Sedimentation Engineering

24-11113

Pierre Y. Julien Colorado State University

USBR Lectures – Part II Denver, Colorado January 17, 2024

USBR Short Course

1. Watersheds and Climate

- **2. Sedimentation Engineering**
- 3. Rivers and Dams
- 4. River Environment

Sedimentation Engineering

Incipient motion SEMEP and SEMEPP Mudflows and Debris Flows

Shields Parameter

 Shields only defines the ratio of the shear force (no lift) to the particle submerged weight

Figure 7.6. Force diagram under steady uniform flow

Julien Erosion & Sedimentation (2012)

Figure 7.7. Shields diagram for granular material

Angle of Repose Granular Material

Angle of Repose Effects of Angularity

Motion occurs when the center of gravity (G), is above the point of contact (C).

Julien Erosion & Sedimentation (2012)

Angle of Repose Boundary and Particle Configuration

Figure 7.3. Angle of repose for spheres of different diameter

Angle of Repose Boundary and Particle Size

Figure 7.12. Relative stability for different particle sizes

Laboratory experiments at CSU

~10,000 particle velocity measurements

Bounvilay and Julien, ASCE-JHE (2013)

ASCE-JHE (2013)

Lets remember: Incipient motion depends on the sum of moments, not forces. Particles move at Shields values << 0.03 (in shaded box)

Sedimentation Engineering

Incipient motion SEMEP and SEMEPP Mudflows and Debris Flows

Sediment Transport Mechanism Einstein -> bottom up Modified Einstein (MEP) -> top down

Velocity Profile

Concentration Profile

Problems with the 'traditional' Modified Einstein Procedure

Series Expansion Modified Einstein Procedure SEMEP

Efficient Algorithm for Computing Einstein Integrals

Junke Guo¹ and Pierre Y. Julien²

Einstein A	Igorithm Cal	lculator:						
This calculator	was made using	equations in the following	reference:					
Junke Guo an	d Pierre Y. Julien	(2004). "Efficient Algorithm	n for Computing Einstein Integrals." J	I. Hydraul. Eng.	, 130(12), 1198-1201.			
DOI: 10.1061/	(ASCE)0733-942	9(2004)130:12(1198)						
Procedure:								
	The cells with	red are inputs while the	e cells with blue are outputs.					
	To calculate,	place mouse on user in	put cell, type in the desired inpu	ts and press	the enter key.			
	To change the	e inputs, simply select o	ell again and type in desired inp	out and press	the enter key.			
	To view the e	quations used in the ca	Iculations select the Einstein Alg	orithm Calcul	lations tab below.			
	Also included	are graphical solutions	for $J_1(z) \& J_2(z)$ using E-values	of 0.1 and .00	0001.			
Non-Intea	er Algorithm	Analysis						
Ū	Ū							
		Value Inputted	Value Used In Analysis					
Input:	Z=	1	1					
	E=	0.00001	0.00001					
Ouput:	$J_{\ell}(z) =$				J_(Z)=			
	L (0)-				1 (0)-			
	U ₁ (0)-	4.0545.04			U ₂ (0)-	0.5075.04		

Primary Mode of Transport from SEMEP Ratio of the suspended to total load q_s/q_t

Calculate the Suspended Load

 $q_{s} = \int_{2ds}^{h} cv dy$ $q_{s} = \int_{2ds}^{h} c_{a} \left(\frac{h-y}{h} \frac{a}{h-a}\right)^{Ro} \frac{u_{*}}{\kappa} \ln\left(\frac{30y}{d_{s}}\right) dy$ $c_{a} = \frac{q_{b}}{v_{a}a}$ $v_{a} = 11.6u_{*}$ $q_{s} = 0.216q_{b} \frac{E^{Ro-1}}{(1-E)^{Ro}} \left\{ \ln\left(\frac{30h}{d_{s}}\right) J_{1} + J_{2} \right\}$

Calculate the Total Load

$$q_{t} = q_{b} + q_{s}$$

$$q_{t} = q_{b} + 0.216q_{b} \frac{E^{Ro-1}}{(1-E)^{Ro}} \left\{ \ln\left(\frac{30h}{d_{s}}\right) J_{1} + J_{2} \right\}$$

Ratio of qs/qt

$$\boxed{\frac{q_s}{q_t} = \frac{0.216 \frac{E^{Ro-1}}{(1-E)^{Ro}} \left\{ \ln\left(\frac{30h}{d_s}\right) J_1 + J_2 \right\}}{1 + 0.216 \frac{E^{Ro-1}}{(1-E)^{Ro}} \left\{ \ln\left(\frac{30h}{d_s}\right) J_1 + J_2 \right\}}}$$

Primary Mode of Transport

Ratio of Measured to Total Load from SEMEP

Total Sediment Load from SEMEP Using **Depth-Integrated Concentration Measurements**

Seema C. Shah-Fairbank, M.ASCE¹; Pierre Y. Julien, M.ASCE²; and Drew C. Baird, M.ASCE³

Abstract: This study improves total sediment load calculations on the basis of depth-integrated sediment concentration measurements for channels with significant sediment transport in suspension. The series expansion of the modified Einstein procedure (SEMEP) removes most of the empiricism found in the existing modified Einstein procedures (MEP). SEMEP calculations require field measurements of flow discharge, depth-integrated suspended sediment (SS) concentration, and suspended particle sizes. SEMEP calculates the Rouse number, Ro, from the median particle size measured in suspension d_{50ss} . On the basis of the sediment discharge measurements collected from 14 rivers, the accuracy of sediment discharge calculations depend on the ratio of the shear velocity u_* to the settling velocity ω . SEMEP performs accurately (error less than 25%) and without bias when $u_*/\omega > 5$. Calculations are also acceptable, but less accurate when u_*/ω is between two and five. Both SEMEP and MEP should not be used when the value of $u_*/\omega < 2$, and a simplified formulation on the basis of bed sediment discharge is recommended when $u_*/\omega < 2$. DOI: 10.1061/(ASCE)HY.1943-7900.000466. © 2011 American Society of Civil Engineers.

ELSEVIER

International Journal of Sediment Research 30 (2015) 1-12

Sediment load calculations from point measurements in sand-bed rivers

Seema C. SHAH-FAIRBANK¹ and Pierre Y. JULIEN²

Abstract

Point velocity and suspended sediment concentration measurements are used to calculate the total sediment discharge in sand-bed rivers. Calculations with the Series Expansion of the Modified Einstein Point Procedure (SEMEPP) depend on grain diameter d_s and settling velocity ω , flow depth h, shear velocity u, and sampling depth h_p . This procedure extends the applicability of the Modified Einstein Procedure (MEP) by using point sediment concentration and velocity measurements. This procedure is tested using the laboratory data from Coleman, and field measurements from the Enoree, Middle Rio Grande and Mississippi Rivers. Based on 801 point measurements over 124 verticals at flow depths ranging from 0.17 m to 33.5 m and sediment concentrations less than 0.1 kg L⁻¹, the accuracy of the calculations depends on u_*/ω and h_p/d_s . Point measurement techniques like SEMEPP are well-suited when $u_*/\omega > 5$ where at least 60% of the total sediment load is measured when 90% of the flow depth is sampled. The determination of sediment discharge from point measurements is most accurate in deep rivers when $h_{tr}/d_s > 10,000$, and $u_*/\omega > 10$. Point measurements are not well-suited for shallow rivers and laboratory flumes where h < 0.5 m and when $u_*/\omega < 2$.

International Journal of Sediment Research 34

Contents lists available at Science

journal homepage: www.elsevier.com/locate/ijsrc

Original Research

The ratio of measured to total sediment discharge

Chun-Yao Yang*, Pierre Y. Julien

Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, USA

Zone of Applicability q_m/q_t

Calculate the Measured Load

 $q_{m} = \int_{dn}^{h} cv dy$ $q_{m} = \int_{dn}^{h} c_{a} \left(\frac{h-y}{h} \frac{a}{h-a}\right)^{Ro} \frac{u_{*}}{\kappa} \ln\left(\frac{30y}{d_{s}}\right) dy$ $c_{a} = \frac{q_{b}}{v_{a}a}$ $v_{a} = 11.6u_{*}$ $q_{m} = 0.216q_{b} \frac{E^{Ro-1}}{(1-E)^{Ro}} \left\{ \ln\left(\frac{30h}{d_{s}}\right) J_{1A} + J_{2A} \right\}$

Calculated Total Load

$$q_{t} = q_{b} + q_{s}$$

$$q_{t} = q_{b} + 0.216q_{b} \frac{E^{Ro-1}}{(1-E)^{Ro}} \left\{ \ln\left(\frac{30h}{d_{s}}\right) J_{1} + J_{2} \right\}$$

Ratio of qm/qt

$$\boxed{\frac{q_m}{q_t} = \frac{0.216 \frac{E^{Ro-1}}{(1-E)^{Ro}} \left\{ \ln\left(\frac{30h}{d_s}\right) J_{1A} + J_{2A} \right\}}{1+0.216 \frac{E^{Ro-1}}{(1-E)^{Ro}} \left\{ \ln\left(\frac{30h}{d_s}\right) J_1 + J_2 \right\}}}$$

Measured to Total Sediment Load from a standard suspended sediment sampler dn = 10 cm

Field Testing by Seema Shah-Fairbank

Clearwater River, ID

Results from Depth Integrated Sampler

River		Hydraulic Data				Median Particle Size (mm)		Total Number of	Number of Samples with Calculated Total Load within 25% of measured Total Load	
		V (m/s)	h (m)	W (m)	S	Bed	Suspension	Samplers	Proposed Method	BORAMEP
Susitna River near Talkeetna Alaska	238 to 1,300	1.2 to 2.7	1.1 to 2.4	165 to 202	0.0011 to 0.0018	0.392 to 41.465	0.004 to 0.227	37	37	3
Chulitna River below Canyon near Talkeetna, Alaska	212 to 1,350	1.2 to 2.7	1.7 to 3.6	98.5 to 136	0.00039 to 0.011	0.744 to 11.273	0.006 to 0.500	43	43 33	
Susitna River at Sunshine, Alaska	504 to 2,740	1.4 to 2.6	0.8 to 4.4	174 to 311	0.0012 to 0.0024	0.436 to 29.440	0.006 to 0.175	37	36	3
Snake River near Anatone, Washington	1180 to 37,770	1.9 to 3.3	3.9 to 5.8	169 to 197	0.000087 to 0.00124	0.412 to 43.077	0.0075 to 0.079	31	27	1
Toutle River at Tower Road near Silver Lake, Washington	29.2 to 592	1.2 to 3.1	0.46 to 2.3	20 to 70	0.0013 to 0.0055	0.583 to 20.766	0.025 to 0.220	19	16	9
North Fork Toutle River near Kid Valley, Washington	26.1 to 171	1.7 to 2.8	0.74 to 1.1	20.5 to 59	0.0032 to 0.0038	3.161 to 9.290	0.047 to 0.158	5	5	2
Clearwater River at Spalding, Idaho	677 to 2,740	1.2 to 3.4	4.1 to 5.5	128 to 146	0.000183 to 0.00056	0.390 to 27.636	0.005 to 0.291	35	32	1

Sediment Calculations (All Korean Rivers)

Process for River Sediment

SEMEP vs MEP testing in South Korea

35 Gaging stations in South Korea

MEP vs SEMEP

Sedimentation Engineering

Incipient motion SEMEP and SEMEPP Mudflows and Debris Flows

Physical Properties

Table 10.3. Physical properties of mudflows and debris flows

C_v	C_w	C_{ppm}	$C_{mg/l}$ mg/l	$\rho_m^a \text{ kg/m}^3$	$ ho_{md}$ kg/m ³	p_o
0.05	0.122	122,401	132,500	1,082	132	0.95
0.10	0.227	227,468	265,000	1,165	265	0.9
0.20	0.4	398,496	530,000	1,330	530	0.8
0.30	0.53	531,773	795,000	1,495	795	0.7
0.40	0.64	638,554	1,060,000	1,660	1,060	0.6
0.50	0.73	726,027	1,325,000	1,825	1,325	0.5
0.60	0.8	798,994	1,590,000	1,990	1,590	0.4
0.70	0.86	860,789	1,855,000	2,155	1,855	0.3

^{*a*} Calculations assuming $G = \rho_s / \rho = 2.65$

1. Rheology

Classification and Rheology

Total shear stress : $\tau = \tau_y + \tau_v + \tau_t + \tau_d$ **Yield stress** Viscous stress **Turbulent stress Dispersive stress**

Yield Strength for Landslides

Viscometer Test

Rheogram

Figure 11: FT-02 Pseudo-Shear Diagram

Yield and Viscosity of Mudflows

Mudflow Rheology

Turbulence

EXPERIMENTAL ANALYSIS

VIDEO FOOTAGE from Anna Paris and Aronne Armanini (U. Trento)

Rheology of Debris Flows

Debris flow Rheology

$$\tau = \tau_{y} + \mu_{m} \frac{dv}{dy} + \zeta \left(\frac{dv}{dy}\right)^{2} quadratic model$$

$$\zeta = \rho_m l_m^2 + c_{Bd} \rho_s \lambda^2 d_s^2$$
 turbulent-dispersive parameter

where

 ρ_m is the mass density of the hyper-concentration

 l_m is the mixing length, ($l_m = \kappa y$ from elevation y and von Karman constant $\kappa \cong 0.4$). Note that the mixing length is scaled to the flow depth c_{Bd} is the Bagnold coefficient ($c_{Bd} \approx 0.01$)

 ρ_s is the mass density of solids

 $\lambda = \left(\left(\frac{0.615}{C_v} \right)^{1/3} - 1 \right)^{-1}$ is Bagnold's linear concentration given the volumetric concentration C_v , and

 d_s is the grain size.

The dispersive term requires three condition: (1) very high concentration, i.e. $C_v > 0.5$; (2) very large sediment where h is the flow depth; and (3)high rates of deformation, i.e. large dv/dy. As a result, the turbulent term is dominant unless ds>h/20.
Turbulent or Dispersive?

Figure 10.16. Resistance diagram for hyperconcentrated flows.

Mitigation Countermeasures

Guidelines for designing mitigation countermeasures based on the type of hyperconcentrated flow

2. Landslides

Yield Stress -> Landslides

Total shear stress :

 $\tau \sim \tau_y$ Landslides \iff Yield stress

Mangun mountain, South Korea

Landslides

Steep hillslopes
High rainfall precipitation
High Infiltration
Saturated yield strength ~ 1kPa

Countermeasures

Landslide Features:

- High precipitations and infiltration
- Steep terrain
- Saturated yield strength ~ 1kPa

Effective Solution Drain, Slope Reduction, Vegetation

- Terraces
- Improved drainage

Landslide Countermeasures

Effective Solution

Terraces

Drainage

Slope reduction, drain, vegetation

3. Mudflows

Yield + Viscous -> Mudflows

Total shear stress :

 $\tau = \tau_y + \tau_v$

Mudflow \iff Yield stress \downarrow

Viscous stress

Mudflow

High viscosity and yield stress High concentration of silts and clays 45% < Cv < 55% Low velocity Low Froude Number No abrasion Large flow depths High pressure

Countermeasures

Mudflow Features:

- High viscosity and yield stress
- High concentration of silt and clay
- 45% < Cv < 55%
- Low Froude Number
- No abrasion

Storage basins
 Deflection walls

Mudflow Countermeasures

- Storage basins
- Deflection walls

Storage Basin

Deflection Wall

4. Mudfloods

Turbulence -> Mudfloods

Total shear stress : $\tau = \tau_y + \tau_v + \tau_t$ Yield stress Viscous stress

Mudfloods 👄 Turbulent stress

Mud Flood

- Turbulent
- Non-cohesive particles
- Small particles
- Cv as high as 40%
- High velocity
- High Froude Number
- Abrasive

Straight Channel

Countermeasures

Mud Flood Features:

- Turbulent
- Non cohesive particles
- Cv as high as 40%
- High Froude Number
- Abrasive

Effective Solution — Convey

- Straight channels
- -Lined canals, berm and levee channels
- Drop structures, energy dissipators

Mudflood Countermeasures

Effective Solution

- Straight channel
- Lined canal
- Berm and levee
- Drop structure

Straight Channel

Increased conveyance

Lined canal with drop structures

5. Debris Flows

Dispersive -> Debris Flows

Total shear stress : $\tau = \tau_y + \tau_v + \tau_t + \tau_d$ Mudflows \longleftrightarrow Viscous stress Debris flows \iff Dispersive stress

Los Corales

Los Corales

Los Corales

Debris Flow

• Dispersive

- Large clastic particles
- Non cohesive
- Low viscosity
- High velocity
- Destructive impact force

Countermeasures

Debris Flow Features:

- Dispersive
- Large clastic particles
- Low viscosity
- Large velocity
- High impact

- Concrete Sabo dams
- Steel frames and debris rakes

Debris flow Countermeasures

Effective Solution

- Concrete sabo dams
- Steel Frames
- Debris Racks

Sabo Dam Construction

Retain large rocks Drain water

Sabo Dam and Steel Frames

Debris Rakes

Sabo Dam and Steel Frames

Classification and Rheology

Total shear stress : $\tau = \tau_{y} + \tau_{v} + \tau_{t} + \tau_{d}$ Mudflows \longleftrightarrow Viscous stress Debris flows \iff Dispersive stress

Conclusions

Mitigation structures for mudflows

 Detention basins
 Deflection walls

Mitigation structures for mud floods Straight channels Lined canals, berm and levee channels Drop structures, energy dissipators

Mitigation structures for debris flows
 » Concrete Sabo dams
 » Steel frames and debris rakes

6. Example (Quiz?) Mt Umyeon

Summary and Conclusions

1. Incipient Motion

Incipient motion depends on ratio of moments, not forces.
2. SEMEP and SEMEPP
The Einstein integrals are accurately solved numerically.
3. Mudflows and Debris Flows
The flow type depends on flow rheology.
Effective countermeasures depend on the rheology.

PIERRE Y. JULIEN

Erosion and Sedimentation

Second Edition

Thank You!

ACKNOWLEDGMENTS

Dr. Bounthanh Bounvilay, Laos Dr. Claudio Meier, Chile Dr. Junke Guo, UNO, USA Dr. Seema Shah-Fairbank, CalPoly Dr. Chunyao Yang, HydroTech, USA Dr. Jimmy O'Brien, FLO, USA Carmen Bernedo, Stantec, Peru Anna Paris, Maccaferri, USA Dr. Jaihong Lee, SCSU, USA Dr. Jose B. Anderson, Brasil Dr. Neil Andika, Indonesia Dr. Claudia Leon, USBR Anna Paris, Maccaferi, Italy Dr. Jaehoon Kim, KFRI, S. Korea

pierre@engr.colostate.edu