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Abstract This study examines the suitability of the discrete autoregressive and

moving average [DARMA(1,1)] model to simulate the sequences of daily rainfall

data in Malaysia. The daily monsoon rainfall data recorded at Subang Airport are

used to test this modeling approach. The autocorrelation function and probability

distributions of wet and dry run lengths estimated from the DARMA(1,1) model

matched the sample values quite well. Both theoretical and sample autocorrelation

functions slowly decay to zero at day 15. The theoretical probability distribution for

two consecutive wet days estimated for the DARMA(1,1) is 0.1966, while the

observed rainfall data give a probability of 0.2066. Additionally, the sum of squared

errors for the DARMA(1,1) model were very small, i.e., 0.0015. Furthermore, two

simulations were done, i.e., 100 samples of 9,600 days (simulation A) and a very

long sequence of 1,000,000 days (simulation B). This was done to test the capability

of DARMA(1,1) to model a long sequence of daily rainfall. The statistics examined

in this study include the lag-1 autocorrelation coefficient (lag-1 ACF) and the

maximum wet and dry run lengths. Generally, the statistics of generated rainfall

for simulation A fall within two standard deviations from the sample. The diver-

sions of these statistics were reasonable, considering the sample size used in this

study. The estimated lag-1 ACF for simulation B was slightly lower than the

sample. The maximum wet and dry run lengths were much higher than the observed

data because of the different sample sizes. It is concluded that the DARMA(1,1)

model is able to simulate the long sequences wet and dry days and preserving the

statistics within reasonable accuracy.
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1 Introduction

Malaysia is located near the equator and experiences hot and humid climate

throughout the year. The country is influenced by two major seasons, namely the

North East (NE) and South West (SW) monsoons. The NE monsoon typically

occurs from November to March; while the SW monsoon is from May to Septem-

ber. April and October are known as inter-monsoons. These monsoons bring lots of

moisture, and the country receives a total rainfall of between 2,000 and 4,000 mm

with 150–200 rainy days annually [1].

Therefore, multiday rainfall events are common in Malaysia and cause particu-

larly devastating floods, especially on large watersheds [2]. Historical events

include the two extreme Kota Tinggi floods in December 2006 and January 2007,

which resulted from more than 350 and 450 mm of cumulative rainfall in less than a

week. The estimated economic loss reached half a billion US dollars and more than

100,000 local residents had to be evacuated [3].

Considering the nature of climate in Malaysia and the devastating consequences

of multiday rainfall events as discussed above, generating the sequences of daily

rainfall using stochastic model should be given serious consideration. Additionally,

the planning and designing of water resources projects require the analysis of

reliable and long-term hydrological data such as rainfall and streamflow, which

can be scarce in developing countries such as Malaysia. Therefore, engineers

should consider generating synthetic hydrological data using the parameters esti-

mated from the records available in their analysis.

The low order discrete autoregressive family models, i.e., discrete

autoregressive [DAR(1)] and discrete autoregressive and moving average

[DARMA(1,1)], are frequently used in simulating the sequence of daily rainfall.

DAR(1) is also known as the first-order Markov Chain. Reference [4] introduces the

concept of Markov Chain model to simulate the occurrence of daily rainfall at Tel

Aviv. This model assumes that the probability of rain depends only on the current

state (wet or dry) and will not be influenced by its past behavior. References [5–13]

are among the studies that were successful in modeling the sequence of rainy and

dry days using first-order Markov Chains.

Reference [7] applied the first-order Markov Chain to produce ten synthetic

sequences of daily rainfall at Universiti Pertanian Malaysia (UPM), Serdang,

Selangor, Malaysia. The authors gathered the daily rainfall data from 1968 to

1978 and divided the data into 11 states according to the amount. The simulations

were done for the different monsoon seasons in Malaysia: the Northeast (from

November to March), two transitional periods (April and October), and the South-

west (from May to September). They found that the first-order Markov Chain was

able to reproduce the daily rainfall of any length in the area. However, the synthetic

daily rainfall was generated for a period of 1 year only. Therefore, this research did

not indicate if the first-order Markov Chain is able to simulate long daily rainfall

sequences.
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Reference [14] discusses the optimum order of Markov Chain for daily rainfall

during North East (NE) and South West (SW) monsoons using two different

thresholds, i.e., 0.1 and 10.0 mm. Eighteen rainfall stations in Peninsular Malaysia

were used in this study. They found that the optimum order of a Markov Chain

varies with the location, monsoon seasons, and the level of threshold. For stations

located in the northwestern and eastern regions of Peninsular Malaysia, the occur-

rence of rainfall (threshold level 10.0 mm) for both monsoons can be represented

using a first-order Markov Chain model. Other than that, Markov Chain models of

higher order are suitable to represent rainfall occurrence, especially during the NE

monsoon, for both levels of threshold. This study shows that the rainfall events in

Peninsular Malaysia requires a longer memory model than first-order Markov

Chain to simulate the sequence of daily rainfall. However, high order Markov

Chain increased the model uncertainty because more parameters have to be used

[15]. It also makes the calculations more complex. These disadvantages can be

overcome by DARMA(1,1) model.

The DARMAmodel is a simple tool to model stationary sequences of dependent

discrete random variables with specified marginal distribution and correlation

structure [16]. The model is stationary; therefore, the rainfall data should be divided

into their respective seasons in order to consider the seasonal variations. References

[17] and [18] use this model to simulate the sequence of daily rainfall using data

collected from several stations in the Netherlands, Suriname, India, and Indonesia.

They concluded that that DARMA(1,1) is successful in simulating the daily rainfall

in tropical and monsoon areas, where prolonged dry and wet seasons may occur.

The DARMA(1,1) model provides longer persistence than the first-order Markov

Chain. Other studies that use this model to simulate the sequence of daily rainfalls

include [19–23].

This chapter discusses the simulation of daily rainfall using the DARMA(1,1)

model. The daily rainfall measurements from the Subang Airport were used in this

study. This station is chosen because it provides a long and reliable record of

52 years, i.e., from 1960 to 2011. Separate analyses are conducted for NE and

SW monsoons. However, only the results for NE monsoons will be presented here.

2 DARMA(1,1) Model

The DARMA(1,1) model is represented as [16]

Xt ¼ UtYt þ 1� Utð ÞAt�1 ð1Þ

with
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Xt ¼ Yt withprobabilityβ
At�1 withprobability 1� βð Þ

�

where Ut is an independent random variable taking value of 0 or 1 only such that

P Ut ¼ 1ð Þ ¼ β ¼ 1� P Ut ¼ 0ð Þ ð2Þ

Yt is independent and identically distributed (i.i.d) random variable having a

common probability of πk ¼ P Yt ¼ kð Þ and k ¼ 0, 1, and At is an autoregressive

component given by

At ¼ At�1 withprobabilityλ
Y withprobability 1� λð Þ

�

It should be noted that At is a first-order Markov Chain, and the process of

simulation is assumed to start at A�1 [18]. This variable has the same probability

distribution as Yt but is independent of Yt. The Xt is not Markovian, but (Xt,At)

forms a first-order bivariate Markov Chain.

The theoretical autocorrelation function of the DARMA(1,1) model is [18]

corr Xt;Xt�kð Þ ¼ rk Xð Þ ¼ cλk�1, k � 1 ð3Þ

where rk is the lag-k (days) autocorrelation function and

c ¼ 1� βð Þ β þ λ� 2λβð Þ ð4Þ

The sample autocorrelation function (rk) for the time series is estimated based on

the sequences of dry and rainy days and not the rainfall amounts [22].

rk ¼
XN�k

t¼1

xt � xð Þ xtþk � xð Þ
" # XN

t¼1

xt � xð Þ2
" #�1

ð5Þ

x ¼ 1

N

XN
t¼1

xt ð6Þ

where N is the sample size.

Three parameters of the DARMA(1,1) model are π0 or π1, λ, and β. The param-

eter λ may be estimated from the lag-1 autocorrelation coefficient as given in (3)

and (4). The parameters π0 or π1 may be estimated from (7) and (8).

π0 ¼ T0

T0 þ T1

ð7Þ
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π1 ¼ 1� π0 ð8Þ

where T0 is the mean run length for dry days, and T1 is the mean run length for

wet days.

The estimation of λ may be determined by minimizing (9) using and [18]

suggested using the ratio of the second to the first autocorrelation coefficients as

an initial estimator for λ, as shown in (10).

ϕ λð Þ ¼
XM
k¼1

rk � cλk�1
� �2

; k � 1 ð9Þ

λ̂ ¼ r2
r1

ð10Þ

in whichM is the total number of lags considered, and c can be determined from the

lag-1 autocorrelation coefficient of the DARMA(1,1) model. Then β was estimated

from

β̂ ¼ 3λ̂ � 1
� ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3λ̂ � 1
� �2 � 4 2λ̂ � 1

� �
λ̂ � ĉ
� �q

2 2λ̂ � 1
� � ð11Þ

The probability distributions of wet and dry run lengths for the DARMA(1,1)

model are given in [16].

3 Results and Discussion

3.1 Simulating the Sequences of Daily Rainfall Using
DARMA(1,1)

The occurrence of rainfall event in this study is treated as a discrete variable.

Threshold value is determined using the Von Neumann ratio [24]. The definition

of wet is any day with rainfall of more than 0.1 mm, and a dry day received less than

or equal to the said amount. This value is chosen because it ensures homogeneity of

the time series.

The first step in simulating the sequences of daily rainfall using DARMA(1,1) is

to estimate the model parameters, i.e., π0 or π, λ, and β. The average wet and dry run
lengths are calculated from the observed daily rainfall dataset, and the values are

T1 ¼ 3:00days and T0 ¼ 2:19days. Following this, the estimated probabilities of a

wet and dry day are π̂ 1 ¼ 0:58 and π̂ 0 ¼ 0:42, respectively. The parameter λ is

calculated using (9), based on the Newton–Raphson iteration techniques and initial
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estimation using (10). Then (11) is applied to estimate the parameter β. These give

estimated model parameters as λ̂ ¼ 0:7339 and β̂ ¼ 0:5775.
After all parameters were determined, the theoretical and sample autocorrelation

functions (ACFs) are estimated using (3) and (5), respectively. These values are

compared using graphical method, as shown in Fig. 1. Excellent agreements

between the sample and theoretical ACFs for the estimated DARMA(1,1) model

are shown. The ACFs matched even though the number of lag (day) increased. Both

sample and theoretical ACFs decay slowly and eventually reach to nearly zero at

day 15.

Other than the ACFs, the theoretical and sample probability distributions of wet

and dry run lengths were also estimated and compared to further examine the

suitability of DARMA(1,1) model to simulate the sequence of daily rainfall.

Excellent agreements were observed between the theoretical and sample prob-

ability distributions of wet and dry run lengths. For example, the theoretical

probability distribution for two consecutive wet days estimated for the DARMA

(1,1) was 0.1966, while the observed rainfall data give a probability of 0.2066.

Additionally, the sum of squared errors for the DARMA(1,1) model was very small,

i.e., 0.0015. The probability distributions of wet run lengths are illustrated in Fig. 2.

Based on the analyses performed on the ACFs and probability distributions of wet

and dry run lengths, the authors concluded that the DARMA(1,1) model is suitable

to represent the occurrence of daily rainfall at Subang Airport.

Fig. 1 Sample and theoretical ACF
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We further analyzed the simulations of daily rainfall sequences using DARMA

(1,1) model. A total of two simulations are performed, i.e., simulation A and

simulation B. Simulation A was performed to compare it with the statistics of

measured rainfall at Subang Airport, in order to ensure that the model applications

were persistent and examine the variability of the simulated samples. This simula-

tion consists of 100 samples of 9,600 days. A sample size of 9,600 days is chosen

because this is about the same as the sample data for NE monsoon. On the other

hand, simulation B consists of a sample with the size of 1,000,000 days. This was

done to test the capability of DARMA(1,1) to model a long sequence of daily

rainfall.

The statistics examined in this study include the lag-1 autocorrelation coefficient

(lag-1 ACF) and the maximum wet and dry run lengths, which are given in Table 1.

Generally, the statistics of generated rainfall for simulation A fall within two

standard deviations from the sample. The diversions of these statistics were rea-

sonable, considering the sample size used in this study.

The estimated lag-1 ACF for simulation B was slightly lower than the sample.

The maximum wet and dry run lengths were much higher than the observed data

because of the difference in sample sizes. These values are significant in estimating

the highest possible consecutive wet and dry days over a long period of time. This

information is valuable for water resources engineers to plan their strategy. For

Fig. 2 Probability distribution of wet run lengths
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example, what is the best way to ensure constant water supply if it does not rain for

25 days or longer.

In terms of probability distribution functions of wet and dry run lengths, both

simulations A and B show good agreement with the sample. As an example, for wet

run lengths of 10 days, the estimated probability distribution of the sample and

simulations A and B were 0.0097, 0.0094, and 0.0103, respectively. Similarly, the

estimated probability distributions for dry run lengths of 7 days were 0.0130,

0.0134, and 0.0135 for the sample and simulations A and B, respectively. Figure 3

detailed the wet run lengths of the sample and simulations A and B. These results

indicate that the DARMA(1,1) model is able to simulate the long sequences wet and

dry days. These characteristics are important because Malaysia is affected by

extreme floods that occur as a result of multiday rainfall events.

Table 1 Statistics for observed and simulated daily rainfall during NE monsoon

Statistics Sample

Simulation A

Simulation BMean Standard deviation

Lag-1 ACF 0.196 0.179 0.012 0.181

Maximum wet run length (days) 31 24 4 34

Maximum dry run length (days) 21 16 3 25

Fig. 3 Probability distributions of wet run lengths generated from simulations A and B
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4 Conclusions

The DARMA(1,1) model was applied to the daily rainfall data at Subang Airport

from 1960 to 2011. Model parameters were estimated from the sample. The

autocorrelation functions of the sample are similar to the theoretical values. Addi-

tionally, the probability distributions of wet and dry run lengths also show good

agreements between the sample and theoretical estimations. These results indicate

that DARMA(1,1) was suitable to model the sequences of daily rainfall at Subang

station.

Two simulations were performed, including a very long sequence of daily

rainfall (1,000,000 days). The statistics estimated for this exercise include lag-1

autocorrelation functions and maximum wet and dry run lengths. The generated

sequences’ statistics fall within two standard deviations of sample. Additionally,

the probability distributions of wet and dry run lengths estimated for the simulated

rainfall sequences using DARMA(1,1) are also comparable with the sample. It is

concluded that the DARMA(1,1) model is able to simulate the long sequences wet

and dry days and preserving the statistics within reasonable accuracy.
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