%). The spatial 
coherence and temporal consistency were 0.94 and 0.73. 

The Northeast Coastal region (NEC) has the smallest area, contains 
47 climate divisions, and covers almost all of West Virginia and Penn
sylvania, eastern North Carolina, and all of Maryland, Delaware, New 
Jersey, Massachusetts, and Virginia. In the NEC region the apparent 
ENSO-related REI response occurs in November (0) to May (+). The time 
series of spatially averaged standardized REI departures for this season 
(Fig. 14) shows negative departures for 17 out of 22 ENSO events. The 
index shows values of lower than or equal to the lowest ITS limit (20%) 
for 8 of the ENSO years. None of the ENSO-related seasons in the NEC 
area fall into the highest ITS limit (80%). The spatial coherence and 
temporal consistency were 0.94 and 0.77. 

The Southeast region (SE) consists of eastern North Carolina and all 
of South Carolina, Georgia, Alabama, Florida, and covers 34 climate 
divisions. Time series of the standardized REI departure averaged over 
the all climate divisions in the SE region for the November (0) to May 
(+) season (Fig. 15) shows negative REI departure for 18 out of 22 ENSO 
events. The index values equal or exceed the lowest ITS limit (20%) in 8 
of the ENSO years. None of the occurrences in the highest limit (80%) 
was associated with ENSO. The spatial coherence and temporal consis
tency were 0.97 and 0.77. 

The Southwest/Middle-Inland region (SWM) covers 56 climate di
visions, and includes all of Arizona, New Mexico, Texas, and Oklahoma, 
almost all of Nebraska and Kansas, eastern Colorado, and southern 
California, Nevada, and Utah. In the SWM region, the notable ENSO- 
related REI response occurs in roughly the same season October (0) to 

Fig. 8. As in Fig. 6, except for the candidate NEC region.  
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Fig. 9. As in Fig. 6, except for the candidate SE region.  
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Fig. 10. As in Fig. 6, except for the candidate SWM region.  
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June (+) in Fig. 16, as the REI response in SE region. 17 out of 22 ENSO 
seasons are associated with below median REI in the time series based on 
the climate division data. Moreover, of the 25 occurrences of index 
values equal to or smaller than the lowest ITS limit (20%), 9 of them 
occurred in association with ENSO. Only two of the occurrences in the 
highest ITS limit (80%) was associated with ENSO. The spatial coher
ence and temporal consistency were 0.95 and 0.77. 

4.3. Comparative analysis of El Niño and La Niña 

The probability that positive (negative) signal season occurs at 
random during the ENSO event years was tested by the hypergeometric 
distribution. In case I, the application of the hypergeometric distribution 
model results in a very low level of probability of occurrence by chance 
(less than 0.027) for both events. In case II, the probability is also very 
low for both phases of extreme events except for the NC region for the La 
Niña events. The extreme high REI conditions appear to be almost 
exclusively related to ENSO events in the 125-yr period. Overall results 
in Tables 4 and 5 are also consistent with the high confirmation rates 
(62–86% for El Niño events and 73–82% for La Niña events) for tem
poral consistency of the signals. All of this implies that the relationship 
depicted in the aggregate composites is probably due to nonrandom 

forcing mechanism, i.e., the tropical thermal anomalies. 
Monthly REI time series are transformed into modular coefficients 

for carrying out annual cycle analysis. From this resulting series, El Niño 
and La Niña composites are formed and plotted along with the regional 
annual cycle (Figs. 17 and 18). Examination of this figures reveals two 
fundamental features. First, for a typical REI behavior during El Niño 
events, a suppressed REI of the annual cycle during the event year is 
followed by an enhanced REI of the annual cycle from the end of event 
year to the beginning of the following year. Second, for typical REI 
behavior during La Niña events, a somewhat increased amplitude during 
the event year precedes a decreased amplitude from the end of the event 
year to the beginning of the following year. This enhancement and 
suppression of magnitudes are roughly concurrent with the previously 
detected positive and negative signal seasons in five core regions. Also, 
an opposite tendency in monthly REI fluctuations between the El Niño 
and the La Niña composites during 24-month period are noticeable. In 
summary, the resulting findings suggest that the tropical heating 
(cooling) anomalies modulate the annual REI cycle within the United 
States by increasing (decreasing). 

Table 6 displays the results of calculating cross-correlation co
efficients. These values represent intensity and sign of the correlation 
between the ENSO phenomena and REI anomalies. This correlation 

Fig. 11. As in Fig. 5, except for La Niña composites.  
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Fig. 12. (a) La Niña aggregate composite for the candidate NW region. The dashed line box delineates the season of possible La Niña-related responses. (b) The index 
time series for the NW region for the season previously detected. La Niña years are shown by solid bars. The dashed horizontal lines are the upper (80%) and lower 
(20%) limits for the distribution of ITS values. 
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Fig. 13. As in Fig. 12, except for the candidate NC region.  
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Fig. 14. As in Fig. 12, except for the candidate NEC region.  
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analysis is conducted for large-scale climate indicator (ENSO index) and 
the seasonal REI anomalies, which use five categorized SOI data sets and 
percentile ranked probabilities, respectively. As a result, the seasonal 
REI anomalies were significantly correlated with both extreme phases of 
SO at 0.05 significance level. The highest positive correlation coefficient 
values are shown in the lag-2 to lag-3 cases over the NW region, and 
negative correlations are found in the lag-1 to lag-3 cases over the NEC 
and SE regions for the strong warm phase SOI condition. For the strong 
cold phase SOI condition, the highest negative correlation coefficient 
values are found at the NW region with lag-2 to lag-3 cases, and positive 
correlations are shown at the NEC and SE regions with lag-2 to lag-3 
cases. The strong warm phase SOI provides prediction information of 
REI anomalies over NW (NEC and SE) region two to three (one to three) 
seasons in advance, while the strong cold phase SOI can be a predictor of 
REI anomalies over NW, NEC, and SE regions two to three seasons in 
advance. As a result, the stronger warm and cold phases of ENSO forc
ing, the more and less REI with lag time 1 to 3 seasons over the United 
States. 

5. Discussions 

As shown in Figs. 5 to 10, the results of this study show negative 

(positive) REI response to the El Niño events at the NW and NC regions 
(NEC, SE, and SWM regions) during fall (0) to spring (+) seasons. 
Especially, amplitude of the positive REI departure of El Niño year at the 
SE region is even higher than that of non-El Niño year. On the contrary, 
during the cold phase of ENSO phenomena, the opposite patterns are 
detected (Figs. 11 to 16). The monthly REI indices are higher (lower) 
than normal for the NW and NC (NEC, SE, and SWM) core regions from 
fall (0) through spring (+) seasons. The amplitude of the negative REI 
departure of the La Niña year at the SWM region is much higher than 
that of non-event year. 

The opposite pattern of climate anomalies over the western parts of 
the United State (between the NW region and the SWM region) was 
documented in earlier studies (Cayan and Webb, 1992; Emery and 
Hamilton, 1985; Cayan and Peterson, 1989) and was consistently shown 
in the relevant composites of the extreme phase of ENSO forcing. Cayan 
and Webb (1992) stated that during the mature warm phase of ENSO 
phenomena in association with deepening of the Aleutian Island low 
pressure the northward shift of the North Pacific storm paths causes wet 
conditions over Alaska and western Canada and dry conditions over the 
northwestern US. On the other hand, the study by Emery and Hamilton 
(1985) showed that during the La Niña events the depression of the 
Central Pacific low, which is located over the Aleutian and Gulf of 

Fig. 15. As in Fig. 12, except for the candidate SE region.  
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Fig. 16. As in Fig. 12, except for the candidate SWM region.  
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Alaska, modulates a more active low in the eastern Gulf of Alaska. These 
La Niña-related atmospheric activities affect the North Pacific seasonal 
storms shifting toward the northwestern United States. As a result, 
wetter-than-average patterns are observed over the NW region (Cayan 
and Peterson, 1989). Douglas and Englehart (1984) investigated the US 
climate patterns in relation to the 1982–1983 ENSO event and linked the 
observed wet condition with intensification of a mid-latitude trough in 
the SWM region of the United States. For the climatological causes for 
the teleconnection, Cayan and Webb (1992) revealed that the SWM wet 
conditions during the ENSO years are attributed to the mid-latitude 
storm displacement by active southerly bringing up moisture-laden air 
currents from the subtropical Pacific. Additionally, they showed drier- 
than-normal condition during the La Niña events over the SWM re
gion. Webb and Betancourt (1990) noted that the development of the 
Aleutian low gives rise to the intensification of the SWM frontal storms 
at the time of the extreme phase of ENSO. A study by Ely et al. (1992) 
using sea level geopotential height anomalies associated with hydro
logic variation over the SWM region indicated that the dominant storm- 
producing atmospheric circulation pattern is an anticyclone over the 
Gulf of Alaska and a cyclone off the California coast. Andrade and Sellers 
(1988) examined significant changes in tropical cyclogenesis during 
ENSO episodes considering a possible influence of the presence of warm 
sea surface temperature off the coast of California and pointed out that 
these atmospheric changes cause frequent tropical cyclone dissipating 
over Arizona. Also, they emphasized that during the warm ENSO phase 
anomalous warm water of the west coast of the SWM region is a driver of 
the enhanced wet condition in fall and spring seasons, which is the 

source of energy for the strengthened troughs. This warm water weakens 
the trade wind inversion caused by sinking air resulting from subtropical 
high. As a result, the warm water allows more moisture-bearing air to 
enter over the SWM region. From the perspective of storage effects, the 
findings of Andrade and Sellers are consistent with the results of the 
present study in that the positive ENSO-related signal has been detected 
in fall to spring seasons. In addition, Douglas and Englehart (1981) 
showed a significant correlation between tropical rainfall index and 
climate pattern of the SWM region and emphasized that the tele
connection could be explained by the eastward moving low latitude 
troughs and the corresponding cloudiness. Webb and Betancourt (1990) 
analyzed simultaneous and lag relationships between climate patterns in 
the Line Islands and Tucson, Arizona, and pointed out tropical cloud 
masses moving northeastward from the central tropical Pacific as a 
driving factor of the significant correlation. This implies that the sub
tropical jet stream enhanced by the equatorial convection produces 
more intense storm systems over the SWM region. 

Tropical cyclones infiltrating into the region increase and decrease 
rainstorms but are not the only mechanism responsible for the positive 
and negative responses during the warm and cold phases of ENSO 
forcing. Simonson et al. (2022) stated that the occurrence of these 
climate patterns could be connected with southward shifted storm tracks 
over the NEC region. The circulation shifts are associated with intensi
fied rainstorms because of southerly wind anomalies and modulate 
enhanced moisture-laden air transport into the region. The rainfall 
erosivity response in the southeastern United States to the ENSO phe
nomena is consistent with Ropelewski and Halpert (1986), Douglas and 
Englehart (1981). Ropelewski and Halpert (1986) stated that the climate 
response to ENSO may be more easily explained in terms of direct or 
shorter-range effects related to the enhanced subtropical jet stream and 
warmer than normal surface water over the Pacific. Douglas and Eng
lehart (1981) suggested that the ENSO-related climate signal may be an 
indication of a more direct link to ENSO forcing than a Pacific North 
American teleconnection pattern (PNA). Active ENSO-related convec
tion is typical in the equatorial Pacific, south of the southeastern United 
States. This convection has been linked to stronger than normal west
erlies in the southern parts of the United States including Gulf of Mexico 
(e.g., 200 mb ENSO composites in Arkin, 1982) and, hence, a tendency 
for more frequent storms in the southeastern United States. This possible 
direct link to the ENSO-related forcing may account for the consistent 
storm response over the southeastern US. Rasmusson and Wallace 
(1983) found a strengthened subtropical jet stream displaced southward 
from its normal position during the mature phases of ENSO event 
(1982–1983). This pronounced intensification of the jet stream drove 
numerous seasonal storms causing flooding events in the southern parts 
of the United States. Additionally, they indicated that this region has 
shown abnormal wet conditions associated with past ENSO events. The 
central region is one of regions over the United States in which cloudi
ness correlates significantly with the sea surface temperature over the 
tropical Pacific Ocean. Angell and Korshover (1987) employed a com
bined parameter of sunshine duration and cloud amount as a cloudiness 
index and identified a significant increase of cloudiness over the NC 
during 1950 to 1985. They showed that during the warm phase of ENSO 
forcing cloudiness is 5% above average, while below normal cloudiness 
exhibits at the time of cold events. During the ENSO event years, the 
persistent occurrence of warm/cold sea surface temperatures over the 

Table 3 
Properties of the candidate regions (La Niña events).  

Region Season Coherence Total Episode Occurrence Episode Consistency Extreme Events 

NW Oct (0) – Feb (+)  0.96 22 17 77 % 12 
NC Aug (0) – Feb (+)  0.94 22 16 73 % 6 
NEC Nov(0) – May (+)  0.94 22 17 77 % 8 
SE Nov(0) – May (+)  0.97 22 18 82 % 8 
SWM Oct (0) – Jun (+)  0.95 22 17 77 % 9  

Table 4 
Probabilistic assessments for significance level based on the hypergeometric 
distribution (El Niño events).  

Case Region N k n m Probability 

I NW 125 63 29 23  0.000  
NC 125 65 29 21  0.007  
NEC 125 58 29 18  0.027  
SE 125 57 29 22  0.000  
SWM 125 63 29 25  0.000 

II NW 125 25 25 9  0.021  
NC 125 25 25 10  0.006  
NEC 125 25 25 11  0.002  
SE 125 25 25 12  0.000  
SWM 125 25 25 14  0.000  

Table 5 
As in Table 4, except for La Niña events.  

Case Region N k n m Probability 

I NW 125 63 22 17  0.004  
NC 125 67 22 16  0.027  
NEC 125 67 22 17  0.009  
SE 125 59 22 18  0.000  
SWM 125 60 22 17  0.002 

II NW 125 25 25 12  0.000  
NC 125 25 25 6  0.180  
NEC 125 25 25 8  0.055  
SE 125 25 25 8  0.055  
SWM 125 25 25 9  0.021  
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central and eastern equatorial Pacific triggers large-scale atmospheric 
fluctuations in the middle latitude based on complex air-sea coupled 
interactions. As a result, these ENSO-related middle latitude circulations 
excite abnormal erosive storm patterns over the United States. 

6. Summary and conclusions 

Teleconnection between two phases of ENSO thermal forcing and 
monthly rainfall erosivity anomaly in the United States was investigated 
using a set of empirical and statistical analyses, such as harmonic 
analysis, annual cycle composites, and cross-correlation analysis. The 
details of the general results for ENSO-related REI signals are outlined in 
Tables 2 to 5. From the results of vectorial mapping through composite 
and harmonic analyses, the proposed study area is classified into five 
core regions designated as the northwest (NW), the north central (NC), 
the northeast coastal (NEC), the southeast (SE), and the southwest/ 

middle-inland (SWM) regions. They showed high levels of spatial 
coherence and temporal consistency with notable spatial range and 
amplitude of the rainfall erosivity response to ENSO phenomena. The 
main conclusions are outlined as follows. 

During the El Niño events, the monthly rainfall erosivity anomalies 
are below normal in the NW and NC regions, and above normal in the 
NEC, SE, and SWM regions. For the NW and NC regions, the Sep (0) to 
May (+) and Nov (0) to Apr (+) are the signal seasons showing the 
noticeable consistency in rainfall erosivity in association with the warm 
ENSO forcing, and the Nov (0) to May (+), Sep (0) to Mar (+), and Sep 
(0) to Apr (+) are the signal seasons having a high level of temporal 
consistency in ENSO-related REI responses for the NEC, SE, and SWM 
regions, respectively. The spatial coherence of the five core regions for 
the warm thermal forcing ranges from 0.93 to 0.98 and the temporal 
consistency are between 0.62 and 0.86. Especially, the SE core region 
showed the highest magnitude of the positive REI departure for the El 

Fig. 17. The comparison between El Niño composite cycles (solid line with circle symbols) and annual cycles of the NW, NC, NEC, SE, and SWM regions, based on 
modular coefficients. Arrows indicate the beginning and end months of the SO signal season. 
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Niño years. For the La Niña events, the monthly rainfall erosivity 
anomalies are above normal in NW and NC regions, and below normal in 
the NEC, SE, and SWM regions. The results of the composite and har
monic analyses show that the signal seasons for positive period are 
October (0) to February (+) and Aug (0) to Feb (+), and the signal 
seasons for negative periods are Nov (0) to May (+), Nov (0) to May (+), 
and Oct (0) to Jun (+) for the NEC, SE, and SWM regions, respectively. 
The spatial coherence rates for the five core regions for La Niña events 

range from 0.94 to 0.97, and the temporal consistency for each core 
region are 0.77 to 0.82. 

Comparative analyses of rainfall erosivity responses to both warm 
and cold ENSO events reveal the high significance level of the ENSO- 
related REI correlation with an opposite tendency in monthly rainfall 
erosivity anomalies. The NW and NC regions show negative (positive) 
tendency for warm (cold) phase, while the NEC, SE, and SWM regions 
show positive (negative) responses to the warm (cold) phase of ENSO 

Fig. 18. As in Fig. 17, except for La Niña composite cycles.  

Table 6 
Cross-correlation coefficients with respect to regions. REI anomalies over NW (NEC and SE) region are correlated with the strong El Niño SOI two to three (one to three) 
seasons in advance, while REI anomalies over NW, NEC, and SE regions are correlated with the Strong La Niña SOI two to three seasons in advance.  

Core Region Strong El Niño SOI Normal Condition Strong La Niña SOI 

lag-0 lag-1 lag-2 lag-3 lag-4 lag-0 lag-1 lag-2 lag-3 lag-4 lag-0 lag-1 lag-2 lag-3 lag-4 

El Niño NW  − 0.08  − 0.03  ¡0.45  ¡0.43  − 0.15  0.04  0.13  0.06  0.07  − 0.02  0.20  0.05  0.41  0.40  0.02  
NC  − 0.10  − 0.03  − 0.03  − 0.02  − 0.08  0.06  0.06  − 0.04  0.03  − 0.05  0.19  0.02  0.21  0.03  0.06  
NEC  0.19  0.44  0.42  0.39  0.18  0.08  0.07  − 0.03  0.02  − 0.12  − 0.08  − 0.10  ¡0.52  ¡0.41  − 0.26  
SE  0.08  0.42  0.54  0.53  0.11  − 0.02  0.02  − 0.01  − 0.05  − 0.02  − 0.20  − 0.08  ¡0.40  ¡0.53  − 0.14  
SWM  0.30  0.04  0.00  0.00  0.11  − 0.04  − 0.11  − 0.12  − 0.01  0.02  − 0.06  − 0.19  − 0.08  − 0.08  − 0.12 

La Niña NW  − 0.07  − 0.02  ¡0.51  ¡0.40  − 0.10  0.04  0.12  0.05  0.06  − 0.03  0.20  0.01  0.42  0.46  0.06  
NC  − 0.07  − 0.01  − 0.02  − 0.03  − 0.05  0.13  0.04  − 0.01  0.05  − 0.10  0.21  0.02  0.14  0.01  0.07  
NEC  0.11  0.43  0.40  0.41  0.14  0.10  0.08  − 0.03  0.02  − 0.12  − 0.15  − 0.12  ¡0.53  ¡0.37  − 0.29  
SE  0.02  0.41  0.52  0.42  0.12  0.00  0.04  0.00  − 0.04  − 0.01  − 0.23  − 0.03  ¡0.42  ¡0.54  − 0.04  
SWM  0.27  0.01  0.01  0.01  0.12  − 0.02  − 0.10  − 0.07  0.00  0.00  − 0.11  − 0.14  − 0.13  − 0.08  − 0.15  
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episode. Above normal rainfall erosivity anomalies during the El Niño 
thermal forcing are more significant than below normal REI departures 
during the La Niña events. From the results of annual cycle analysis, the 
tropical heating and cooling anomalies of sea surface temperature 
modulate the annual rainfall erosivity cycle over the United States by 
increasing or decreasing. The highest positive correlation coefficient 
values are shown in the lag-2 to lag-3 cases over the NW region, and 
negative correlations are found in the lag-1 to lag-3 cases over the NEC 
and SE regions for the strong warm phase SOI condition. For the strong 
cold phase SOI condition, the highest negative correlation coefficient 
values are found at the NW region with lag-2 to lag-3 cases, and positive 
correlations are shown at the NEC and SE regions with lag-2 to lag-3 
cases. That is, the stronger warm and cold phases of ENSO forcing, the 
more and less rainfall erosivity with lag time 1 to 3 seasons over the 
United States. From the findings above, it is concluded that middle 
latitude rainfall erosivity responses to the El Niño and La Niña phe
nomena are detectable over the contiguous United States. 
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