HABITAT MAPPING WITH HEC-RAS

By Tristen Anderson

TRISTEN ANDERSON

- Grew up in Blaine, MN (30 minutes North of Minneapolis)
- Graduated from the University of Minnesota
 Duluth in 2019 B.S. in Civil Engineering
- Started M.S. degree in Civil Engineering at CSU in Fall 2021
 - Initially funded through Graduate Teaching Assistantship (GTA). Taught CIVE 301 – Fluid Mechanics Laboratory.
 - Transitioned to Graduate Research Assistantship (GRA). Dr. Julien is my advisor, and I am researching the Montano Reach of the Middle Rio Grande River.
- I will graduate this summer and hopefully get a job with an engineering company that specializes in River Restoration.

River Drau, Austria

pre- restoration

post-restoration

OVERVIEW

- My graduate research focuses on the Middle Rio Grande (MRG) in New Mexico.
- Utilized One-Dimensional hydraulic modeling to relate hydraulic conditions to suitable habitat for Rio Grande Silvery Minnow.
 - I) Introduction to HEC-RAS
 - 2) How to set up HEC-RAS
 - 3) Demonstration of how HEC-RAS works

BACKGROUND

- Human alterations along the MRG river system have resulted in significant changes to the riverscape.
 - Dams
 - River Straightening
 - Urbanization
- The Rio Grande Silvery Minnow was listed on the endangered species list in 1994
 - Only occupies 7% of its historic range

WHAT IS HEC-RAS

- Stands for Hydrologic Engineering Centers River Analysis System (HEC-RAS)
- Publicly available software created by the US Army Corps of Engineers

WHAT IS HEC-RAS CAPABLE OF?

- One-dimensional steady flow
- One and two-dimensional unsteady flow calculations
- Sediment transport/mobile bed computations
- Water temperature/water quality modeling

WHAT IS A MODEL?

- Simplified description of reality
- Different types
 - Mathematical
 - Conceptual
 - Physical
 - Numerical
- Should use "Occam's Razor"
 - Emphasize the main features at the expense of "smaller" features

HOW DOES IT WORK?

Water surface profiles are computed from one cross section to the next by solving the Energy equation with an iterative procedure called the standard step method.

• One Dimensional Energy Equation

$$z_2 + y_2 + \alpha_2 \frac{{v_2}^2}{2g} = z_1 + y_1 + \alpha_1 \frac{{v_1}^2}{2g} + h_0$$

- Z= elevation of channel inverts
- Y= depth of water
- v= average velocity
- g= gravitational acceleration
- α = velocity weighting coefficients
- h_e= energy head loss

Representation of Terms in the Energy Equation

HOW DOES IT WORK?

The energy head loss (*he*) between two cross sections is comprised of friction losses and contraction or expansion losses. $h_e = L\overline{S_f} + C \left| \frac{\alpha_1 v_1^2}{2q} - \frac{\alpha_2 v_2^2}{2q} \right|$

Energy Loss Due to Expansion and Contraction

$$h_{Ce} = C \left| \frac{\alpha_1 v_1^2}{2g} - \frac{\alpha_2 v_2^2}{2g} \right|$$

- L = discharge weighted reach length
- S_f = representative friction slope between two sections
- C = contraction/expansion coefficient

 Energy Loss Due to Friction from Manning's Equation

$$S_f = \left(\frac{Q}{K}\right)^2$$
$$K = \frac{1}{n} R_h^{2/3} A$$

- n = Manning's coefficient
- A = cross sectional area
- $R_h = hydraulic radius$
- $S_f = friction slope$

HOW DOES IT WORK?

Computational Procedure (Sub-Critical)

- 1) Starting at the most downstream segment, for a known Q and h, assume a trial flow depth, h^* , at the upstream cross-section.
- 2) Based on the h*, determine the corresponding total energy head.
- 3) Compute S_f and solve for losses h_e
- 4) Compare the upstream energy head (trial depth) with the known downstream energy head. Iterate (change the trial flow depth) until the energy equation is balanced within a specified error tolerance (typically within 0.01 feet).
- 5) The unknown (trial) depth now becomes the known depth, and the next upstream cross-section is assigned a trial depth. This procedure is repeated until the upstream end of the channel is reached.

Required Information

- Surveyed cross-sections (STA and ELEV)
- Boundary conditions (e.g., slope for normal depth calculation)
- LiDAR topographical data (if using RAS Mapper)

🚟 HEC-RAS 6.1	.0		_	\times
File Edit Ru	n View Options GIS Tools Help			
	률፻፼፟ዀ፝ዾዾዾ፝፟፟፟፟ዾ፟፟፟	> ◄≢≠∠►►► ≝∎■₽▫ऽ		I MI
Project:				- 🗅
Plan:				
Geometry:				
Steady Flow:				
Unsteady Flow:				
Description:		<u></u>	US Customary U	Inits

 \times

Select river for cross section editing

Edit Manning's n or k Values

River	: Rio Grande	-	- 8 ₿	🔄 🚰 🔽 Ed	lit Interpolated	XS's Char	nnel n Values ha	ave
i avei		-					a light green	
Read	h: Cochiti to I	EB	▼ All Reg	gions		_	background	
Sele	Selected Area Edit Options							
A	dd Constant	. Multiply F	actor S	Set Values	Replace	Rec	luce to L Ch R .	
-	Diversion Charling	East (a M)	_ #4	- #0	- "2	- #4	- 45	
	River Station	Frcth (n/K)	n #1	n #2	n #3	n #4	n #5	
	465	n	0.1	0.025	0.1			
4	404	n	0.1	0.025	0.1			
3	400	n	0.1	0.025	0.1			
	402	n	0.1	0.025	0.1			
	481	n	0.1	0.025	0.1			
	480	n	0.1	0.025	0.1			
<u> </u>	479	n	0.1	0.025	0.1			
	4/8	n	0.1	0.025	0.1			
9	4//	n	0.1	0.025	0.1			
10	4/6	n	0.1	0.025	0.1			
11	4/5	n	0.1	0.025	0.1			
12	4/4	n	0.1	0.025	0.1			
13	4/3	n	0.1	0.025	0.1			
14	4/2	n	0.1	0.025	0.1			
15	4/1	n	0.1	0.025	0.1			
16	4/0	n	0.1	0.025	0.1			
17	469	n	0.1	0.025	0.1			
18	468	n	0.1	0.025	0.1			
19	467	n	0.1	0.025	0.1			
20	466	n	0.1	0.025	0.1			
21	465	n	0.1	0.025	0.1			
22	464	n	0.1	0.025	0.1			
23	463	n	0.1	0.025	0.1			
1 24	462	In	0.1	0.025	0.1			
	ОК				Cancel			Help

Input # Flow	Profiles					
Steady Flow Data - Flow 14		1		—		×
File Options Help						
Description :				<u></u>	Apply D	Data
Enter/Edit Number of Profiles (32000 max): 2	Reach Bour	dary Conditions		Во	undai	ry Conditions
Locations	of Flow Data Changes	;		•	Known	Ŵ.S.
River: Rio Grande 💌			Add Multiple	•	Critica	l depth
Reach: Cochiti to EB 💌 River S	ta.: 485	▼ Add A Flow C	hange Location	•	Norma	ıl Depth
Flow Change Location		Profile Nam	es and Flow Rates	•	Rating	Curve
River Reach RS	PF 1 PF	2				
1 Rio Grande Cochiti to EB 485	Flo	w Profiles				
Edit Steady flow data for the profiles (cfs)						

Options Flow Distribution Locations 	Steady Flow Analysis			×
	File Options Help		L	
	Plan : Sh	nort ID	Plan 46	
	Geometry File : 1992 Bosque Levees-1 (fixe	ed ns)		-
	Steady Flow File : Flow 14			-
	Plan Description :			
Flow Regimes Subcritical Supercritical Mixed 	Flow Regime Subcritical Supercritical Mixed Optional Programs			
	Floodplain Mapping			
Runt	Compute			
	Enter/Edit short identifier for plan (used in plan comparisons)			

Flow Distributions

- By default HEC-RAS will use 3 flow distributions (left floodplain, main channel, right floodplain)
- Can define a greater resolution, up to 45 slices.
- In this case, I wanted to most resolution possible for the floodplains.

Figure 63 Cross-section with flow distribution from HEC-RAS with 20 vertical slices in the floodplains and 5 vertical slices in the main channel. The blue and green slices are small enough that the discrete color changes look more like a gradient.

VIEWING THE RESULTS

Options allows you to further define output values

🗮 Profile (Output Tak	ole - Stan	dard Table 1	I							—		>	×
File Optio	ns Std. T	ables U	lser Tables	Location	s Help									
	HE	C-RAS F	Plan: Plan 4	46 River	: Rio Gra	nde Rea	ich: Cochi	ti to EB	Profile: P	F 1		Rela	oad Da	ata
Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude	# Chl	
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)			\square
Cochiti to EB	485	PF 1	4000.00	4548.88	4553.91		4553.95	0.000208	2.35	7849.31	4186.62		0.19	
Cochiti to EB	484	PF 1	4000.00	4548.97	4553.77		4553.83	0.000303	2.75	6962.96	4271.02		0.23	
Cochiti to EB	483	PF 1	4000.00	4548.77	4553.63		4553.68	0.000281	2.63	7119.76	4243.68		0.22	
Cochiti to EB	482	PF 1	4000.00	4548.37	4553.47		4553.53	0.000326	2.92	6586.51	4239.68		0.24	
Cochiti to EB	481	PF 1	4000.00	4547.27	4553.29		4553.38	0.000275	2.92	5589.86	3707.17		0.22	
Cochiti to EB	480	PF 1	4000.00	4546.87	4553.12		4553.23	0.000314	3.29	5119.97	3535.26		0.24	
Cochiti to EB	479	PF 1	4000.00	4546.76	4552.79		4552.97	0.000766	3.78	2972.16	2822.65		0.35	
Cochiti to EB	478	PF 1	4000.00	4546.66	4552.13		4552.51	0.001169	5.34	1942.22	1695.46		0.45	
Cochiti to EB	477	PF 1	4000.00	4546.56	4552.04		4552.15	0.000364	2.90	2952.82	1832.05		0.25	
Cochiti to EB	476	PF 1	4000.00	4546.56	4551.84		4551.96	0.000459	3.09	2595.49	1955.26		0.28	
Cochiti to EB	475	PF 1	4000.00	4546.26	4551.33		4551.54	0.001103	4.29	1986.26	915.83		0.42	
Cochiti to EB	474	PF 1	4000.00	4546.25	4550.87		4551.05	0.000617	3.86	2900.62	1971.64		0.33	
Cochiti to EB	473	PF 1	4000.00	4546.15	4550.64		4550.75	0.000518	3.33	4266.36	2815.24		0.30	
Cochiti to EB	472	PF 1	4000.00	4545.65	4550.36		4550.46	0.000614	3.11	3910.37	2527.76		0.31	
Cochiti to EB	471	PF 1	4000.00	4545.75	4550.08		4550.18	0.000468	2.95	3501.97	1852.25		0.28	
Cochiti to EB	470	PF 1	4000.00	4545.55	4549.82		4549.91	0.000495	2.62	3207.31	1931.79		0.28	
Cochiti to EB	469	PF 1	4000.00	4545.34	4549.59		4549.69	0.000399	2.72	2721.42	1566.22		0.26	
Cochiti to EB	468	PF 1	4000.00	4544.64	4549.25		4549.43	0.000696	3.68	2041.52	1198.11		0.34	
Cochiti to EB	467	PF 1	4000.00	4544.44	4548.98		4549.08	0.000569	3.33	3444.72	1641.47		0.31	
Cochiti to EB	466	PF 1	4000.00	4544.34	4548.46		4548.67	0.001307	4.62	2732.31	1903.74		0.46	
Cochiti to EB	465	PF 1	4000.00	4544.44	4547.85		4548.03	0.001429	4.60	2717.54	1635.96		0.47	
Cochiti to EB	464	PF 1	4000.00	4543.33	4547.23		4547.39	0.001114	4.00	2673.44	1601.64		0.41	
Cochiti to EB	463	PF 1	4000.00	4543.93	4546.92		4546.96	0.000564	2.72	5117.70	2838.38		0.29	
Cochiti to EB	462	PF 1	4000.00	4542.83	4546.70		4546.74	0.000315	2.43	5565.64	2761.69		0.23	
Cochiti to EB	461	PF 1	4000.00	4543.03	4546.55		4546.58	0.000314	1.96	5675.34	2566.40		0.22	
Cochiti to EB	460	PF 1	4000.00	4542.23	4546.37		4546.42	0.000409	2.30	4821.52	2400.48		0.25	
Cochiti to EB	459	PF 1	4000.00	4542.33	4546.16		4546.22	0.000426	2.58	4278.39	2300.57		0.26	
Cochiti to FB	458	PF 1	4000.00	4541.83	4545.77		4545.94	0.000698	3.69	2872.97	2344.23		0.34	
Total flow in c	ross section	n.												

VIEWING THE RESULTS

Flow profile

RAS MAPPER

What is RAS Mapper?

- HEC-RAS has the capability to perform inundation mapping of water surface profile results directly from HEC-RAS.
- Visualizes ID model results.
- Various types of map layer results can be generated,
 - depth of water
 - water surface elevations;
 - velocity
 - inundation boundary (shapefile)
 - flow (ID only right now)
 - depth times velocity
 - depth times velocity^2

RAS MAPPER

- Allows for the exportation of raster files. (.tif and .vrt)
- What is a Raster File?
- A raster consists of a matrix of cells (or pixels) organized into rows and columns (or a grid) where each cell contains a value representing information, such as depth.

RAS MAPPER + ARCGIS PRO

Table 5 Rio Grande Silvery Minnow habitat velocity and depth range requirements (from Mortensen et al., 2019))
---	---

	Velocity (cm/s)	Depth (cm)
Adult Habitat	<40	>5 and <60
Juvenile Habitat	<30	>1 and <50
Larvae Habitat	<5	<15

- ArcGIS Pro is a mapping software developed by ESRI.
- Using a tool called "ModelBuilder" the depth and velocity rasters can be combined. Then the hydraulic requirements for each life stage of the Silvery Minnow are applied.

TAKE-AWAYS

• HEC-RAS is a useful tool to produce modeling results with a relatively small amount of data.

- Cross-sectional geometry
- Channel slope
- Manning's roughness values
- LiDAR data (if using RAS Mapper)