Rivers and **Dams**

Pierre Y. Julien

USBR Lectures – Part III Denver, Colorado January 18, 2024

USBR Short Course

1. Watersheds and Climate

- 2. Sedimentation Engineering
- **3. Rivers and Dams**
- 4. River Environment

Rivers and Dams

River Equilibrium
 Aggradation
 Degradation below Dams
 Case Study Gupo Bridge
 Case Study Dam Break

1a. Manning n

Rhine River flood in 1998

Primary dune height vs discharge

Manning n vs discharge

1b. Downstream Hydraulic Geometry

Downstream Hydraulic Geometry

Julien-Wargadalam (J-W) Equations

When the Manning-Strickler approximation is applicable, i.e. m = 1/6, a simplified form of Eqs. (10.19) is obtained in SI as

$$h \approx 0.133 Q^{0.4} \tau_*^{-0.2} \qquad (10.20a) \blacklozenge$$

$$W \approx 0.512 Q^{0.53} d_s^{-0.33} \tau_*^{-0.27} \qquad (10.20b) \blacklozenge$$

$$V \approx 14.7 Q^{0.07} d_s^{0.33} \tau_*^{0.47} \qquad (10.20c) \blacklozenge$$

$$S \approx 12.4 Q^{-0.4} d_s \tau_*^{1.2} \qquad (10.20d) \blacklozenge$$

The hydraulic geometry of stable channels is obtained from Eqs. (10.20) when $\tau * \cong 0.047$. Higher sediment transport rates require higher velocity and slope, and reduced width and depth.

Bankfull width and depth

from Julien and Wargadalam (ASCE-JHE, 1996)

Bankfull velocity and slope

from Julien and Wargadalam (ASCE-JHE, 1996)

1c. Meandering

Sediment Transport in Sharp Bends

Fig. 3. Relation between SF and θ_1/ϕ (M/N = 1).

Laboratory experiments show that fine sand can deposit where coarse sand cannot, i.e. point bars

from Kawai and Julien (JHR-IAHR, 1996)

Sediment Transport in Sharp Bends

Field measurements in the sharp bends of the Fall River, Colorado demonstrate that particles of different sizes move in different directions.

Fig. 5 Center of mass curves for three bedload size fractions

from Julien and Anthony (JHR-IAHR, 2002)

Meandering Simulations

T=0.5 hrT=1.0 hrT=1.5 hrs T=2.0 hrs 1111 T=2.5 hrs T=3.0 hrs

Model from Duan and Julien (ESPL, 2005)

Initial Conditions

- sine-generated
- deflection angle 30°
- discharge 2.1 *l*/s
- width 0.4 m
- length 13.2 m
- sediment size 0.45 mm

Meandering Evolution

Example starting from a straight channel on the Rio Puerco, New Mexico

Rio Puerco, New Mexico

Lateral Migration in a Meandering Channel

Rivers and Dams

River Equilibrium
 Aggradation
 Degradation below Dams
 Case Study Gupo Bridge
 Case Study Dam Break

2a. Meandering to Braiding (sediment overload)

Natural Chute Cutoffs

Often in

to an

load

•

response increase in sediment

> Chute cutoffs on Williams River, AK (Photo by N.D. Smith)

Oxbow Lake

Riverbed rising forces river overbank

2b. Channel width variability

From Julien River Mechanics CUP 2018

2c. Width-slope trade-offs

Relationship between channel width and sediment transport

Wider reaches are steeper!

From Leon et al. ASCE-JHE 135(4), 2009

Rivers and Dams

River Equilibrium
 Aggradation
 Degradation below Dams
 Case Study Gupo Bridge
 Case Study Dam Break

3a. Degradation Problems

3b. Braiding to meandering (sediment starved)

Planform geometry 1935 1972

1992

0

Lateral Adjustments

Cross section CO-18

Active channel width

Changes in active channel width Rio Grande, NM (after Richard et al., 2005)

Exponential Model Results

Hydraulic Geometry Equations (Julien & Wargadalam 1995)

3c. River Problems in Estuaries

Sand and Gravel Mining

Longitudinal Flood Profile for Sg Muda (Q=1340m³/s)

Received Receiving

Real South South South South South South

Guno bridge

Circusancity // K

•from Ji et al. ASCE-JHE, Nov. 2011

Rivers and Dams

River Equilibrium
 Aggradation
 Degradation below Dams
 Case Study Gupo Bridge
 Case Study Dam Break

Case-Study: Gupo Bridge during Typhoon Maemi in 2003

Alternative plan III

Figure 14. Gupo and Subway Bridge Piers before and after retrofitting construction

Rivers and Dams

River Equilibrium
 Aggradation
 Degradation below Dams
 Case Study Gupo Bridge
 Case Study Dam Break

How does the flood wave propagate downstream?

21 Mile Dam, Elko County, NV, Feb 8, 2017

25/01/2019 12:28:2

AO V

M1 - Barragem

The Fundão Dam Collapse

Bento Rodrigues Town, 6 November 2015

Gesteira Town 6 November 2015

Candonga Dam, 6 November 2015 C ≈ 700,000 mg/l Coast, 21 November 2015 C ≈1,500 mg/l

Doce River at Governador Valadares City 11 November 2015, C ≈30,000 mg/l

Hydrographs

Observed hydrographs in Doce River after the Fundão Dam break (ANA, 2015).

from Marcos Palu

Floodwave Propagation Modeling

from Marcos Palu and Julien ASCE-JHE (2020)

Sediment Concentration Measurements

Observed suspended sediment concentration (CPRM & ANA, 2015)

Sediment Routing NEW Development!

The one-dimensional advection-dispersion equation with settling is applied on the evaluation of transport of suspended load in open channels (Fischer et al., 1979; Julien, 2010).

$$\frac{\partial C}{\partial t} + U \frac{\partial C}{\partial x} = K_d \frac{\partial^2 C}{\partial x^2} - kC$$

C is the concentration: U is the flow averaged velocity; *K_d* is the longitudinal dispersion coefficient;

 $k = \omega/h$ is the settling rate.

Analytical solution for a constant spill of finite duration τ is:

$$C(x,t) = \frac{C_0}{2} \begin{cases} e^{\frac{Ux}{2K_d}(1-\Gamma)} \left[erfc\left(\frac{x-Ut\Gamma}{2\sqrt{K_d}t}\right) - erfc\left(\frac{x-U(t-\tau)\Gamma}{2\sqrt{K_d}(t-\tau)}\right) \right] \\ + e^{\frac{Ux}{2K_d}(1+\Gamma)} \left[erfc\left(\frac{x+Ut\Gamma}{2\sqrt{K_d}t}\right) - erfc\left(\frac{x+U(t-\tau)\Gamma}{2\sqrt{K_d}(t-\tau)}\right) \right] \end{cases}$$

$$Where: \ \Gamma = \sqrt{1+4\eta} \text{ and } \eta = \frac{kK_d}{u^2}$$
The complementary error function *erfc* is equal to:
$$erfc(b) = 1 - erf(b) = 1 - \frac{2}{c} \int_{-\infty}^{b} e^{-\beta^2} d\beta$$

$$erfc(b) = 1 - erf(b) = 1 - \frac{2}{\sqrt{\pi}} \int_{0}^{b} e^{-\beta}$$

erfc.precise in Xcel
Sediment Concentration Modeling

from Palu and Julien ASCE=JHE (2018)

Summary and Conclusions

1. River Equilibrium

Rivers can reach equilibrium after several years.

- 2. Aggradation
- Aggradation forces out-of-banks rivers and braiding.
- 3. Degradation below Dams

Degradation causes incision and narrowing with possible impact on structures.

4. Case-study Gupo Bridge

Retrofitting based on stability, not equilibrium.

5. Case-study Dam Break

Numerical modeling of flood and sediment waves.

Second Edition

Thank You!

ACKNOWLEDGMENTS

Gerrit Klaassen, Netherlands Dr. Jaya Wargadalam, Indonesia Dr. Shigeru Kawai, Japan Dr. Deborah Anthony USA Dr. Jenifer Duan, UArizona Dr. Phil Combs, USACE Dr. Kiyoung Park, K-Water S. Korea Dr. Claudia Leon, USBR Dr. Azazi Zakaria, USM, Malaysia Dr. Amin Ab. Ghani, USM, Malaysia Dr. Ev. Richardson, CSU Dr. Gigi Richard, FLC, Colorado Dr. Un Ji, KICT, S. Korea Dr. Sang-kil Park, PNU, S. Korea Dr. Marcos Palu, Brasil