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SUMMARY

An efficient mathematical model for calculation of the boundary shear stress field induced by raindrop
impact is developed and tested using numerical and experimental data. The model comprises a series of
dimensionally consistent, closed-form, algebraic equations, written in terms of physically meaningful
parameters describing the fluid properties and initial conditions at the instant of drop impact. The relation-
ships in the model are derived from the analysis of data generated by a computer code which numerically
solves the Navier-Stokes equations for two-dimensional flow of a viscous, incompressible fluid with a free
surface. The resulting simplified, algebraic model is validated using data from laboratory experiments which
employ hot-film anemometry to measure drop induced boundary shear stresses. Substantial agreement is
found between model and experimental results with regard to the boundary shear stress magnitudes and
sensitivity of magnitudes to different water layer depths, drops sizes, drop velocities and distances from the
center of drop impact.

RESUME

Un modele mathématique de calcul de contraintes de cisaillement lors de I'impact de gouttes d’eau sur une
nappe liquide est développé et vérifié a ’'aide de données numériques et expérimentales. Le modéle consiste
en une série d’équations algébriques en function des principaux paramétres physiques décrivant I'impact de
gouttes d’eau. Les relations du modéle sont basées sur une analyse de données obtenues par une solution
numérique des équations de Navier-Stokes appliquées a ’analyse bi-dimensionnelle d’'un écoulement
visqueux incompressible lors d’un impact de gouttes d’eau sur une nappe liquide. Le mod¢le algébrique
simple qui en résulte est validé a partir de données de contraintes de cisaillement mesurées en laboratoire a
Paide d’une technique anémométrique a film chaud. Il existe un bon accord entre le modele et les mesures
expérimentales relativement 2 'amplitude des contraintes de cisaillement ainsi que la sensibilite du modéle
aux paramétres tels la taille et la vitesse des gouttes d’eau, la profondeur de la nappe d’eau et la distance du
point d’impact.

1 Introduction

The deformation of a liquid surface struck by a droplet was first photographed and studied
systematically by Worthington (1882) at the end of the 19th century. His classic monograph
(1908), republished posthumously just a few decades ago (1963) described experiments involving
droplet impact on both dry, smooth surfaces and deep liquid pools. Worthington was primarily
concerned with the evolution of the splash structure as affected by droplet impact velocity and
surface tension. Later, Laws (1939, 1940) applied high-speed motion picture photography tech-
niques to the study of raindrop splashes on soil covered by thin layers of water. He identified the
lateral jet of the expanding splash crater and the ejection of numerous droplets from the splash
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crown as mechanisms of soil particle detachment and transport. Photographs from this study
show that when a large drop strikes a water layer, a crater expands horizontally over a period of
approximately 35 msec and collapses over a period twice that long. The vertical motion forming
the cylindrical shell of the splash crown is superimposed on this horizontal motion. The rise of
the shell occurs over approximately 1/5 and the collapse over 4/5 of the cycle.

Other investigators (Hobbs and Kezweeny, 1967; Hobbs and Osheroff, 1967; Macklin and Hobbs,
1969; Mutchler and Hansen, 1970; Macklin and Metaxes, 1976) used photographs to correlate
various aspects of drop morphology such as crown droplet formation, crater shape, maximum
crater size and height of the recoil jet with initial conditions such as drop size, impact velocity and
pool depth. Macklin and Hobbs (1969) observed that when a 2.3 mm drop impacted a pool with a
depth greater than 4 drop diameters at about 50% of terminal velocity, a hemispherical crater
formed and fluid motion was predominantly vertical. At depths less than 2.5 drop diameters, the
splash crater contacted the bed and became conical in shape. At the shallowest depths, the crater
was cylindrical and fluid motion was predominantly horizontal. Mutchler and Hansen (1970)
found that splash diameter and height increased from zero to a maximum as pool depth increased
from zero to 1/3 drop diameters, These splash dimensions decreased as pool depth increased
from 1/3 to 3 drop diameters, and then remained constant for depths greater than 3 diameters.
Later Mutchler and Young (1975) used Mutchler and Hansen’s data to develop empirical
relationships for crater expansion rates and infer rough estimates of the variation of bed shear
with time after drop impact. They also suggested that water depths greater than 3 drop diameters
were sufficient to protect the soil surface from raindrop action. This rule of thumb was based on
the observation of the invariance of splash size with pool depth at depths greater than 3 drop
diameters and the hypothesis that forces on the bed would be negligible under these conditions.
Both analytical and numerical studies have complemented experimental research into the
dynamics of the drop impact phenomenon. Engel (1966) derived an energy balance for the instant
of maximum crater size and derived an expression for the maximum crater radius which com-
pared well with experimental data. At about the same time, numerical simulations of the drop
impact problem were being performed which provided both synthetic pictures of dynamic splash
morphology and evaluation of the dynamic pressure and velocity fields within the fluid. Harlow
and Shannon (1967) used the MAC or “Marker and Cell” (Welch at al., 1965) technique to
numerically solve the Navier-Stokes equation for drop impact on a free surface. Their simula-
tions were restricted to low velocity impact in the absence of surface tension and viscosity. For
these conditions, the simulation showed that the drop material tended to line the bottom and
sides of the crater.

Wang (1970) modified the model used by Harlow and Shannon and applied it to more realistic
drop impact conditions which included surface tension and viscous forces. Wang’s objective was
to numerically investigate the pressure field generated by single drop impacts on shallow pools
with drop sizes and velocities similar to those found in natural rainfall. Using results of numerical
simulations, Wang developed an equation describing peak pressure on the boundary as a func-
tion of the drop stagnation pressure at impact and a ratio of drop size to pool depth. This equation
agreed well with experimental data obtained with a pressure cell. He found that boundary
pressure generally built up to a maximum within 1.0 msec and that at the instant of peak pressure,
the spatial distribution of the pressure was Gaussian and centered on the axis of impact. Wang
made a few rough calculations of peak shear based on simulated velocity differences between
computional cells adjacent to the lower boundary but the computational grid was too coarse to
allow a good estimate of the velocity gradient.
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Further numerical simulation using the MAC method was carried on by Huang et al. (1982) for
drop impacts in the absence of viscosity and surface tension. They found that a 4.0 mm drop
impacting a solid surface produced pressures lasting a few microseconds which were 20 times the
stagnation pressure and that radial jet velocities were twice the impact velocity. More recently,
Tan (1990) reviewed many of the experimental and numerical studies of raindrop splash and
erosion. He also proposed a raindrop erosion model which suggested that erosive pressures on
the soil surface are maximized when a water layer equal to the drop diameter is present.

2 Focus and methodology

This study focuses on the boundary shear stress induced by raindrop impact on layers of water
which are less than 3.0 raindrop diameters because past research indicates that erosive forces
become practically insignificant at larger water depths (Wang, 1970; Mutcher and Young, 1975).
Additionally, analysis is confined to the initial period of drop penetration and crater expansion
when drop momentum is concentrated in a relatively small area around the impact site. During
this period, pressure gradients, fluid velocities and boundary shear stresses are large in compar-
ison to later stages of splash (Worthington, 1963; Laws, 1939; Wang, 1970; Harlow and Shannon,
1967).

Based on physical considerations and a dimensional analysis, Hartley (1990) showed that a
general equation for the time and space varying boundary shear stress field can be written in
terms of a Reynolds number R, Weber number W, Froude number F, dimensionless pool depth
yo and dimensionless space and time values x* and * as follows:

in which t*=t/oV}, R=qVorju, W=0Virja, F=Vy/(gr)®, y§=yofr, x*=x|r, and
= Vot[r. Here 7 is the boundary shear stress, g is the fluid density, ¥, is drop impact velocity, r
is the radius of the drop, u is the fluid dynamic viscosity, ¢ is the surface tension, g is the gravita-
tional acceleration, y, is the initial depth of the pool at the instant of impact, x is the radial
distance from the vertical axis of symmetry and ¢ is the time since the instant of impact. As noted
by Harlow and Shannon (1967), gravity and surface tension forces both tend to restore the water
surface to a horizontal or rest position. Numerical simulations conducted by Hartley (1990)
corroborated this analysis and lead to the simplification of equation (1) by merging F and W
into a single parameter 8 as follows:

T* :f(R’ 0’ ya" X*’ t*) (2)
in which
0 =FW|(F + W) 3)

This simplification is justified by Hartley’s results which showed a similar sensitivity of the
boundary shear stress field to F and W’ when either or both parameters were small. This trend is
represented by equation (3). Additionally, it is shown in the following analysis that gravity and
surface tension forces have only a minor effect on shear stress magnitudes.

Equation (2) describes drop induced boundary shear stress in terms of dimensionless variables
which use the drop impact velocity and drop radius as space and time scaling factors. The func-
tional dependence of the dimensionless boundary shear stress on the independent dimensionless
variables defined in equation (2) was investigated using a numerical solution to the equations of
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fluid motion. A set of empirical relationships for the boundary shear stress was developed from
the results of the numerical experiments. Subsequently, the numerically derived empirical rela-
tionships were compared with results from laboratory experiments.

3 Numerical model

The numerical model employed in this study is a modified version of the SOLA-VOF model
(Nichols et al., 1980). SOLA-VOF is a generic code for the finite difference solution of two-
dimensional, viscous, incompressible flow problems involving free surfaces or boundaries
between two immiscible fluids. Particular flow problems are defined through the specification of
appropriate boundary and initial conditions by the code user. Consequently, SOLA-VOF has
been applied to a wide range of flow problems (Nichols et al., 1980) including a jet impinging on a
wall, collapse of a tank surrounded by a retaining wall, and instability of a thin liquid column due
to surface tension. Additionally, Hartley (1990) validated the model’s ability to solve unsteady
viscous flow problems by comparing simulation results with the analytical solution for the
problem of a suddenly accelerated plate in an unbounded fluid medium.

The basic numerical procedure used to solve the equations of motion by SOLA-VOF employs
an explicit difference scheme to obtain estimates of the entire velocity field at the advanced time
step. These velocities are checked by computing the divergence or error in continuity which in
turn is used to correct pressure values throughout the domain. Velocities are recomputed and
the iterations continue until the divergences at all locations are smaller than a user-defined
tolerance. Unlike earlier hybrid Eulerian-Lagrangian techniques such as the MAC method
(Welch et al., 1965) which used massless marker particles to track the movement of free surfaces,
SOLA-VOF is purely Eulerian. Fluid interfaces or free surfaces are tracked using a step function
which defines the presence or absence of fluid at a point. Details of this method and other
features of the numerical solution employed by SOLA-VOF are presented elsewhere (Nichols et
al., 1980; Hirt and Nichols, 1981) and will not be repeated here. Hartley (1990) and Hartley and
Alonso (1990) discuss modifications of the SOLA-VOF code and its application to the problem of
raindrop impact.

4 Simulation experiments

A set numerical experiments was conducted using the modified SOLA-VOF numerical code
described by Hartley (1990) in which the dependence of the dimensionless boundary shear stress
on the independent variables identified in equation (1) was investigated. Numerical simulation of
natural raindrop conditions was considered desirable, but the large Reynolds numbers of these
drops required prohibitively small computional cells and time steps to define boundary layers
and maintain numerical stability (Hartley, 1990). Thus, simulations were conducted at lower
Reynolds numbers than occur during the impact of natural raindrops. Table 1 compares Reynolds
number and other parameter values for natural raindrops and the laboratory and numerical
simulation conditions of this study.

Fig. 1 represents typical results of the numerically calculated boundary shear stress field. As
shown in the figure, the boundary shear stress field can be described by a family of curves in
which each curve represents the spatial distribution of the boundary shear stress at a particular
instant in time. In this study, “peak boundary shear stress” (rp) refers to the peak of a spatial dis-
tribution at an instant in time (i.e. peak of any curve in Fig. 1) while “maximum peak boundary
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Table 1.

Comparison of parameters ranges

natural laboratory computer
parameter rainfall! experiment simulations
R 6500. - 23000. 1600. - 7700. 50. - 500.
e 0.00 - infinity 0.88 - 5.00 0.50 - 6.00
7 18.0 - 28.0 3.1 - 10.1 2.8 - 22.6
! Raindrop diameters assumed to range from 2.0 mm to 5.0 mm.
1
t#*=1.00
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Fig. 1. Typical simulated boundary shear stress distributions at different times after drop impact.

Distributions typiques des contraintes de cisaillement simulées a différents intervalles de temps
apreés impact.

shear stress” (r‘p max) Tefers to the global maximum or largest of the peaks (peak value of distribu-
tion represented by bold line in Fig. 1) The double asterisk superscript (t**) on the y-axis of Fig. 1
denotes boundary shear stress magnitudes normalized by the magnitude of the maximum peak
boundary shear stress (7, max) While the time labels above the curves (¢**) indicate time values
scaled by the time to reach the maximum boundary shear stress magnitude (tp max)-

Although details of the pattern vary depending on values of controling parameters, the trend
shown in Fig. 1 is typical. That is, the rise to maximum shear was generally quite rapid (curves
with solid lines) in comparison with a longer period of shear decay (curves with dashed lines).
Also, prior to the time of the maximum boundary shear stress (¢** < 1.0), spatial distributions of
the shear tended to be geometrically similar and spatially concurrent. During the relatively
extended period of decay (dashed curves) the shear tended to diffuse further from the center of
impact and to become more symmetrically distributed. Fig. 2 shows how shear magnitudes varied
in time by plotting peak values from the curves in Fig. 1 and simply reinforces the point that the
entire shear pulse reaches a maximum value within a very short period compared to duration of
the entire pulse.
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Fig. 2. Typical simulated temporal variation in magnitude of peak shear stress.

Variation temporelle typique des pointes de cisaillement simulées.

5 Simplified equations for the boundary shear stress field

In order to arrive at a set of simplified algebraic equations which could be used to generate the
dynamic boundary shear stress field represented in Fig. 1, the entire numerically generated data
set was analyzed and various functions of the independent variables in equation (2) were opti-
mized using a nonlinear optimization routine (DeCoursey and Snyder, 1969). As a result of this
analysis, it was found that the boundary shear stress distributions at various instants in time could
be well-approximated by beta functions. Additionally, these beta functions remained constant in
shape and range prior to the instant of maximum peak shear but change shape and range there-
after. Detailed discussion and comparison of individual equations with numerical model results
are given by Hartley (1990). A summary of the relationships which make up the algebraic model
are presented below.

5.1 Maximum peak boundary shear stress

The variation in magnitude of the maximum peak boundary shear stress (rz max) Was studied using
the numerical model over a range of the dimensionless parameters identified above. Results of
these simulations are given in Table 2. Simulated maximum peak boundary shear stress declined
steeply with increased water layer depth. For example, maximum peak boundary shear stresses at
depths of 6.0 radii were only about one percent as large as at a depth of 0.50 radii. This agrees
qualitatively with the suggestion of Mutchler and Young (1975) that a depth of 6.0 radii would
protect the soil surface from erosion. Wang (1970) noted a similar dramatic reduction in
maximum peak boundary pressure with increasing water layer depth in his raindrop splash study.
Evidently, both the pressure and shear stress attenuation reflect the cushioning effect of the
water layer.

Simulated maximum peak boundary shear stresses also consistently declined with Reynolds
number. This trend is similar to the one reported by Rajaratnam (1976) for peak boundary shear
stress caused by an impinging circular Jet, a steady flow case which is quite simular to drop
impact. There was also a small effect of gravity and surface tension over the range of numerically
simulated conditions.
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Table 2. Modified SOLA-VOF simulation of maximum peak boundary shear stress

run” y’S R 0 T: max
i 0.50 50 3 7.900E-02
2 0.50 50 6 7.227E-02
3 0.50 50 12 7.083E-02
4 0.50 50 24 6.960E-02
5 1.00 50 3 4.505E-02
6 1.00 50 6 3.838E-02
7 1.00 50 12 3.454E-02
8 1.00 50 24 3.454E-02
9 1.00 150 3 2.562E-02
10 1.00 150 6 2.052E-02
11 1.00 150 12 1.847E-02
12 1.00 150 24 1.741E-02
13 1.00 500 3 1.446E-02
14 1.00 500 6 1.133E-02
15 1.00 500 12 9.296E-03
16 1.00 500 24 9.296E-03
17 2.00 50 3 1.171E-02
18 2.00 50 6 1.271E-02
19 2.00 50 12 1.271E-02
20 2.00 50 24 1.271E-02
21 2.00 150 3 6.038E-03
22 2.00 150 6 6.793E-03
23 2.00 150 12 6.793E-03
24 2.00 150 24 6.793E-03
25 2.00 500 3 2.760E-03
26 2.00 500 6 3.240E-03
27 2.00 500 12 3.240E-03
28 2.00 500 24 3.140E-03
29 4.00 50 3 1.820E-03
30 4.00 50 6 2.000E-03
31 4.00 50 12 2.484E-03
32 4.00 50 24 2.484E-03
33 4.00 150 3 8.172E-04
34 4.00 150 6 1.124E-03
35 4.00 150 12 1.330E-03
36 4.00 150 24 1.328E-03
37 4.00 500 3 2.900E-04
38 4.00 500 6 4.300E-04
39 4.00 500 12 5.143E-04
40 4.00 500 24 5.657E-04
41 6.00 50 3 5.430E-04
42 6.00 50 6 6.723E-04
43 6.00 50 12 7.499E-04
44 6.00 50 24 8.016E-04

However, for erosive natural rainfall conditions, sensitivity of the maximum peak boundary shear
stress to the gravity and surface tension parameter would be negligible. Optimization using the
numerically simulated data resulted in the following relationship:

Thmax=285(5 + )RS C, 4)

with a coefficient of determination r? = 0.99. The term in parenthesis in this relationship is equal
to the sum of the pool depth and drop radius scaled by the radius. The factor C, is defined by:
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Ci=[1.0—exp(—1.660/y})] (5)

It represents the effect of gravity and surface tension but deviates very little from a value of 1.0 for
erosive natural rainfall conditions in which 8 is generally larger than 9.0 and y; less than 6.0. This
suggests C; values ranging from .91 to 1.0 and supports the earlier contention that gravity and
surface tension have a minor influence on the boundary shear stress.

5.2 Time to reach maximum peak boundary shear stress

Simulated values of the dimensionless time to reach maximum peak boundary shear stress t;‘ maxs
were found to be primarily a function of the dimensionless depth y§ and secondarily a function of
0, the combined gravity and surface tension parameter. The effects of gravity and surface tension
appear to be small for low values of y¥, but much larger for larger depths. The variation of Iy max
with y§, and 6 can be described by the following optimized relationship (coefficent of determina-
tion r? =0.99):

t:max=1-4(yg+ 1) C2 (6)
in which
Cy=[1.—exp (—.608/y})] 7

Similar to C|, the factor G, is of minor importance, varying between 0.88 and 1.0 for most cases of
practical interest (6 > 18 and y§ < 5). Thus, equation (6) indicates that the time interval between
drop impact and maximum peak boundary shear stress is approximately proportional to the travel
time at the impact velocity over a distance equal to the drop radius plus the pool depth - a
physically reasonable result.

5.3 Growth and decay of peak boundary shear stress

Fig. 2 shows the typical numerical simulation results for the variation in peak boundary shear
stress magnitudes with time. As shown in the figure, peak boundary shear stress magnitudes
increased rapidly to a maximum value following impact. The rate of boundary shear stress growth
depended mainly on the dimensionless depth y; and could be represented by a gamma function
(coefficient of determination r? = 0.80) as follows:

5 = (") exp [y(1. — 1*%)], for **<1.0 (3)

Here the double asterisk superscripts indicated that the dimensionless time ¢* has been scaled by
the dimensionless time to reach the maximum peak t: max and the peak boundary shear stress r:
has been scaled by the maximum peak boundary shear stress r: max- 1 he single parameter y can be
estimated by:

y =07 (§)* )

Equation (8) represents the initial part of the curve shown in Fig. 2 prior to the occurrence of the
maximum peak boundary shear stress. The rate of decay of peak boundary shear stress magni-
tudes following the maximum peak was found to depend most strongly on gravity and surface
tension forces as represented by the parameter 8. When 6 was small, decay tended to be rapid,
reflecting the restoring effect of gravity and surface tension forces. Conversely, when 6 was large,
decay of the peaks proceeded more slowly. The decay of peak boundary shear stresses could be
described by the following exponential relationship (coefficient of determination r2 — 0.85):
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T =exp — [Aq (" - 1.)] (10)
in which the A4 is given by
la=1356%+ .12. (11

Ag varies from 0.33 to 0.28 for natural raindrops ranging in size from 2.0 to 5.0 mm in diameter. It
may be taken as a constant at 0.31 for these conditions with less than a 20% deviation in 7" for
t**<8.5. Thus, it can be seen that # gains in importance as shear stress magnitudes subside, but
may be neglected in the determination of the earlier, larger stresses under natural rainfall
conditions.

5.4 Spatial distribution of boundary shear stress

The spatial distributions of boundary shear stresses at various instants during the growth and
decay of boundary shear stress magnitudes was examined using the graphical output from the
numerical model. Various distribution functions including gamma, lognormal, and beta distribu-
tions were fitted to the simulated boundary shear stress values. Nonlinear optimization results
demonstrated that a beta distribution with a left boundary at the axis of impact did an excellent
job of representing the finite difference results. The beta function is defined:

% = Cp (x*[x)P (1 — x™*[x7)P* (12)

in which 7™* is the boundary shear stress at any instant scaled by the maximum peak boundary
shear stress, Cy is a beta constant, x* is the radial distance from the axis of drop impact scaled by
the drop radius, x} is the right-hand boundary of the distribution and p1 and p2 are beta distribu-
tion shape parameters. The parameters of the distribution are Cg, p/, and p2 and xr. The first
parameter controls the magnitude of the 7** values, while the powers p/ and p2 control skewness
and kurtosis. The following relationships among the beta parameters, the scaled peak magnitude
7,* and position x, can be shown to hold identically:

p2=pl (x7 —x3)[x}, (13)
and
Cp=13" (ep[x) P (1 — xp [x7) ™2 (14)

Finite difference model results were used to optimize relationships which completed the de-
scription of the spatial distribution of the boundary shear stress. For the period between the
instant of impact and the occurrence of the maximum peak boundary shear stress (1** < 1.0) the
shape of the spatial distribution remained essentially constant and the following equations were
found to produce an accurate facsimile of the finite difference results:

pl=1+exp{—1.25y7), (15)
xF=1+75[1—exp(—1.25y)], (16)
xy = .88+ 5 exp(—3.7/y0). a7

Equations 15-17 together with identities 12-14 represent the spatial distribution of the boundary
shear stress field for ** < 1.0. These relationships fit the finite difference model results very
closely (r? > 0.95) over the entire range of conditions simulated. An example of the fit between
these equations and the finite difference model is shown in Fig. 3 in which the solid lines
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represent the equations and the symbols represent finite difference model results for ** < 1.00.
These results indicate that according to the model, the dimensionless depth yj is the only param-
eter controlling the spatial distribution during the period of boundary shear stress build-up to
the maximum peak boundary shear stress.
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Fig. 3. Typical comparison of algebraic and numerical results.
Comparaison typique des résultats des modeéles algébrique et numérique.

For period of shear decay (** > 1.0), equations 15-17 are replaced by

Xpa=Xp{l. + (216 —20. R%%) .exp[— o™ = 1]} (18)

pla=pl+ (P2 —plyexp[— 1./(t** — 1.)]- exp (— .30p%2) (19)

p24=p2 (20)
and

xtq=x34(p2[p1q + 1) (21

All variables are as previously defined. The subscript 4 is added to the parameters to show that
they apply to decay period. For this period, the optimization of the equations (12-14 plus 18-21)
to the finite difference model results in 2 > 0.85 over the range of simulation conditions given in
Table 2. While still good, this fit is inferior to the earlier period of shear build-up. Also in contrast
to the earlier period, dimensionless time ¢** and the parameters € and R affect the spatial
distribution of the shear. An example of the fit between the equations and the finite difference
model is shown by the ** =4.91 in Fig. 3.

Equations (1) through (21) provide a complete algebraic description of the boundary shear stress
field during the period of splash crater expansion. In summary, the boundary shear stress field |
simulated with the finite difference model can be approximated from the drop radius r, the
impact velocity ¥;, the pool depth yf and the physical constants g, v, ¢ and g.
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6 Experimental validation of the algebraic model

The set of approximate equations for estimation of the boundary shear stress field were tested
using laboratory data collected with a hot-film anemometry system. In these tests water drops of
various sizes and velocities were imposed upon low velocity flows in a rectangular flume.
Boundary shear stress pulses caused by the drops were measured using a flush-mounted, hot-film
boundary shear stress probe.

6.1 Methods and materials

Laboratory experiments were conducted in a 0.21 m wide by 9.75 m long rectangular flume using
filtered and deionized water which was maintained at a constant temperature. A schematic of the
experimental equipment is shown in Fig. 4. The probe with a 0.25 by 1.00 mm hot-film sensor was
mounted so that the sensor was flush with the bed of the flume. The probe was connected by
a cable to a constant temperature anemometer. The anemometer is designed to supply sufficient
power to the hot-film sensor to maintain it at a constant temperature. Voltage output from the
anemometer indicates the instantaneous boundary shear stress on the sensor through a well
defined calibration relationship (Sandborn, 1972). Anemometer voltage output was automa-
tically stored in a minicomputer.

DROP
FORMER
HEATER
STRAINER FLUME
/ N
~e—thF—= ¥
Vel TAIL
HEAD ] PROBE BOX
BOX L

\
A\ ALUMINUM . 1-BEAM
ASAY

_>{[Z] 000 pemrs
ANEMOMETER 5] 000

[ ooo A-D
CONVERTER
M-
COMPUTER

Ofosesesl0

|

COMPUTER

TERMINAL

Fig. 4. Schematic of experimental setup.
Schema des conditions expérimentales.

Water droplets were formed using a hypodermic syringe. Three drop diameters were used: 3.2,
3.8 and 4.5 mm. The two smaller drop sizes were generated using hypodermic needies with the
points cut off and ends filed. The largest drop size was generated using the plastic syringe without
anattached needle. Gravimetric tests verified that drops generated using these orifices were quite
uniform with sample standard deviations of approximately 1% of the nominal size. The syringe
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was attached to a ring stand at a location designed to produce impact at a specified distance from
the hot-film sensor and at a known impact velocity.
The flush mount hot-film sensor obeys the standard calibration relationship (Sandborn, 1972):

TP =4FE’-B 23)

in which 7 is the instantaneous boundary shear stress, E is the anemometer voltage output and 4
and B are constants which must be determined by calibration. The calibration constants are
sensitive to water temperature and can also be effected by water quality which is the reason for
using temperature controlled, filtered and deionized water in the experiments. These features of
the measurement system are discussed in more detail by Schall (1979). The constants 4 and B
must be determined using a flow with a known boundary shear stress value. This was accom-
plished by establishing uniform flow in the laboratory flume over the range of slopes and flow
depths and estimating the average boundary shear stress using the relationship:

t=yyS§ 24)

in which 7 is the time average boundary shear stress, y is the specific weight of water, y is the flow
depth and S is the friction slope which is equal to the slope of the flume bed for uniform flow
conditions.

Measurements of boundary shear stress pulses caused by impacting water drops were designed to
investigate effects of water layer depth, drop impact velocity, drop size and distance from the
point of drop impact. Ranges of experimental variables are shown in Table 3 and the resultant
range of dimensionless variables are shown in Table 4.

Table 3. Range of dimensional variables investigated

variable values

water depth, y, 2.0, 4.0, 6.0, 8.0 mm
drop impact velocity, V, 1.0, 1.7, 3.4 m/s
drop diameter, d 3.2,3.8,4.5 mm
distance from impact, x 5.0, 10.0, 15.0 mm

All drop induced boundary shear stress pulse measurements were conducted with a small
uniform discharge flowing in the flume. The presence of a base flow was considered necessary in
order to maintain constant temperature of fluid over the hot-film sensor. Base flows were in the
laminar to transitional range (100 < Re < 1200) and velocities were small (0.05< ¥, < 0.17 m/s).
Hartley (1990) used a force balance to demonstrate that the base flows have a negligible effect on
the boundary shear stress measurements because of the comparitively short duration of the shear
stress pulses.

After daily calibration runs, the flume slope was set at .004 and flow rate was adjusted until the
desired uniform flow depth was achieved. A ring stand was used to position the water drop former
at a height which would result in the proper drop impact velicity. This height was determined
using the method presented by Wang (1970). The horizontal position of the drop former was
adjusted by sight and touch with the aid of a 2.0 mm diameter plastic rod. Drop impacts were sited
within 1.0 mm of the desired impact point with this method. When the drop former was located at
the proper location, static head was adjusted on the drop former so that drops fell at approxi-
mately 2.0 seconds intervals. This rate guaranteed that boundary shear stress pulses from
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successive drops would be independent. When the desired rate of drop impacts had been
achieved, the anemometer output was sampled for 10 seconds at a frequency of 1000 hertz (1-2%

of the cut-off frequency of the system) and 4 to 5 replicate boundary shear stress pulses were
recorded.

Table 4. Range of dimensionless variables investigated

variable range

dimensionless depth, y& 0.88 - 5.00
Reynolds number, R 1600 - 7700
gravity-surface tension parameter, 8 3.1 -101
dimensionless distance, x* 222 - 938

6.2 Comparison of algebraic model and experimental data

The previously described algebraic model for the boundary shear stress field was used to simulate
boundary shear stress pulses corresponding to the experimental conditions. Comparisons of
model and experimental results are summarized in Figs. 5 through 7. Fig. 5 compares results of
the model and experiments at three different flow depths for a period of 50 msec. As indicated by
Fig. 5, the model generally follows the trend in the experimental data of decreasing boundary
shear stress peaks with flow depth. At the 2.0 mm depth, the model estimates a boundary shear
stress peak which is nearly twice as large as the measured value. However, it should be noted that

estimated inaccuracies in the setting of flow depth and positioning the drop impact point would
be sufficient to account for this discrepancy.

Yo = 002 m
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o~
£
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K

0.1 r y r T y : . .

o] 10 20 30 40 50 [¢] 10 20 30 40 50
Time, msec Time, msec

o 10 20 2 0 50
Time, msec
Fig. 5. Comparison of results from algebraic model and laboratory experiments for three water layer
depths.

Comparaison des résultats du modéle algébrique et des mesures expérimentales pour trois profon-
deurs d’écoulement.
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Fig. 6 illustrates the agreement between the model and the measured data with respect to the
effect of distance from the center of drop impact. The series of graphs clearly shows that both the
model and the measured data indicate an order of magnitude reduction in boundary shear stress
for a distance of .010 m as compared with .005 m.

Additionally, both model and experimental data indicate that the effect of the drop is nonexistent
at a distance of .015 m.

T, N/m?

(o] 6 12 18 24

Time, msec Time, msec

x = .015 m

(o] é 1‘2 1'8 2‘4 30
Time, msec
Fig. 6. Comparison of results from algebraic model and laboratory experiments for three radial distances.

Compariason des résultats du modele algébrique et des mesures expérimentales 2 trois distances
radiales.

A comparison of results for three different drop impact velocites is shown in Fig. 7. For the first
graph (V; = 1.0 m/s), the match between model and experimental data appears quite good during ‘
the initial 15 msec. However, at later times, measured boundary shear stress values exceed |
predicted ones. This may result from the entrainment of air bubbles during the collapse of the
splash crater which can cause the hot-film probe to register an erroneously high boundary shear
stress readings. This effect is not evident in the other two graphs in the figure because the higher
impact velocities extend the period of splash crater expansion. At the intermediate drop impact
velocity, both the simulated and measured boundary shear stress peaks are larger than at the ‘
lowest impact velocity, however, the simulated value is about half as large as the measured one.
At the largest impact velocity, both peaks again exhibit an increase over peaks at the intermediate
value; however, in this case the simulated value is larger than the measured value. Thus, in this
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Fig. 7. Comparison of results from algebraic mode] and laboratory experiments for three impact velocities.

Comparaison des résultats du modele algébrique et des mesures expérimentales pour trois vitesses
de chute.

set of comparisons, the model and measured data display the same trend with respect to impact
velocity if only the initial measured boundary shear stress pulse is considered.

Fig. 8 presents a comparison of measured and simulated results for three different drop diam-
eters. Although peak values of the simulated pulses are somewhat higher than measured peaks,
the trend toward larger peak boundary shear stresses at larger drop sizes is evident in both the
measured and simulated results. Additionally, boundary shear stress pulse durations of the
simulated and measured pulses are quite similar.

Fig. 9 represents a summary comparison of all 150 experimentally measured peak boundary shear
stresses with model estimates. Although there is scatter about the line of perfect agreement, the
model estimates peak boundary shear stresses which are within a factor of 2.0 of the measured
values for about 79% of the data. The model appears to underestimate peak boundary shear
stresses for conditions which produce small values i.e. large flow depths and small impact veloc-
ities. However, these are of less practical interest than larger values. For peak boundary shear
stresses greater than 1.0 N/m?, the number of estimates which are within a factor of two of the
measured values rises to 85%.
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7 Summary and conclusions

A set of dimensionless algebraic equations which approximately describe the boundary shear
stress field induced by raindrop impact during the period of splash crater expansion has been
developed. The independent variables in these equations were derived from physical reasoning
and dimensional analysis and their specific functional forms were developed empirically using
data generated from a series of numerical experiments. The numerical model used to generate
these data utilizes a finite difference solution to the equations of two-dimensional motion for a
viscous, incompressible fluid, with a free surface. Excellent agreement between the simplified
algebraic model and the numerical model is demonstrated over a wide range of values of the
specified, dimensionless, independent variables.

Subsequently, the algebraic relationships were validated using laboratory experiments involving
a range of drop sizes, impact velocities and water layer depths. For the shallowest depths invest-
igated in the experiments, peak boundary shear stresses in excess of 10 N/m? were measured and
duly estimated by the algebraic model. Given the larger impact velocities and smaller depths
which may exist under natural rainfall conditions, maximum peak boundary shear stresses may
be 5 to 10 times as great as the largest values measured in the experiments.

Results of this study indicate that the magnitude of the dimensionless boundary shear stress is
strongly and inversely dependent on the dimensionless depth and also to a lesser extent inversely
dependent on the drop Reynolds number. Gravity and surface tension forces appear to exert a
minor influence in the generation of large boundary shear stresses caused by raindrops impacting
shallow layers of water. However, these forces tend to affect the boundary shear stress field as the
fluid decelerates and the boundary shear stress magnitudes decay. The spatial distribution of the
boundary shear stress at any time during the crater expension period can be estimate by a beta
distribution. The parameters of the distribution are functions of the dimensionless variables
defined in the analysis.

This study focused on the boundary shear stress caused by a single, isolated raindrop. Knowledge
gained concerning the spatial and temporal scales of the shear field should be useful in analysing
the degree of raindrop interaction under natural rainfall conditions. However, if independence of
raindrops is assumed, the algebraic relationships developed in this study provide a convenient
and efficient first approximation for the magnitude, spatial extent and duration of boundary
shear stresses caused by rainfall on overland flow. The determination of these boundary shear
stress distributions represents an important component in the mathematical modeling of soil
detachment and sediment transport from upland surfaces.

Acknowledgment

The authors wish to thank Dr. Donn Decoursey and Dr. Carlos Alonso of the United States
Department of Agriculture Research Service for their support and assistance throughout the
course of this study. The experiments were carried out at the Hydraulic Laboratory of the
Engineering Research Center of Colorado State University.

JOURNAL OF HYDRAULIC RESEARCH, VOL. 30, 1992, NO. 3 357




Notations

Symbol'’?

A coefficient in probe calibration equation

B constant in probe calibration equation, (M/LT?)!/3

C correction factor in dimensionless maximum peak boundary shear stress equation

G, correction factor in equation for dimensionless time to reach maximum peak shear stress
Cs beta function coefficient
d drop diameter, L
E anemometer output- electrical potential, L* M/(T? I
F drop Froude number
g gravitational acceleration, L/T?
pl first power of beta function
p2 second power of beta function
ply  first power of beta function during decay period
p24  second power of beta function during decay period
R drop Reynolds number
R, base flow Reynolds number
r radius of drop
S channel friction slope
point in time after drop impact, T
dimensionless time after drop impact
dimensionless time scaled by dimensionless time to reach maximum peak boundary shear
stress
tymax dimensionless time to reach maximum peak boundary shear stress
2 drop impact velocity, L/T
V, base flow velocity, L/T
w drop Weber number
b'e distance from center of drop impact
x* dimensionless distance from center of drop impact, L
: dimensionless position of peak boundary shear stress
Xpd dimensionless position of peak boundary shear stress during boundary shear decay

b dimensionless right boundary of beta function

x5 dimensionless right boundary of beta function during boundary shear stress decay
y vertical space coordinate and flow depth, L

Yo water layer depth, L

v dimensionless water layer depth

0 fluid density, M/L?

o surface tension, M/T2

v kinematic viscosity, L2/T

y specific weight of fluid, M/(T2L?)

6 combined gravity and surface tension parameter
T boundary shear stress, M/(LT?)

! M =mass, L=length, T =time, I=unit of electrical current.
? (boundary shear stress dimensions)'"*/(electrical potential dimensions)?
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T dimensionless boundary shear stress
7, peak boundary shear stress, M/(LT?)

T, dimensionless peak boundary shear stress scaled by dimensionless maximum peak
boundary shear stress

Tpmax Maximum peak boundary shear stress, M/(LT?)

r,’f max dimensionless maximum peak boundary shear stress

A gamma functional parameter

Aq Exponential decay parameter
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