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Objectives

Brief overview of river and meandering
characteristics, and riprap design:

1. River Meandering and Braiding;
2. Riprap Design;
3. Case Study; Gupo Bridge, South Korea.




1. River Meandering and
Braiding
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Fig.6. Free meandering patterns of Tanana River in Alaska




Slide 9

PGC1 Numerical model evaluated the hydrodynamics of the location and recommendations were made to
construct 4 dikes on the right bank. After construction, the problem was immediately converted from
unmanageable to a manageable situation. It is anticipated that proposed numerical stdies will similarly

identify a manageable solution.
Phil Combs, 8/29/2002



Migration of the Mississippi River

Chute Cutoff

Williams River, AK Owens River, CA
(Photo by N.D. Smith) (Photo by Marli Bryant Miller




Natural Meander Cutoffs

+ Lateral migration
increases sinuosity
of the channel until
two bends connect

O Sedimentation Deposits of Abandoned Oxbow
occurs where the
bends connect

— Neck cutoff
— Abandoned
channel
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soon picks up

replenishment from
scores of tributaries.
By the time it is
Joined by the Amban
Ganga at
Polonnaruwa its size
is already
awe-inspiring.
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Hydraulic geometry of the Rio Gr
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Navigation

Historic Artificial Meander
Cutoffs

« Stages of meander cut-off construction for
navigation on Wood Creek, NY in 18" century
are similar to design methods today
Clear natural channel
Clear cut channel and stockpile logs
Excavate ditch across meander neck
Dam old channel Sketchos fom

New channel filled by stream flow New York State Museum)
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Engineered Cutoffs

* |llustration of artificial cutoff construction

(a) Pilot channel (b) Cutoff

- Revetment

e

Revetment

 Longitudinal dyke
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(Figure 9.21 from Julien, 2002)

Engineered Meander Cutoffs
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£ * Fly River in Papua
p sampe New Guinea:

y ‘ meander cutoff
showing abandoned
channel and new
straight river flow path
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(Rowland et al. 2005)
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COMPARISON OF
GREENVILLE REACH

1933 & 1975

2. Riprap Design
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Figure 7.14. Moment stability analysis of a particle - PartiCIeS are Stable
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Simplified Stability
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Velocity Method
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Figure 8.4. Particle-stability diagram.
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Riprap Design

Rock Riprap Plantings or soil

Section View bioengineering
systems

Stream-forming flow
———— ﬁ>\/\m' o
)

Erosion
control
fabric

Top of riprap
minimum thickness
equals maximum
rock size

Gravel bedding,
geotextile fabric as

"I-
Nt
f&
/r needed
Bottom riprap minimum thickness equals

2x maximum rock size

Riprap Thickness

US Army Corp of Engineers

» 30 cm for practical placement

» At least the diameter of the upper limit of d,
stone

« At least than 1.5 times the diameter of upper
limit d;, stone, whichever is greater.

 If riprap is placed under water, the thickness
should be increased by 50%.

« Ifitis subject to attack by large floating
debris or wave action it should be increased
15to 30 cm.
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Riprap Failure

(a) Particle erosion

transitional slide, riprap by
slump, and sideslope
failure.

* The four types of riprap
failure are shown in the
figure to the right.

* The most common

(d) Sideslope fallure

failure type is particle .
erosion from flow §

Figure 8.6, Riprap-failure types

Gradation of Riprap

Well graded riprap
scours less than
uniform size riprap due
to the process of

Table 8.2. Suggested riprap size gradation

Percent Sieve diameter  Stone diameter

TG ri i g finer by weight (xdsp) (xdsp)
. 0 0.25 —
* Suggested Riprap 10 035 028
gradation from USACE gg 82‘5’ 043
is shown to the right o 080 o
+ Riprap with poor s o
gradation may be used, |+ 160 150
but a “filter” layer is . e L0
required ‘ : —
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Gravel Filters

* Y thickness of

Riprap layer is a 5 ds(filter) < 40
good guideline d,(bank)

» Suggested gravel .
filter gradation m <
equations are d,s(bank)

shown to the right
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