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Abstract: Einstein’s integrals constitute one of the salient developments in theoretical sediment mechanics. An analysis of the accuracy
and computational efficiency of proposed methods for the calculation of the Einstein’s integrals is presented. First, the accuracy of those
techniques is determined using comparisons against highly accurate numerical results. For an infinite series solution, a study of accuracy
versus number of terms in the partial sum is performed. Then, the central processing unit (CPU) times of the procedures are determined and
compared over a full set of Rouse numbers and relative bedload-layer thicknesses. Finally, parallel versions of the methods are presented, and
their parallel efficiency is assessed. Based on the criteria of accuracy, CPU time, and parallelization efficiency, it is concluded that the
method by Guo and Julien, with modifications by Srivastava, is overall more efficient for implementation in sediment-transport
codes. DOI: 10.1061/(ASCE)HY.1943-7900.0001240. © 2016 American Society of Civil Engineers.
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Introduction

Numerous formulations have been proposed for the computation of
the total sediment- transport load (Julien 2002; Parker 2004; Vanoni
2006; García 2008). Existing methods can be categorized into three
main groups (Julien 2002): (1) formulas that are derived using re-
gressions on experimental data; (2) formulas based on the balance
of energy, such that the work done to carry particles is related to
the energy expenditure; and (3) formulations based on other first
principles. Among those procedures, Einstein’s approach (Einstein
1950) is based on first principles, and is built on the rigorous
foundation of continuum mechanics. Einstein’s method is widely
considered as one of the cornerstones of sediment mechanics
(Julien 2002; Guo and Julien 2004; García 2008; Shah-Fairbank
et al. 2011).

This method makes use of two integrals for the calculation of
the suspended-sediment load. Without considering the multiplying
factors, Einstein’s first (J1) and second (J2) integrals are defined as

J1ðE; zÞ ¼
Z
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ln y dy ð2Þ

where E = relative bedload-layer thickness, E ∈ ½0.0001; 0.1�
(usually considered as E ¼ 2d=H in the absence of bedforms/
vegetation, in which d is the bed particle diameter and H indicates
the water depth); y = dimensionless vertical coordinate; and z =
Rouse number, defined as the particle fall velocity divided by the
product of the von Kármán constant, κ, the inverse of the Schmidt
number (β) (Bombardelli and Jha 2009; Jha and Bombardelli 2009,
2010), and the shear velocity, u�. As most of the transport happens
as bedload when the Rouse number is higher than 5 or 6, the Rouse
number is assumed to vary between 0.1 and 6 in practical applica-
tions of the Einstein’s method (Julien 2002; García 2008).

Analytical solutions of those integrals do not exist; therefore,
Einstein (1950) provided nomograms for their calculation. Because
using nomograms impedes the automation of Einstein’s ap-
proach, several researchers developed simplifications, as is the
case of Colby and Hubbell (1961), Toffaleti (1968), and Simons
et al. (1981).

Einstein’s method remained mostly unused in computer codes
until very recently (Abad et al. 2008; Shah-Fairbank et al. 2011).
In fact, the considerable computational effort associated with the
evaluation of Einstein’s integrals [as a result of the sharp gradients
in the integrand functions near the bed (Nakato 1984; Zamani and
Bombardelli 2016)] hinders the use of the method. To overcome
this difficulty, several authors devised schemes to approximate the
Einstein integrals, from computational approximations, to the use
of convergent series solution, to regression-based schemes [Nakato
(1984), Guo and Wood (1995), Guo and Julien (2004), Abad and
García (Abad et al. 2006), Roland and Zanke (Abad et al. 2006),
Srivastava (Abad et al. 2006), García (2008), Abad et al. (2008),
and Shah-Fairbank et al. (2011)]. Given this menu of methods,
there is the natural question as to which ones are the most conven-
ient for each particular case.

In this paper, a systematic study of existing techniques of
approximation of Einstein’s integrals is presented, including the
method by Nakato (1984), the series-based scheme by Guo and
Julien (2004), the regression formula by Abad and García (Abad
et al. 2006), the modification of Guo and Julien’s approach by
Roland and Zanke (Abad et al. 2006), and the method by Srivastava
(Abad et al. 2006). The authors endeavor to uncover singularities or
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regions of inaccuracy in these methods, to provide optimal solu-
tions in different ranges of all admissible Rouse numbers and
relative bedload-layer thicknesses. The procedures are analyzed
based on three criteria: (1) accuracy, (2) computational efficiency
[i.e., central processing unit (CPU) time], and (3) the efficiency of
parallel versions of those schemes.

Existing methods are briefly introduced in the next section.
(Some details of their formulations are provided in Appendi-
ces I–IV.) Subsequently, the accuracy and efficiency of the tech-
niques are assessed. Then, the authors present parallel versions
of those approaches and assess their efficiency as well. An overall
evaluation of all methodologies is provided by the end of the paper.

Methods for the Calculation of Einstein’s Integrals

Evidently, the first effort to compute Einstein’s integrals was con-
ducted by Nakato (1984). Nakato divided the integrals into two
zones of mild and sharp variations. Nakato computed the integrals
in the former zone numerically, and devised an analytical solution
for the latter (Appendix I).

The second approximation to Einstein’s integrals was developed
by Guo and Wood (1995). They recast a modification of the first
Einstein integral into the beta function. They also used the first
terms in the expansion of an integral, similar to the second Einstein
integral, to approximate this second integral. Their derivation was
only applicable to less-than-unity Rouse numbers; therefore, it is
not considered in this paper.

The first major step toward the practical solution of Einstein’s
integrals was presented by Guo and Julien (2004). Guo and Julien
resolved the issues of values of the Rouse number in the method by
Guo and Wood (1995). In addition, they reworked both integrals
into a recursive formula. They derived an infinite series–based sol-
ution for their recursive equation. An overview of Guo and Julien’s
method is provided in the Appendix II.

The paper by Guo and Julien (2004) prompted three discus-
sions in 2006, by Abad and García, by Roland and Zanke, and by
Srivastava, all compiled into a single note (Abad et al. 2006).
Abad and García devised a regression-based polynomial approxi-
mation of the solution of each integral (Appendix III). Abad
and García claimed that their regression formula is more practical
and easy to implement in sediment-transport codes (Abad
et al. 2008).

Roland and Zanke (Abad et al. 2006) built explicit expressions
for the Einstein integrals (Appendix IV); however, their method
has large discrepancies in the values of the J2 integral for high
relative bedload-layer thicknesses (E > 0.01) with respect to
the exact value of the integrals. The suggested algorithm presents
singularities in the integer Rouse numbers, as the authors them-
selves acknowledged [Figs. 1–3 in Roland and Zanke (Abad et al.
2006)]. Their study was the first work to discuss computational
efficiency.

Finally, Srivastava, in Abad et al. (2006), conducted a rigorous
mathematical study of convergence regions of the partial sums by
Guo and Julien. Srivastava derived an explicit expression for the
recursive formula (Appendix V). In addition, he proposed remedies
for the problem of singularities in the series representation of the
Einstein integrals.

Guo and Julien (Abad et al. 2006) responded to these three
comments in a closure. They stated that Roland and Zanke’s
method is eventually equivalent to the combination of Guo and
Wood’s (1995) and Guo and Julien’s (2004) algorithms. They con-
ducted a study of the computational time of all methods and used
them in a real-world example of sediment transport. Later, their

algorithm was successfully implemented in sediment-transport
codes and verified in applications (Shah-Fairbank et al. 2011).

In the next section, computational efficiency and accuracy of
these methods are discussed.

Assessment of the Efficiency and Accuracy of
Existing Methods

The authors started by developing a rigorous verification of all
codes that they implemented in MATLAB for the previously men-
tioned methods. To that end, the authors used two high-order ordi-
nary differential equation (ODE) solvers written in MATLAB: the
NIntegrate command of Wolfram Mathematica, and stand-alone
computations in Microsoft Excel. The results of the codes were
compared against integral values in Table 1 of the closure by
Guo and Julien (Abad et al. 2006) and against the values of the
integral J1 for half arguments from Guo and Julien (2004). Then,
the authors evaluated the error for each method over a comprehen-
sive data set of 960 pairs of values in the (E, z) space. The errors of
the prediction of those five approaches are shown in Figs. 1 and 2.
In those figures, and unless noted, error refers to the relative error
of each scheme in which the results are compared against numerical
values obtained with the composite Simpson method with 10,000
points (Appendix VI). For the J1, Guo and Julien’s method was
used with 10 terms in the partial sum of Eq. (7). For the J2,
Guo and Julien’s method was used with the Eq. (10) closure for
the first infinite sum and 50 terms in the second partial sum. Fig. 3
shows the CPU time of the methods, with different parameters, to
calculate Einstein’s integrals for the same data set of (E, z). (The
number after Guo Julien refers to the number of terms in the partial
sum of the infinite series in J2). Finally, statistical measures of ac-
curacy are given in Table 1. Definitions of the statistical metrics are
provided in Appendix VII.

Figs. 1 and 2 show that most methods provide an overall error
smaller than 1% for most cases analyzed, which is acceptable in
practice for sediment transport modeling. However, there are some
areas in which the methods of Abad and García and Roland and
Zanke are relatively inaccurate in J1 and J2 (not shown for Roland
and Zanke’s method in Fig. 2).

Nakato’s procedure provides relatively low errors (with excep-
tions for high values of E and z), particularly for the J2 integral.
The accuracy of that method is comparable with that of the
composite Simpson’s integration with 1,000 points; nonetheless,
Nakato’s method is the slowest technique (Fig. 3). (Nakato’s
method was numerically integrated with 1,000 points in the slowly
varying part.)

The method by Guo and Julien is the most accurate for approxi-
mation of the J1 integral, even with 10-term truncation in the partial
sum of the last term in the right side of Eq. (7); it is also the most
accurate for J2. The only issue with their algorithm is that its J2
approximation slowly converges for large values of the relative
bedload-layer thickness [see Srivastava in Abad et al. (2006)].
Guo and Julien’s method is one of the fastest methods for compu-
tation of the J1 integral (equal CPU time with Roland and Zanke’s
method). However, for the J2 integral, this method requires almost
an order of magnitude more time to provide results with the equiv-
alent accuracy of the Srivastava method. In the test problems
(Table 1), the authors found no significant improvement of the error
metrics of computation of J2 integral when using partial sums with
more than 50 terms [first right-side term of Eq. (8)].

Additionally, the authors set up a test to evaluate the accuracy
of Eq. (10) as an explicit closure for the first right-side partial
sum in Eq. (8). Table 2 indicates that Guo and Julien’s closure
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is effective—to the precision of less than 0.3%—for all ranges of
the Rouse number (see line 1). In Table 2, the values indicate that
the method of Guo and Julien without closure (lines 3 to 7) is rel-
atively inaccurate in large Rouse numbers, and that at least 200 first
terms are needed to keep the error below 1%. Furthermore, the
explicit closure by Srivastava [Eq. (17)] is shown to be more ac-
curate than the closure by Guo and Julien [Eq. (10)].

The Roland and Zanke’s method has mostly moderate errors
in J1, but significant errors in J2 as the relative bedload-layer refer-
ence height increases and the Rouse number is larger (not shown in
this paper). This method is the fastest method for computing both
integrals.

Srivastava’s method has a rather low error in the prediction of
the J1 integral; the error smoothly reduces with the increase of
Rouse number. For computing the J2 integral, Srivastava’s pro-
cedure is relatively accurate and is also among the fastest methods
(in addition to Abad and García’s method). A minor issue with
Srivastava’s scheme is that it has singularity near z ¼ 2.6 [Fig. 2;
see also Guo and Julien in Abad et al. (2006)].

Abad and García’s regression has accuracy issues in several
areas of the ðE; zÞ plane. This method works better for higher
relative bedload-layer thicknesses, and is fast and easy to
implement.

In the analysis, these evaluations refer to the numerical
aspect of uncertainty in modeling. It is well known that the uncer-
tainty of any modeling activity can be calculated as follows
(ASME 2009):

δ ¼ ðδmodel þ δnumerical þ δinputÞ − δmeasurements

In other words, the total uncertainty in any simulation (δ) is the
sum of the model structural uncertainty (δmodel), the uncertainty in-
duced by numerical aspects of solving the equations of the model
(δnumerical), and the uncertainty in the initial/boundary conditions
and parameters (δinput), minus the uncertainty due to the accuracy
of the measurements (δmeasurements). Thus, this research focuses on
δnumerical of the Einstein integral, and does not cover uncertainties in
the Einstein method itself (model structural uncertainty), or uncer-
tainties in the Rouse number and relative bedload-layer thickness
(δinput). In practical terms, there are severe concerns regarding the
validity of the semilogarithmic velocity profile in the presence of
large bedforms and vegetation, and of the Rousean profile itself
(Julien 2002; García 2008; Bombardelli and Jha 2009); these cor-
respond to δmodel. Furthermore, it is easily verifiable that errors of
only 10% in E can lead to rather significant errors in the calcula-
tion of J1 and J2. Therefore, usually a 1% error is small enough in
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Fig. 1. Local relative error of the five methods for the calculation of the J1
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sediment-transport models regarding the computation of Einstein’s
integrals. This paper provides the key to selecting the most ad-
equate technique for each situation in which the input uncertainty
has been reasonably estimated.

Parallelization Efficiency of Algorithms

Any advanced sediment-transport code requires simulation capabil-
ity of multiple particle sizes, to mimic nonuniform distributions in
natural streams (Papanicolaou et al. 2008). In sediment-transport
software, hydrodynamics and transport solvers are commonly
one-way coupled, assuming a dilute concentration of particles
(Papanicolaou et al. 2008). Thus, all grain-size classes are trans-
ported by a unique flow field. These facts necessitate the use of
parallel algorithms in sediment-transport solvers to increase the
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Fig. 2. Local relative error of the methods for the calculation of the J2
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Table 1. Global Accuracy of Existing Methods of Approximation of Einstein’s Integrals

Measure Abad and García
Guo and Julien
(N ¼ 100) Nakato Roland and Zanke Srivastava

Composite Simpson
(N ¼ 2,000)

J1
Bias 2.21Eþ 5 7.81E − 9 4.50Eþ 2 −1.24Eþ 1 −1.23Eþ 4 3.41Eþ 0

RMSE 5.93Eþ 6 4.50E − 7 2.93Eþ 3 4.25Eþ 1 1.28Eþ 5 6.37Eþ 1

Scatter index 1.70Eþ 0 1.38E − 13 8.99E − 4 1.30E − 5 3.94E − 2 1.95E − 5

J2
Bias −1.36Eþ 5 −6.03Eþ 4 −1.50Eþ 3 −3.38Eþ 10 1.10Eþ 3 −1.71Eþ 1

RMSE 1.12Eþ 7 7.11Eþ 5 1.13Eþ 4 7.16Eþ 11 2.46Eþ 4 3.21Eþ 2

Scatter index −8.00E − 1 −5.09E − 2 −8.15E − 4 −2.12Eþ 1 −1.77E − 3 −2.31E − 5

Note: Accuracy was tested over a data set of 960 relative bedload-layer thicknesses and Rouse numbers.
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computational efficiency (e.g., Keshtpoor et al. 2015). The integra-
tion of J1 and J2 was performed on multicore processors.

Parallel for Loops (parfor) of MATLAB’s Parallel Computing
Toolbox was used for shared-memory parallelization of the calcu-
lations on multicore (MathWorks 2015). The performance of the
parallelized versions was evaluated on an Intel i7-2670QM multi-
core processor using a data set of 9,000 pairs of inputs. The result-
ing speedups (Appendix VII) are given in Table 3.

The best performance is achieved by the composite Simpson’s
method, in which the speedup is close to the ideal line for parallel
computing of Einstein’s integrals. Nakato’s procedure is slightly
less efficient than the composite Simpson’s method in the J1 inte-
gral, but its speedup ratio is nearly linear and again close to the
ideal line. In parallel computing of the J2 integral, Nakato’s method
performs well for 2 and 3 cores; however, the linear upward

speedup trend reaches a plateau for 4 cores. The third best speedup
for the J1 integrals is Guo and Julien’s method (Table 3). This
method for the J2 integrals—with 100 terms in the partial sum—
has a better speedup factor than Nakato’s. Other techniques do not
provide improvements in the use of parfor because of their inherent
structure.

More work would be needed in this area to have unequivocal
conclusions regarding parallel implementation of the methods.

Final Remarks and Conclusions

Five existing methods for the calculation of Einstein’s integrals
were compared in this paper. Error, CPU time, and the performance
of their parallel implementation were evaluated. Sediment-transport
modelers can use this information to select the most convenient
method for computation of Einstein’s integrals, setting a desired
level of accuracy (usually 1%) and making their decision based on
the computational time and range of parameters.

Considering the tradeoff between accuracy and computational
time, the authors recommend the series-based-solution method
by Guo and Julien for computing the J1 integral with only 10 first
terms, which is relatively fast and accurate. Guo and Julien’s
method shows superiority for parallel computing of the J1 integral.
In addition, Roland and Zanke’s method is a reasonable one, and
it is nearly an order of magnitude faster than Guo and Julien’s
method.

For sequential computing of the J2 integral, the authors recom-
mend Srivastava’s modification to the Guo and Julien’s method.
It is accurate and faster than all other methods (except Abad and
García’s and Roland and Zanke’s methods). In addition, the for-
mula of Abad and García provides relatively accurate results for the
J2 integral in high relative bedload-layer thicknesses.

Table 2. Accuracy of the Partial Sum in the J2 Series Approximations with Various Number of Terms

Approximation

Errora (%)

z ¼ 0.5 z ¼ 1.5 z ¼ 2.5 z ¼ 3.5 z ¼ 4.5

Guo and Julien explicit closure [Eq. (10)] (1) 0.24 0.02 0.22 0.28 0.23
Srivastava explicit closure [Eq. (17)] (2) 0.05 <0.01 0.01 0.02 0.02
Partial sum with 10 termsb (3) 7.57 10.42 12.7 14.62 16.29
Partial sum with 20 termsb (4) 3.93 5.51 6.85 8.02 9.07
Partial sum with 50 termsb (5) 1.61 2.29 2.87 3.41 3.90
Partial sum with 100 termsb (6) 0.81 1.16 1.46 1.74 2.00
Partial sum with 200 termsb (7) 0.41 0.58 0.74 0.88 1.01
aError ¼ j“Exact”Value − Approximated Value=“Exact” Valuej × 100.
bNumber of terms in the partial sum on the first right-side term in Eq. (8).

Table 3. Speedup for the Parallelization of Existing Methods of
Computation of Einstein’s Integrals

Method
Runtime with
single core (s)

Speedup with
cores (s/s)

2 3 4

J1
Composite Simpson (N ¼ 2,000) 4.260 1.84 3.03 3.32
Nakato 2.670 2.50 3.33 3.64
Guo and Juliena 0.890 1.60 1.83 1.88

J2
Composite Simpson (N ¼ 2,000) 5.230 1.84 2.64 3.40
Nakato 1.753 1.72 2.46 2.96
Guo and Juliena 5.590 1.86 2.38 2.90

Note: Data set of 9,000 (E; z).
aThis method was executed using Eq. (10) closure and the first 100 terms in
the partial sum of Eq. (8).

Table 4. Regression Coefficients for Eqs. (11) and (12)

E C0=D0 C1=D1 C2=D2 C3=D3 C4=D4 C5=D5 C6=C6

0.001 8.0321 −26.273 −114.69 501.43 −229.51 41.94 −2.7722
2.5779 −12.418 47.353 17.639 −13.554 2.8392 −0.2003

0.005 2.1142 −3.4502 12.491 60.345 −29.421 5.4215 −0.3577
1.2623 1.0330 13.543 0.7655 −1.6646 0.3803 −0.0275

0.01 1.4852 0.2025 14.087 20.918 −10.91 2.034 −0.1345
1.1510 2.1787 7.6572 −0.2777 −0.570 0.1424 −0.0105

0.05 1.1038 2.6626 5.6497 0.3822 −0.6174 0.1315 −0.0091
1.2574 2.3159 1.9239 −0.3558 0.0075 0.0064 −0.0006

0.1 1.1266 2.6239 3.0838 −0.3636 −0.0734 0.0246 −0.0019
1.4952 2.2041 1.0552 −0.2372 0.0265 −0.0008 −0.00005
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Appendix I. Nakato’s Method

Nakato (1984) separated both Einstein’s integrals into two regions:
near the relative bedload-reference level (E < y < ϵ), and the upper
region (ϵ < y < 1), as follows:

J1 ¼
Z

1

E

�
1 − y
y

�
z
dy ¼

Z
ϵ

E

�
1 − y
y

�
z
dyþ

Z
1

ϵ

�
1 − y
y

�
z
dy

ð3Þ

J2 ¼
Z

1

E

�
1 − y
y

�
z
ln y dy ¼

Z
ϵ

E

�
1 − y
y

�
z
ln y dy

þ
Z

1

ϵ

�
1 − y
y

�
z
ln y dy ð4Þ

He further integrated the upper region numerically with
Simpson’s rule, and derived the following formulas for the part
close to the relative bedload-layer thickness:

Z
ϵ

E

�
1 − y
y

�
z
dy ¼ F1 þ F2 þ F3 ð5aÞ

in which Fi are defined as

F1 ¼
1

1 − z
ðϵ1−z − E1−zÞ; F2 ¼

z
z − 2

ðϵ2−z − E2−zÞ;

F3 ¼
zðz − 1Þ
2ð3 − zÞ ðϵ

3−z − E3−zÞ ð5bÞ

In the singularities at z ¼ 1, z ¼ 2, and z ¼ 3, the following
expressions can be used instead:

F1 ¼ ln
ϵ
E
; F2 ¼ −2 ln ϵ

E
; F3 ¼ 3 ln

ϵ
E

ð5cÞ

In turn;
Z

ϵ

E

�
1 − y
y

�
z
ln y dy ¼ G1 þG2 þ G3 ð6aÞ

in which the Gi are defined as

G1 ¼
ϵ1−z
1 − z

�
ln ϵ − 1

1 − z

�
− E1−z
1 − z

�
lnE − 1

1 − z

�
;

G2 ¼
zϵ2−z
z − 2

�
ln ϵ − 1

2 − z

�
− zE2−z

z − 2

�
lnE − 1

2 − z

�
;

G3 ¼
zðz − 1Þϵ3−z
2ð3 − zÞ

�
ln ϵ − 1

3 − z

�
− zðz − 1ÞE3−z

2ð3 − zÞ
�
lnE − 1

3 − z

�

ð6bÞ

In the singularities at z ¼ 1, z ¼ 2, and z ¼ 3, the following
expressions can be used instead:

G1 ¼
1

2
½ðln ϵÞ2 − ðlnEÞ2�; G2 ¼ −ðln ϵÞ2 þ ðlnEÞ2;

G3 ¼
3

2
½ðln ϵÞ2 − ðlnEÞ2� ð6cÞ

Appendix II. Guo and Julien’s Method

Guo and Julien (2004) derived closed-form, analytical solutions of
the problem for integer values of the Rouse number; for noninteger
values they derived the following formulas:

J1ðE; zÞ ¼
zπ

sinðzπÞ − ΦðzÞ ð7Þ

J2ðE; zÞ ¼
zπ

sinðzπÞ
�
π cotðzπÞ − 1 − 1

z
þ
X∞
n¼1

�
1

n
− 1

zþ n

��

−
�
ΦðzÞ

�
lnEþ 1

z − 1

�
þ z

X∞
n¼1

ð−1Þn
ðz − nÞ

Φðz − nÞ
ðz − n − 1Þ

�

ð8Þ

where ΦðzÞ is defined as

ΦðzÞ ¼ ð1 − EÞz
Ez−1 − z

X∞
n¼1

ð−1Þn
n − z

�
E

1 − E

�
n−z

ð9Þ

Guo and Julien suggested the following closure for the first
infinite series in Eq. (8):

X∞
n¼1

�
1

n
− 1

zþ n

�
≈ π2

6

z
ð1þ zÞ0.7162 ð10Þ

Appendix III. Abad and García’s Regression

Abad and García (Abad et al. 2006) suggested the following
formulas for the Einstein integrals:

J1 ¼ ðC0 þ C1zþ C2z2 þ C3z3 þ C4z4 þ C5z5 þ C6z6Þ−1 ð11Þ

J2 ¼ ðD0 þD1zþD2z2 þD3z3 þD4z4 þD5z5 þD6z6Þ−1
ð12Þ

where the coefficients of Eqs. (11) and (12) are given in Table 4.

Appendix IV. Roland and Zanke’s Method

Roland and Zanke (Abad et al. 2006) proposed the following
expressions for the Einstein integrals:

J1ðE; zÞ ¼
�

1

z − 1

��ð1 − EÞz
Ez−1

�
−
�

z
z − 1

�

×

��
1

z − 2

��ð1 − EÞz−1
Ez−2

�
−
�
z − 1

z − 2

�

×

��
1

z − 3

��ð1 − EÞz−2
Ez−3

�
−
�
z − 2

z − 3

�

×

� ðz − 3Þπ
sin½ðz − 3Þπ� −

E4−z
4 − z

���
ð13Þ

J2ðE; zÞ ¼
�

1

z− 1

��
lnE

ð1−EÞz
Ez−1 − z

��
1

z− 2

�

×

�
lnE

ð1−EÞz−1
Ez−2 − ðz− 1ÞJ2ðE;z− 3ÞJ1ðE; z− 2Þ

��

þ J1ðE; zÞ
�

ð14Þ

They also suggested the following expressions to approximate
J2ðE; z − 3Þ and J1ðE; z − 2Þ:

© ASCE 06016026-6 J. Hydraul. Eng.
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J2ðE; z − 3Þ ¼ − ðz − 2ÞπψðzÞ
sin½ðz − 2Þπ� −

E3−z
3 − z

lnEþ E3−z
ð3 − zÞ2 ð15aÞ

ψðzÞ ¼ ð1 − γÞ − ln j4 − zj þ 1

3 − z
þ 1

2ð4 − zÞ þ
1

24ð4 − zÞ2
ð15bÞ

where γ = Euler-Mascheroni constant; and

J1ðE; z − 2Þ ¼
�

1

z − 2

��ð1 − EÞz−1
Ez−2

�

−
�
z − 1

z − 2

�� ðz − 2Þπ
sin½ðz − 2Þπ� −

E3−z
3 − z

�
ð16Þ

Appendix V. Srivastava’s Method

Srivastava (Abad et al. 2006) first suggested a more accu-
rate explicit closure that replaces Eq. (10) by Guo and Julien
(2004) with

X∞
n¼1

�
1

n
− 1

zþ n

�
≈ lnð1þ 1.781zÞ − 0.1361z

ð1þ 1.284zÞ2.15 ð17Þ

Srivastava introduced a change of variable as E� ¼ E=ð1 − EÞ,
and derived the following closed-form formulas for Einstein’s
integrals:

J1ðE�; zÞ ¼ −E1−z� − 1

1 − z
þ 2.061

E2−z� − 1

2 − z

− 1.385
E2.6−z� − 1

2.6 − z
þ 0.3327
0.6703þ z

ð18Þ

J2ðE�; zÞ ¼
E1−z� ½1 − ð1 − zÞ lnE�� − 1

ð1 − zÞ2

− 1.903
E2−z� ½1 − ð2 − zÞ lnE�� − 1

ð2 − zÞ2

þ 2.022
E2.6−z� ½1 − ð2.6 − zÞ lnE�� − 1

ð2.6 − zÞ2 − 0.2914
1.652þ z

ð19Þ

Appendix VI. Composite Simpson Rule

The composite Simpson rule for numerical integration is provided
below for n subintervals. This method has a truncation error of
Oðh4Þ (Press et al. 1992):

Z
b

a
fðxÞdx ¼ h

3

Xn
2

j¼1

½fðx2j−2Þ þ 4fðx2j−1Þ þ fðx2jÞ�

þ h4ðb − aÞ
180

maxjfð4ÞðμÞj ð20Þ

where μ ∈ ½a; b�; h ¼ ðb − aÞ=n; x0 ¼ a; xn ¼ b; and xj ¼
aþ jh.

Appendix VII. Statistics of Model Skill Assessment

The following statistics are used to evaluate the differences among
results of the methods, denoted by M, and values of a benchmark,
indicated by B (Zamani and Bombardelli 2014):
1.

Bias ¼ 1

N

XN
i¼1

ðMi − BiÞ ð21Þ

Bias is a measure of over- or underprediction; essentially a
bias close to zero is ideal.

2.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðMi − BiÞ2
vuut ð22Þ

Root mean square error (RMSE) is a metric for modeling
error, which amplifies large errors over the computation domain.

3.

SI ¼ RMSE
1
N

P
N
i¼1 Bi

ð23Þ

Scatter index (SI) is another measure of error, in which
the RMSE is nondimensionalized by the average value of the
benchmark. The SI is more informative than the RMSE, as high
(or low) values of RMSE can be misleading in cases of ex-
tremely high (or low) values of model results.

4. Parallelization speedup is a metric in the evaluation of parallel
computing efficiency that shows relative performance improve-
ment as a task is executed on multiprocessors compared with a
single processor. Speedup is the ratio of the time the computa-
tion of one processor divided by the time of computation with all
processors.
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Introduction

The authors are appreciated for comparing the five existing meth-
ods for the calculation of Einstein’s integrals. The authors have
presented an analysis for the accuracy and computational speed
of these five methods. The discussers would like to mention the
following points.

The integration of Einstein’s integrals results in hypergeometric
functions that are not suitable for practical purposes due to their
complexity.

By defining E� ¼ E=ð1 − EÞ, Srivastava (2006) truncated the
series solutions of Einstein’s integrals and derived the following
regression-based approximations:

J1ðE; zÞ ¼
Z

1

E

�
1 − y
y

�
z
dy

≅ −E1−z� − 1

1 − z
þ 2.061

E2−z� − 1

2 − z
− 1.385

E2.6−z� − 1

2.6 − z

þ 0.3327
0.6703þ z

ð1Þ

J2ðE; zÞ ¼
Z

1

E

�
1 − y
y

�
z
lnðyÞdy

≅ E1−z� ½1 − ð1 − zÞ lnðE�Þ� − 1

ð1 − zÞ2

− 1.903
E2−z� ½1 − ð2 − zÞ lnðE�Þ� − 1

ð2 − zÞ2

þ 2.022
E2.6−z� ½1 − ð2.6 − zÞ lnðE�Þ� − 1

ð2.6 − zÞ2 − 0.2914
1.652þ z

ð2Þ

where E = relative bed-load-layer thickness; and z = Rouse number.
These approximations have singularities at z ¼ 1, 2, and 2.6, which
could simply be removed by considering z ¼ 1.001, 2.001, and
2.601 (Δz ¼ 0.001) instead of the previous values. Similarly, in
the unlikely event of z being exactly equal to 1, 2, or 2.6, some
limitations could be put into practice as indicated by Srivastava
(2006)

lim
p→0

xp − 1

p
¼ lnðxÞ ð3Þ

lim
p→0

xp½1 − p lnðxÞ� − 1

p2
¼ −0.5½lnðxÞ�2 ð4Þ

The percentage errors [100 × ð1 − approximated value=exact
numerical valueÞ] occurring in Eqs. (1) and (2) are depicted in
Fig. 1. A perusal of Fig. 1 reveals that the approximate solution
for J2 [Eq. (2)] is sufficiently accurate for all practical purposes.
The maximum percentage error of this approximation is less than
0.032% for all practical ranges of z ∈ ½0.1; 8� and E ∈ ½0.0001; 0.1�.
For computing the J2 integral, Srivastava’s approximation is very
accurate with respect to the accurate numerical values of the inte-
gral even for high relative bed-load-layer thicknesses (E ¼ 0.1).
However, the percentage error involved in Eq. (2) is incorrectly
shown in Fig. 2 of the original paper. Based on this figure, for E ¼
0.05 and 0.1, the percentage error of Eq. (2) exceeds 1%, which is
unacceptable. Guo and Julien (2006) also incorrectly reported the
percentage error involved in use of Eq. (2) was used. They reported
a value of −28.742 (a 17% error) for J2 at z ¼ 2.55 and E ¼ 0.1.
Using Eq. (2) for z ¼ 2.55 and E ¼ 0.1 results in J2 ¼ −24.5165,
which is comparable with the exact numerical value J2 ¼−24.5130 (only 0.014% error). Moreover, Guo and Julien (2006)
incorrectly reported high error for Eq. (2) at singular point z ¼ 2.6
(E ¼ 0.1). Using Eq. (2) for z ¼ 2.599 and 2.601 (Δz ¼ �0.001),
one respectively gets J2 ¼ −26.7679 and −26.8642, which are

Fig. 1. Percentage errors in Eqs. (1) and (2) versus the Rouse number,
z, for various relative bed-load-layer thicknesses E.
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completely comparable with the exact numerical value of J2 ¼−26.8121 (only 0.015% error).
While the simple Srivastava approximation for J2 [Eq. (2)] is

very accurate for all practical purposes, the percentage error of
Srivastava’s approximation for J1 [Eq. (1)] reaches up to 0.57%.

In the following sections, a new series solution for J1 is pre-
sented, and in the next step the solution is truncated and new
regression-based approximations for J1 of the Einstein’s integral
are derived.

New Series Solution for J1

Many sums of reciprocal powers could be expressed in terms of
Lerch transcendent. The Lerch transcendent, ϕ, is given by

ϕðx; s;αÞ ¼
X∞
n¼0

xn

ðnþ αÞs ð5Þ

In order to derive a new series of solutions for J1, this integral is
written as (Srivastava 2006)

J1ðE; zÞ ¼
Z

1

E

�
1 − y
y

�
z
dy

¼
Z

1

E�
x−zð1þ xÞ−2dxþ

Z
1

0

xzð1þ xÞ−2dx ð6Þ

in which E� ¼ E=ð1 − EÞ.
Eq. (6) could be expressed in terms of ϕð−E�; 1;−zÞ and

ϕð−1; 1; zÞ. The equation finally could be shown as

J1ðE; zÞ ¼ 1 − E1−z�
1þ E�

þ z
X∞
n¼1

ð−1Þn
�
En−z� − 1

n − z
þ 1

nþ z

�
ð7Þ

There is no sine function in Eq. (7). The computation of sine
function (also logarithm function) in many computer languages
is based on series expansions (Taylor series), which requires several
terms of the argument to be computed and summed with each other.

Some existing techniques of approximation of Einstein’s integral
J1 have been expressed in terms of a sine function. Computational
speed of these approximations could be limited due to the calcu-
lation of the sine function.

The percentage error of infinite series Eq. (7) versus a number of
terms in the partial sum is shown in Fig. 2. The number of terms
required varies according to the desired precision and increases for
high relative bed-load-layer thicknesses (E ¼ 0.1). For a maximum
error less than 1%, at least nine first terms in the partial sum are
required.

Truncated Regression-Based Approximations for J1

To avoid the slow convergence, the infinite series Eq. (7) could be
truncated to five first terms in the partial sum and the sixth term
could be multiplied by a regression coefficient of 0.591 as

J1ðE; zÞ ≅ 1 − E1−z�
1þ E�

þ z
X5
n¼1

ð−1Þn
�
En−z� − 1

n − z
þ 1

nþ z

�

þ 0.591z

�
E6−z� − 1

6 − z
þ 1

6þ z

�
ð8Þ

The percentage error of this truncated series solution is shown
in Fig. 3. The maximum percentage error of this approximation
is less than 0.036% for all practical ranges of z ∈ ½0.1; 8� and
E ∈ ½0.0001; 0.1�.

Considering the trade-off between accuracy and computa-
tional speed, the following approximation for J1 was also devel-
oped based on the infinite series Eq. (7) and the curve fitting
technique:

J1ðE; zÞ ≅ 1 − E1−z�
1þ E�

− z
E1−z� − 1

1 − z
þ 1.017z

E2−z� − 1

2 − z

− 0.595z
E2.74−z� − 1

2.74 − z
− 0.6z
0.84þ z

ð9Þ

Fig. 2. Percentage error of infinite series Eq. (7) versus the Rouse number, z, for various numbers of terms.
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The percentage error of this truncated regression-based series
solution is shown in Fig. 4. The maximum percentage error of this
approximation is less than 0.1% for all ranges of z and E encoun-
tered in practical applications.

The accuracy is not the only criterion to select an approximation
solution, especially for computer application. The approximations
proposed herein for J1 represent different trade-offs between
mathematical complexity (computational speed) and accuracy.
Obviously, an increased accuracy could be obtained at the price
of augmented computational costs. It seems that the proposed sim-
ple approximation in Eq. (9) for J1 and the proposed simple
approximation in Eq. (2) by Srivastava (2006) for J1 are preferred

compared with other existing approximations in terms of both
accuracy and computational speed.

Partial Sum in J1 Series Solution by Guo and Julien

Guo and Julien (2004) suggested the following closure for using in
their infinite series solution of J1:

X∞
n¼1

�
1

n
− 1

nþ z

�
≅ π2z

6ð1þ zÞ0.7162 ð10Þ

The following approximation was also derived by Srivastava
(2006) with the use of the limiting behavior over the entire range
z > 0:

X∞
n¼1

�
1

n
− 1

nþ z

�
≅ lnð1þ 1.781zÞ − 0.1361z

ð1þ 1.284zÞ2.150 ð11Þ

Eq. (11), which includes the logarithm function, allows a little
increase in accuracy compared with Eq. (10), but at the cost of
lower computational speed.

In this discussion, a more accurate explicit function is proposed
as follows:

X∞
n¼1

�
1

n
− 1

nþ z

�
≅ 1.672z

ð1.035þ zÞ0.73 ð12Þ

The maximum percentage error of Eq. (12) is less than 0.3%,
while the maximum percentage errors of Eqs. (10) and (11) are
about 2% for practical ranges of z ∈ ½0.1; 8�.
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The writers would like to start by sincerely thanking the discussers
for their interest in our work. In the writers’ opinion, the original
paper, the discussion, and this closure all show that the subject of
Einstein’s integrals is still very important, and that it also offers
opportunities for sound research. The writers would be very inter-
ested in seeing more efficient methods for the evaluation of these
integrals in the near future.

Before presenting responses to the discussers’ commentary,
the writerss would like to mention a crucial concept that becomes
a key component in any computational modeling activity: repro-
ducibility (Leveque 2013; Stodden et al. 2013; Hutton et al.
2016). In the case of the original paper, even though the schemes
and implementation were relatively simple, all subroutines were
stored as free software in an online repository for anybody to
check the work. In the numerical solution of any complex hydro-
logical phenomenon—and in general in any modeling activity—
special care needs to be taken into consideration to avoid common
mistakes. Specifically, it becomes mandatory to verify and vali-
date the codes. The writers believe that respecting the basics of
transparency and reproducibility in modeling prevents claims that

cannot be supported by computational results. The authors pro-
vided an extensive verification procedure, which used as elements
the seminal work by Einstein (1950), the original paper by Guo
and Julien (2004), and Table 1 in the closure by Guo and Julien
(2006). The authors also checked their scripts with using diverse
languages.

In their work, the discussers state the following: “Guo and Julien
(2006) also incorrectly reported the percentage error involved be-
cause Eq. (2) was used. They reported a value of −28.742 (a 17%
error) for J2 at z ¼ 2.55 and E ¼ 0.1. Using Eq. (2) for z ¼ 2.55
and E ¼ 0.1 results in J2 ¼ −24.5165, which is comparable with
the exact numerical value J2 ¼ −24.5130 (only 0.014% error).”
The discussers are right in this statement; the values in the line
corresponding to Srivastava’s method in Table 1 of the original
closure are incorrect. The writers reran the four cases of the J2 in-
tegral included by the discussers with the correct implementation of
Srivastava’s method, and compared them with the results of a cubic
Simpson method with 20,000 points (Fig. 1). In the writers’ correct
implementation of Srivastava’s method, the switch to the expres-
sion for singularity was set to Δz < 0.01. (It is difficult to compare
the writers’ results with those of the discussers because the dis-
cussers have not explained how they computed the exact value of
the integrals.)

After the “Introduction,” the discussers used Srivastava’s
manipulation of the J1 integral and derived new explicit formulas
for the calculation of J1. Their derivation was based on a modified
power series by which they introduced two truncated series [Eqs. (8)
and (9)] to account for the original infinite series [Eq. (7)]. Indeed,
it is refreshing to see new methods for Einstein’s integrals in line
with what was stated at the beginning of this closure; however, the
issue is whether these methods are accurate and fast enough as
compared with alternatives.
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Fig. 1. Relative error (%) of Srivastava method for calculation of J2 integral with the switch ofΔz ¼ 0.01 near the singularities for various bed-load-
layer thicknesses and Rouse numbers. Herein, relative error is defined as Error = jExact value − Approximated value=Exact valuej × 100.
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The writers implemented both formulas presented by the dis-
cussers and compared their results against a cubic Simpson method
with 20,000 points; the result of the comparison can be seen in
Fig. 2 and Table 1. It can be noticed in those figures, and through
comparison with Fig. 1 in the original paper, that the new formulas
by the discussers possess relative errors below 0.1% (in agree-
ment with the comment of the discussers), but that they have sim-
ilar accuracy as other alternative methods (such as Nakato’s and
Srivastava’s methods). Although this is good news, the relative er-
rors are still larger than those of Guo and Julien’s (2004) method,
which range on the 10−6 to 10−11 level (as discussed in the original
paper). In addition, the discussers might want to show that their
method is faster than alternative counterparts, which they have
not done so far.

The discussers also suggest that their techniques would be more
efficient because they do not have trigonometric or logarithmic
functions since approximation of those functions with series would
be time consuming. This is presently debatable because intrinsic,

system-defined functions are often implemented at a low level, and
they are specially handled by the compiler; consequently, they are
computationally very fast (Intel 2017). In order to just give a sense
of the computational speed, the writers wrote simple tests in
MATLAB with the following pseudo-code:

Algorithm 1. Pseudo-code for testing computational speed of
intrinsic functions versus their series-based implemented counter-
part in a compiler
Generate an array → x ¼ 0.1∶0.0001∶0.9

For i ¼ 1∶1,000
Calculate sin x and cos x with four terms Taylor series and record
time → t1

For i ¼ 1∶1,000
Calculate sin x and cos x with intrinsic functions and record
time → t2
Report time ratio ¼ t1=t2
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Fig. 2. Relative error (%) in the computation of J1 using the proposed expressions by the discussers compared with those of Srivastava’s method.
V-V indicates the equation by the discussers.

Table 1. Comparison of J1 values computed by methods of discussers and Guo and Julien (2004)

Method z ¼ 0.55 z ¼ 1.55 z ¼ 2.55 z ¼ 3.55 z ¼ 4.55

Exact value 9.7458 × 10−1 2.7326 1.3002 × 101 7.7623 × 101 5.1935 × 102

Guo and Julien (2004) 9.7458 × 10−1 2.7326 1.3002 × 101 7.7623 × 101 5.1935 × 102

Discussers’ Eq. (8) 9.7443 × 10−1 2.7319 1.3005 × 101 7.7651 × 101 5.1951 × 102

Discussers’ Eq. (9) 9.7366 × 10−1 2.7340 1.3011 × 101 7.7593 × 101 5.1886 × 102

Note: E ¼ 0.1.
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The time ratio for MATLAB is in the order of 22, which shows
that the discussers’ claim should be taken with caution. Tests were
conducted on the same machine and same platform.

In the final section of their discussion, the discussers analyzed
the explicit closure by Guo and Julien [Eq. (10) in Zamani et al.
(2017)]. They presented a regression on α1, α2, and α3 in the
following formula by Guo and Julien (2004):

X∞
n¼1

�
1

n
− 1

nþ z

�
≈ α1z

ðα2 þ zÞα3
ð1Þ

suggesting the following values for the coefficients: α1 ¼ 1.672
[1.645 in Guo and Julien (2004)], α2 ¼ 1.035 [1 in Guo and Julien
(2004)], and α3 ¼ 0.730 [0.716 in Guo and Julien (2004)].
The discussers claim that this formula is more accurate than
both the former explicit closures by Guo and Julien (2006) and
Srivastara (2006) [Eqs. (10) and (17) in Zamani et al. (2017)].
The writers respectfully have two disagreements with the discussers
regarding this idea as well. First, Srivastava used a well-established
perturbation technique to restructure Guo and Julien’s formulae
and found a new form for the summation of the infinite series;
his results have tangible improvements, which can be seen in Table 2
of the original paper (Shanks 1955; Weniger 1989; Zamani 2015,
p. 238). Instead, the discussers only used a regression to fit Guo
and Julien’s coefficients. Second, although the discussers claim their
new formula is more accurate and has the maximum error of 0.3%,

the test the writers set shows the opposite. Fig. 3 shows the percent-
age error of the closures versus the exact value of the infinite series
calculated with a very large number of terms.

In conclusion, the methods presented by the discussers has a
relatively small error, but they have a larger relative error than Guo
and Julien’s method, which does not change the conclusions of the
original paper. Further, the discussers have not shown any superi-
ority of their method over Guo and Julien’s counterpart in terms of
computational speed.

Data Availability Statement

The MATLAB scripts can be found in the following repository:
https://github.com/kavehzamani/Einstein_sediment_integral.
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infinite summation in Guo and Julien’s (2004) method.
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