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ABSTRACT: The classic sidewall correction procedure, Vanoni-Brook’s method, originates from Einstein-

Johnson’s work. However, Johnson’s contribution is almost oblivious in recent literature because his friction

equation for the sidewall flow is difficult to solve. This note then revisits Einstein-Johnson’s sidewall cor-

rection procedure and solves Johnson’s friction equation explicitly and exactly. Besides, it extends Einstein-

Johnson’s procedure to transitional-, and rough-sidewall turbulent flows. The presented exact procedure

facilitates Einstein-Johnson’s sidewall correction for applications in flume experiments and sediment trans-

port analysis in rivers, streams, and canals.

CE Database subject headings: Flume experiments; Friction factor; Lambert function; Open channel flow;

Shear stress; Sidewall correction.

Introduction

Open channel flow has different shear stresses between the bed and the sidewalls. For rivers, the bed shear

stress governs bedload transport thereby determining the channel vertical processes; the sidewall shear stress

erodes the banks thereby influencing the bank stability. For flume experiments on sediment transport (Wang

and Parker 2005; Heyman et al. 2015), bridge scour (Day and Raikar 2005), and vegetation flow (Cheng

and Nguyen 2011), the sidewall correction is required for almost all tests. Otherwise, data from different

flumes do not generally match, and data from narrow flumes (3D flow) cannot be used for wide rivers (2D

flow). Therefore, the sidewall correction is interesting for both engineers and researchers.

Although several sidewall correction methods (Knight et al. 1984; Yang and Lim 1997; Guo and Julien

2005; Guo 2015) are available, Einstein’s (1934, 1942) procedure or its modifications (Johnson 1942; Vanoni

and Brooks 1957) are still widely used. Einstein hypothesized that: (i) the entire cross-section is divided

into two sub-areas Ab and Aw which correspond to the bed and the sidewalls, respectively, where the fluid

interfaces are frictionless so that the energy loss of each sub-area is dissipated by the associated wall shear

stress; (ii) the two sub-areas are like two independent parallel channels with the same velocity V and energy

slope S f as the entire cross-section but different roughness; similar to the whole flow, Manning’s resistance
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equation applies for both sub-areas. For the sidewall flow, these hypotheses lead to (Guo 2015):

Rw =

(
nwV√

S f

)3/2

, Aw = 2hRw, τw = γRwS f (1)

where Rw, nw, and τw are the sidewall hydraulic radius, Manning’s coefficient, and shear stress, respectively;

h is the flow depth; and γ is the specific water weight. Consequently, the bed sub-area flow has:

Ab = bh−Aw, Rb = Ab/b, τb = γRbS f (2)

where b is the channel width; Rb and τb are the bed hydraulic radius and the shear stress, respectively.

Johnson (1942) noticed that Manning’s equation is valid only for rough-wall turbulent flow. For flume

experiments with glass sidewalls, the corresponding flow is smooth-wall turbulent flow which is governed

by Prandtl’s friction law (Schlitchting 1979):

1√
fw

= 2log10

(
Rw

√
fw

)
−0.8 (3)

where fw and Rw = 4RwV/ν are the sidewall friction factor and Reynolds number, with ν as kinematic water

viscosity. In terms of fw and f (the overall friction factor), Einstein’s second hypothesis states:

V =

√
8gRwS f

fw

=

√
8gRS f

f
(4)

where R is the overall hydraulic radius. Equation (4) results in:

Rw =

(
fw

f

)
R, Rw =

4RwV

ν
=

(
fw

f

)
R (5)

where R= 4RV/ν is the overall Reynolds number. Inserting Rw from Eq. (5) into Eq. (3) gives:

1√
fw

= 2log10

(
R

f
f

3/2
w

)
−0.8 (6)

which was solved iteratively for fw previously. With ρ as water density, the sidewall shear stress τw then

follows from:

τw =
fw

8
ρV 2 (7)

and the sidewall hydraulic radius Rw is found from Eq. (5). Finally, the bed shear stress τb is obtained from

Eq. (2). Alternatively, τb is often found in terms of the bed friction factor:

fb = f +
2h

b
( f − fw) (8)

resulting from the force balance: (b+2h)τo = bτb+ 2hτw with τo as the overall boundary shear stress.

This procedure is called Einstein-Johnson’s sidewall correction validated with data from uniform and non-

uniform, sub- and supercritical flows (Guo 2015); yet, it is seldom cited in literature because a simple

explicit solution to Eq. (6) has not been found.

Practically, Vanoni and Brooks’ (1957) procedure is used, which is just a graphical solution to Eq. (6) in

terms of fw versus R/ f . For computer program, the graphical solution is further approximated analytically

(Julien 1995; Cheng and Chua, 2005; Cheng et al. 2010; Cheng 2011). Unlike these approximations, this

research solves Eq. (6) exactly in terms of the Lambert W -function; it also extends Einstein-Johnson’s

procedure to transitional- and rough-sidewall turbulent flows.
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Figure 1: Plot of Lambert W -function

Exact Einstein-Johnson’s Procedure

The Lambert W -function has been used by Sonnad and Goudar (2004) to solve the Colebrook (1939) equa-

tion for pipe friction factor. Similarly, this function can also solve Johnson’s sidewall correction Eq. (6)

explicitly. Mathematically, the Lambert W -function is defined by one of the following three equations:

WeW = x (9)

lnW +W = lnx (10)

W (x) = ln
x

W (x)
= ln

x

ln
x

ln
x

. . .

(11)

MatLab has this function named by “lamberw(x)”; Mathematica, Maple and Excel have it as a built-in

function “LambertW(x)”. The function W (x) is plotted in Fig. 1, showing two branches: the upper one

(solid line) is called the primary branch which is similar to the logarithmic function as x→ ∞; the lower

branch is denoted by W−1 (x). Only the primary branch is interesting in this research below.

Rearranging Eq. (6) in the form of Eq. (10) results in

ln

(
ln10

6

1√
fw

)
+

ln10

6

1√
fw

= lnx (12)

with

x=

(
9

400

R

f

)1/3

(13)

Therefore, Eq. (12) has the exact solution:

ln10

6

1√
fw

=W (x) =− ln
W (x)

x
(14)

where Eq. (11) is used. Equation (14) yields:

fw =
1

36

[
log10

W (x)

x

]−2

(15)
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The bed friction factor fb then follows from Eq. (8). Clearly, Eq. (15) is explicit, exact and brief so that it

makes Einstein-Johnson’s sidewall correction procedure simple and accurate.

Generalized Einstein-Johnson’s procedure

Equation (15) is limited to smooth-sidewall turbulent flow. If the sidewall flow is rough-wall turbulent flow,

then the von Karman friction law (Schlitchting 1979), in terms of hydraulic radius, should be used:

1√
fw

= 2log10

2Rw

kw

+1.74 (16)

where kw is the equivalent Nikuradse sand roughness. Applying Rw from Eq. (5) to Eq. (16) and rearranging

it according to Eq. (10) results in

ln

(
ln10

4

1√
fw

)
+

ln10

4

1√
fw

= lny (17)

with

y=

√
π2R

2 f kw

(18)

Equation (17) has the exact solution:
ln10

4

1√
fw

=W (y) (19)

or

fw =
1

16

[
log10

W (y)

y

]−2

(20)

This equation is considered the extension of Einstein-Johnson’s procedure for rough-sidewall turbulent flow.

For transitional-sidewall turbulent flow, the Colebrook (1939) equation is used, resulting in:

1√
fw

=−2log10

(
2.51 f

R f
3/2
w

+
1

3.71 fw

f kw

4R

)
(21)

where Eq. (5) is used. This equation can be solved exactly by applying the generalized Lambert W -function

(Scott et al. 2006), resulting in:

1√
fw

=−3

2
log10

[(
W (x)

x

)4

+

(
W (y)

y

)8/3
]

(22)

which is compared with the numerical solution of Eq. (21) in Fig. 2 showing perfect agreement. Therefore,

Eq. (22) is the extension of Einstein-Johnson’s procedure to the transitional-sidewall turbulent flow. Besides,

(i) as kw = 0 (smooth wall), y→ ∞; according to Eq. (9), one has limy→0W (y)/y = limy→∞ exp(−W ) = 0

so that Eq. (22) reduces to Eq. (15); (ii) as R/ f → ∞ (rough wall), x→ ∞; one has limx→∞W (x)/x =

limx→∞ exp(−W ) = 0 so that Eq. (22) reduces to Eq. (20). Briefly, Eq. (22) is the generalized Einstein-

Johnson’s sidewall correction equation, which is applicable for smooth-, transitional-, and rough-sidewall

turbulent flows. Furthermore, this research makes Einstein-Johnson’s sidewall correction as a two-step

procedure: (i) calculate fw from Eq. (22); and (ii) calculate fb from Eq. (8). This procedure is applicable

for flows in laboratory flumes, canals, streams, and rivers.
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Figure 2: Comparison of Eq. (22) with Eq. (21)

Application Example

Einstein-Johnson’s procedure has been systematically validated in Guo (2015) with data from uniform,

non-uniform, sub-, and supercritical flows. This example only demonstrates the application of the exact

procedure. Consider a laboratory experiment (Song 1994) in a rectangular flume 60cm wide with hydrauli-

cally smooth sidewalls and an artificially roughened bottom which had a slope So = 0.0025. Given water

temperature T = 19.1 ◦C, discharge Q= 0.09m3 /s, and flow depth h= 20.4cm, estimate the values of the

bed friction factor fb and the bed shear velocity u∗b.

For the overall flow, one can easily obtain: V = 0.735m/s, R= 0.121m, R= 3.54×105, and f = 0.0441

(from Eq. 4). For the sidewall flow, the parameter x from Eq. (13) is

x=

(
9

400

R

f

)1/3

=

(
9

400

3.5361×105

0.0441

)1/3

= 56.5

The sidewall friction factor from Eq. (15) is then

fw =
1

36

[
log10

W (x)

x

]−2

=
1

36

[
log10

W (56.5)

56.5

]−2

= 0.0169

which gives, from Eq. (8), the bed friction factor as:

fb = f +
2h

b
( f − fw) = 0.0441+

2(0.204)

0.6
(0.0441−0.0169) = 0.0625

Therefore, the bed shear velocity is:

u∗b =V

√
fb

8
= (0.735)

√
0.0625

8
= 0.0650m/s= 6.50cm/s

which is close to 6.38cm/s from the log-law velocity distribution data, and 6.39cm/s from Guo’s (2015)

method based on the cross-sectional velocity distribution.
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If the sidewalls are concrete with roughness kw = 1mm, the parameter y from Eq. (18) is also required:

y=

√
π2R

2 f kw

=

√
π2 (0.121)

2(0.0441)(10−3)
= 116

The sidewall friction factor then follows from Eq. (22):

fw =
4

9

{
log10

[(
W (56.5)

56.5

)4

+

(
W (116)

116

)8/3
]}−2

= 0.0275

The bed friction factor is then:

fb = 0.0441+
2(0.204)

0.6
(0.0441−0.0275) = 0.0554

and the bed shear velocity is:

u∗b = (0.735)

√
0.0554

8
= 0.0612m/s= 6.12cm/s

which is smaller than that from the flume with smooth sidewalls. This result is reasonable because the

overall shear stress τo does not change in the two cases.

Conclusions

This note presented an explicit and exact procedure for Einstein-Johnson’s sidewall correction in open chan-

nel flow. It showed that Johnson’s sidewall friction equation can be solved with the Lambert W -function

that can be readily implemented with Matlab, Mathematica, Maple, Excel, and other software thereby fa-

cilitating the sidewall correction procedure for flume experiments on sediment transport, bridge scour, and

vegetated flow. Besides, by applying the Colebrook friction law, a generalized Einstein-Johnson’s procedure

was proposed, which is applicable for smooth-, transitional- and rough-sidewall turbulent flows. A demon-

strated example showed that the bed shear velocity from the proposed procedure agrees with the values from

experiment and Guo’s cross-sectional velocity distribution.

Notation

The following symbols are used in this technical note:

Ab, Aw = sub-areas for bed and sidewall, respectively (m2);

b = channel width (m);

f = overall friction factor (–);

fb = bed friction factor (–);

fw = sidewall friction factor (–);

g = gravity acceleration (m s−2);
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h = flow depth (m);

kw = equivalent Nikuradse roughness for sidewall (m);

nw = sidewall Manning’s coefficient (s m−1/3);

R = Reynolds number based on 4R and average velocity (–);

Rw = sidewall Reynolds number (–);

R = radius (m);

Rb = bed hydraulic radius (m);

Rw = sidewall hydraulic radius (m);

S f = energy slope (–);

So = bottom slope (–);

V = cross-sectional average velocity (m3 s−1);

W (x) = Lambert W -function (–);

x, y = independent parameters (–);

γ = specific water weight (N m−3);

ν = kinematic fluid viscosity (m2 s−1);

ρ = density of fluid (kg m−3);

τo = overall boundary shear stress (Pa);

τb = bed shear stress (Pa); and

τw = sidewall shear stress (Pa).
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