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ABSTRACT

A theoretical analysis shows that velocity profiles in sediment-laden flows are similar to those in clear water. The modified log-wake
law, which is developed for clear water by Guo, is also valid in sediment-laden flows. The analysis of the effects of sediment suspension
on turbulent kinetic energy and turbulent diffusion shows that: (1) sediment suspension increases mean flow energy loss; (2) sediment
suspension weakens turbulent diffusion in the vertical direction and then increases velocity gradient; and (3) sediment suspension affects
velocity profile in two ways: average concentration and density gradient. The comparison with narrow-channel laboratory data confirms
the theoretical analysis and shows that: (1) the modified log-wake law agrees well with experimental data for sediment-laden flows; (2)
both average concentration and density gradient reduce the von Karman constant; and (3) for a given width-depth ratio, sediment concen-
tration slightly increases the wake strength while density gradient has little effect on it. In addition, the modified log-wake law can
reproduce experimental data where the maximum velocity occurs below the water surface.

RESUME

Une analyse théorique démontre la similitude des profils de vitesse avec ou sans transport de sédiment. Les profils de vitesse
logarithmiques avec coefficient de trainée sont donc applicables pour les écoulements chargés de sédiments. Cette loi permet de
représenter les profils de vitesse avec maximum sous la surface libre. Les sédiments en suspension: (1) augmentent les pertes d’énergie;
{2) affaiblissent la diffusion turbulente verticale et augmentent le gradient de vitesse; et (3) affectent les profils de vitesse en raison de
la concentration moyenne et du gradient de densité. L.a comparaison avec des données de laboratoire en canal étroit confirme que: (1)
laloi logarithmique avec coefficient de trainée s’ applique bien aux données expérimentales; (2) 1a concentration moyenne et le gradient
de densité diminuent la constante de von Kdrmdn; et (3) pour un rapport largeur-profondeur donné, la concentration de sédiments
augmente 1égérement le coefficient de trainée tandis que le gradient de densité exerce peu d’influence sur ce coefficient.

1 Introduction previous conclusion, i.e., K decreases with sediment suspension,

was obtained by incorrectly extending the log law to the wake

The study of turbulent velocity profiles in sediment-laden flows
is one of the most important subjects in sediment transport and
river mechanics. Vanoni (1946), Einstein and Chien (1955),
Vanoni and Nomicos (1960), Elata and Ippen (1961), and many
others examined the log law describing the variation of velocity
with depth in sediment-laden flows. They concluded that the log
law remains valid except that the von Karman constant decreases
with sediment suspension. Einstein and Chien (1955) proposed a
graphical relation to predict the von Karman constant k¥ based on
an energy concept. They also pointed out that the main effect of
sediment suspension occurs near the bed. Recently, Muste and
Patel (1997) also studied experimentally the effect of sediment
suspension on the log law. They concluded that small sediment
concentrations have little effect on the log law near the bed.

Coleman (1981, 1986) introduced the log-wake law to open chan-
nels and studied the effect of sediment suspension on the von
Karman constant ¥ and the wake strength I'1. He argued that if the
log-wake law is applied, k remains the same as that in clear wa-
ter, i.e., ¥=0.4, but IT increases with the density gradient as de-
scribed by Richardson number. He further pointed out that the

layer where the velocity deviates the log law systematically in
clear water. Parker and Coleman (1986) and Cioffi and Gallerano
(1991) supported Coleman’s argument. Janin (1986) at CSU ob-
tained a similar result in a large boundary layer wind tunnel.
However, Lyn (1986,1988) found that the von Karman constant
K might decrease with sediment suspension even in the log-wake
model. Kereselidze and Kutavaia (1995) deduced from their own
experiments that both k and IT vary with sediment suspension.
Guo (1998) pointed out that both the log law and the log-wake
law cannot satisfy the outer boundary condition at the outer
boundary. Furthermore, based on a similarity analysis, he devel-
oped a modified log-wake law:
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in which #, . is the maximum velocity at the upper boundary
edge; #, is the local time-averaged velocity in the flow direction;
#y is the shear velocity; x is the von Karman constant which is
denoted as ky=0.406 for clear water (Guo, 1998); £ is the normal-
ized distance from the bed by the boundary layer thickness; Q is
the wake strength which is denoted as €}, for clear water; and

an,

d& E=I

is the velocity gradient at the outer boundary. The log term re-
fects the inertia effect near the wall; the cosifie-square term ex-
presses large-scale turbulent mixing; and the linear term reflects
the effect of the upper boundary.

The objectives of this paper are: (1) to analyze the effects of sedi-
ment suspension on the governing equations and turbulent struc-
tures; (2) to show that the modified log-wake law is also valid in
sediment-laden flows; and (3} to determine the effects of sedi-
ment suspension on the von Karman constant x and the wake
strength Q in sediment-laden flows,

2 Governing equations for sediment-laden flows

2.1 Navier-Stokes equations for sediment-laden flows

The effects of sediment suspension on turbulence are examined
in terms of continuity, momentum diffusion and density equa-
tions. For simplicity, the Boussinesq approximation (Kundu,
1990) on stratified flows is introduced, i.e., the effect of sediment
concentration on the fluid density may be neglected in continuity
and momentum equations except in the gravity term. The viscos-
ity is assumed constant in this analysis.

2.1.1 Continuity equation

Based on the Boussinesq assumption, the continuity equation in
sediment-laden flows is the same as that in clear water, i.e.

g @)

in which #, is the mixture water velocity component in the x, di-
rection and x; = 1, 2, and 3.

2.1.2 Momentum equation
The momentum equation in sediment-laden Aows is written as

u; aui _ P 1 0 azu.
-a—tL+ujjg—ﬁ;g.- mg)%'“’mng—a; (3)

in which ¢ is time; j is a dummy subscript; p is the local density
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and varies with sediment concentration: P 18 the space-averaged
density of p, i.e.

1
P = ;L, pdv

where V is a volume; g, is the component of the gravitational ac-
celeration in the x, direction; p is pressure; and V., is the kinematic
viscosity corresponding to 0,

2.1.3 Sediment concentration equation
Conservation of mass applied to the sediment phase gives

9¢ L, 0C _ 3 (pac
af +u] axj BXJ( axj) (4)

in which C is the volumetric sediment concentration; the first
term on the left-hand side is the concentration change with time;
u; is the convective velocity of sediment, i.e., not necessarily :
identical to U in (3); the second term on the left-hand side is the ]
mass flux by advection; D is the molecular diffusion coefficient;
and the right-hand side is the transport by molecular diffusion.

2.1.4 State equation or densiry equation
The density equation can be easily written as

P=pPo+p:—po)C (5)

in which p, is the clear water density; and p, is the sediment den-
sity. The above equation set (2-5) is closed since one has 6 equa-
tions (1 continuity, 3 momentum, 1 concentration and 1 density
equation) with 6 unknowns (3 velocity components u;, 1 pressure
b, 1 density p, and I concentration C). However, like any other
turbulence, the above equations are very difficult to solve for
large Reynolds number flows, i.e. turbulent fows, To study the
mean turbulent velocity field, the Reynolds average method may
be applied.

2.2 Reynolds average for turbulent sediment-laden flows

Following Reynolds averaging process, a variable is decomposed
into a time-average component denoted with an overbar, and a
turbulent component denoted with a prime, i.e,

i =Wtup p=pp
P=P+p’ Cc=C+C
Substituting (6) into (2-5) and introducing the Reynolds average

method, one can get the motion equations for the mean flow and  §
the turbuient flow, respectively.

(©)

2.2.1 Continuity equation
Substituting the expressions (6) into (2) and taking the Reynolds
average, one has
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for the mean motion, and

for the turbulent motion.
From the above two continuity equations, one can get the follow-
ing two identities:

- o7 if) cof _ 9uyf)
Lk S

in which f can be any variable. These two identities will be fre-
quently used in the following derivations.

2.2.2 Momentum equation
Substituting (6) into (3), one gets

T +u) o T+l
PP 1 9P +p)

9t -
Bom &i B ox; Vi axkaxk(uz + ;)
in which both p,, and v, are time-space-averaged values which

are constant for a given flow. Applying the identities (9) to the
convective term and expanding it, one obtains

T, +u;) | O W+ Winy + uiy + uiudy)
dt axk
— (10)
_Pptp, 1 9P +p) 02—
- pm &i pm axi +Vm axkaxk(ul + ui)

Taking the time-average over this equation and considering that
the average of a fluctuating variable is zero, one has the following
mean motion equation for sediment-laden flows

Ox ; + Hu, Wi+ winl)
at Bxk

5 - an
_ P _ 0 azuj
- pmgi _pi;a-%+vm axkaxk
ar
aﬁi — aui
a_t+ kaxk - (12)
- P, _ _EE + v ﬂL - M&.

- ng‘ P m ax_.j " Bxkaxk axk
in which u,1, is the second-order turbulence intensity. The prod-
uct of p,, and —u ,#, is the so-called turbulent stress or Reynolds
stress. Equation (12) will be used to study the mean velocity pro-
files in sediment-laden flows.
The subtraction of the mean motion equation {11} from the total
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motion equation (10) gives the turbulent motion equation, i.e.
o 4 Nuiup + w0 + winl — i)
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(13)

This equation will serve to analyze the effects of sediment sus-
pension on turbulence intensity.

2.2.3 Sediment concentration equation
Applying (6) to (4) yields

3(C+C) 3(C+C)
+ (T, + i
ot _(u“, lt‘,,) BXj
_a(,3c+C)
BxJ, ij
or
9C , 3¢ , 7 3T , = C , 3T , IC
t t oy Tox; T dx; ox; 1
) Da(C‘FC’) (14)
T Oy dx;

Taking the time-average over this equation and rearranging it, one
obtains the mean concentration equation:

%Ly D‘C‘ i}(paxj_@) (15)

Similarly, the subtraction of (15) from (14) gives the turbulent
concentration equation:

ac . i-a—d N u{'a_f_ N ou'c’ _ Su'C’
ot 7 Ox; ! Ox; Ox; Ox; (16)
- & (0%
Ox; Ox;
2.2.4 State equation or density equation
Applying (6) to (5) results in
p+p =potp—pd(CtC) (17)

Taking the time-average gives the ime-average density equation:

P =pot+(p:—po)C (18)

Note that this mean density varies with space and has the relation
with the time-space-averaged mean p,,, as:

Pn=],pdv-
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Similarly, one can obtain the turbulent density equation:
P’ = (ps = Po)C’ (19)

In brief, the mean motion equations for sediment-laden Aows can
be summarized as (7), (12), (15) and (18). To solve this set of
equations, one must make some assumptions about .4, and
1 ,C". This is known as the closure problem.

The turbulent motion equations are summarized as (8), (13), (16)
and (19). Only (13) of this set will be used to study the effects of
sediment suspension on turbulence intensity.

2.3 Sediment effects on momentum equations

For simplicity, this study assumes that the mean flow is two-di-
mensional, steady and uniform, as shown in Fig. 1. That is,
steady:

) _

o - 0 (20)
uniform:

30 _ . 30 _

a—xl— = Q, E = 2D

two-dimensional flow:;

u) = El(.'m), Uz = Uz = 0, E = E(Jm) (22)
in which ¢ = time; (—) denotes time averaging; iz, =time-averaged
velocity in the flow direction x; i, = time-averaged velocity in
the lateral direction x,, &, = lime-averaged velocity in the vertical
(normal) direction x;; and C = time-averaged sediment concen-
tration.

Based on the above assumptions, the mean continuity equation is
auntomatically satisfied. The momentum equations reduce to
x,-direction:

27 ou' '
a9 L — m -1 =
Pg,tH ax% P x5 23
x~direction:
owyu,
273 =9 (24)
8x3
[
k
5 (%)
x;lr

x3(0.05)T |‘——-—'|

CO.[IS
Fig. 1. Scheme of representative velocity and concentration profiles
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x;-direction:

R ou”

p'g_%'gf;_'ﬁm-a?? =0 5)

Fortunately, (24) and (25) are not coupled with (23), then only
(23) is used to find the velocity profile &, (x3 ) Furthermore, (23)
can be written as

d e Il T
_E (uma_;_‘;_ - pliM3) A p—g[ (26)

in which i, = p,v,, is the time-space-averaged mean dynamic
viscosity of the mixture water. Consider that the shear stress at
the outer boundary, x; = §, is

(H,HQLL—Pmu,ug)

Ox3 = "l

X3
Substituting (18) into (26) and integrating yields

8

_ aﬁl _ -
”‘m_a;; pmu|u3 N
= .[i (Po+ips— Po)C )gidxs

or

o7 R
Hm—% - Pmu’]u; - Tlg:I 27)
= Pogi(8 —x3) + (ps — polg; .[i Cdxy

Itis becoming clear that sediment suspension affects velocity pro-
files in three ways: (1) changing the fluid viscosity p, thus
changing the viscous shear stress (Ist term on the left-hand side);
(2) changing the fluid density thus changing turbulence intensity
and the turbulent shear stress (2nd term on the left-hand side);
and (3) producing a density gradient thus increasing the gravita-
tional component in the flow direction (2nd term on the right-
hand side).

The following order of magnitude analysis assumes

[ 2
wr ~ U, xy ~8& ~h, wu;, ~ ui,

C—'Cﬂ, pm”

in which I/ is the depth-averaged velocity; i. is the shear veloc-
ity; and (1 is a near bed concentration. Then the magnitude of
each term in (27) is as follows;

“’Z—Us Pus, Keep, Pog h, Pogih, (px—Po)gjhEu

Since u, = /¢85 = /g,8 in which S = sin @ is the channel slope,
and p,, ~ py, one obtains after dividing by p , u?

we () e () () 25t () e
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In practice, one often has Re >10%, Utu, ~ 10, and let

MEG <0.1,

P

the above magnitude orders become
<0.01, 1, Keep, 1, 1, <0.1

This analysis shows that the viscous term and the effect of sedi-
ment on gravity may be neglected. Therefore, the momentum
equation in steady uniform two-dimensional sediment-laden
flows can be further simplified as

*Pmulug - T|§=] = p()g](a_X:;) (28)

Note that © | £ is kept in the above equation since it relates 1o the
boundary condition at the outer boundary, and it may also be very
small. The above equation is similar to that in clear water except
that the turbulent shear stress may be modified by sediment sus-
pension. Besides, since the viscous term is neglected, (28) is not
valid very near the bed. Consequently, velocity profiles devel-
oped for clear water flows should also be valid in sediment-laden
flows since their governing equations and boundary conditions
are similar.

3 Sediment effects on turbulence intensity u ,uJ

One may start with (13), the equation for the turbulent velocity
component x . One can also write the same equation for the ve-
locity component % ;. Multiplying the equation for #, by 1 and
the equation for u by u , one gets

y dui i CITI oui Y Huiui — ulu)
/ a}‘ . I 7 On ;’ Ox
_ P U dp’ V. azu;-
= 3& -
[ Pm dy ! Qa0
and
' 0%, du' ou'ul — whu))
! ;o f— ] k [
Migy TG Y gty
t Xk Xt Xk
iyt ¢ p’ azu{
= E.Lp_..gj _ Hi 9p +\rmu;_}_
Pm O axj- axkaxk
Adding the above two equations gives
du'u’ ; ‘ 9% ; du'u'
r"’+u’-uj€a—u‘+u’iu§c L3 —=t
ot 7 axk axk axk
— e
; B(u:ufk - uiur’() ; a(uuk - u-uk)
+ i + u; J J
1 9x; dxg

_wp o wp w9 wp Op

pm 8: + pm g" pm ax,- pm BXj
! azul’ ; azu_:;
TVl ¥ dx0x; i Ox.0x;

The time-average of this equation yields the turbulence intensity
of u ;”, ,1.e.
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The terms on the right-hand side of this equation may be trans-
formed to measurable forms.

Applying the identities (9), the first term on the right-hand side of
(29) becomes

duju) duju) L Quiuy _ Ou;

; . ; 3 I ; Iu_jl'u:!\.
; +u-—51—-=u-u Lty —l% = (30)
I dxy T odx, JRk axk ! axk axk

Considering (19), the second term on the right-hand side of (29)
becomes

Pt WPy = (0. = pu)(WCgit WCy) G

The third term on the right-hand side of (29} may be written as

/ o i ) —
uj Xi + i h Xi p X * BX' P a.X'
a 7 Ja 77 3 ! a i ! ’ (32)
= | fpu D U; o o4y u;
= el Il [
( X X ) P X Xi

axkaxk 7 a.xk ' axk U ax.k
= _u_i Bu‘ uﬁ:—a2u::‘ %a_ui u{—azui
dx; oxy Toxgdx,  dx dxg T dx,0x;

. 0% 02y ou’ ou'

= 4 J ! IR, Tkt B

ul axkaxk uj axkaxk 2 axk axk

one can get the fourth term on the right-hand side of { 29) as

R 9 U (3

i 7
I+ e L = uiu — 2
axkax;- Jaxkaxk axkaxk I a)ck a)ﬂ(

Substituting (30-33) into (29) vields the turbulence intensity
equation:

dulu! W — 3%, —0W:
—_—t T o= L /3 i
ot T Bxk (ufuk Ox + gy, axk )
s = - = du 1t u)
[ (72 7)) -
_ 1 (9w opui Y, 1 % 3u) G
pm axj axJ: pm axt aXZj
—_ 7 _ ey T
+ vV, Tridns 2V, T

This equation is the same as that in clear water (Hinze, 1973,
p-324) except for the extra term in bracket [ ] that relates to sedi-
ment suspension. The above equation is the general one-point
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second-order turbulence intensity equation. It can be used to
stady u}, wuy , wn, . uy, uyi,, u; and turbulent kinetic
energy

In this study, only the turbulent kinetic energy

1——

E u.u i

and the vertical turbulence intensity u; are considered since they
relate to the Richardson number and the vertical turbulent diffu-
sion in sediment-laden flows.

3.1 Turbulent kinetic energy budget

To study the turbulent kinetic energy budget, leti =jin (34), then
one has

CTHE e LR Pl 1o LT I
ot 3 ax3 Pm i i ax3
_ 2%y | Puw O 0wy
or
_@_ﬂ__z. 0%, | Py—PoT,
or 2 T a.X'3 * Pm wiCg:
\—Y_—)
turb, production sediment suspension
2
__i_ q- + _Lf u’}
ax3 2 Pm (35)
wrbulent transport
2 2 T o’
+Vm—a a g _ vm%%
ax2 2 Bxk Bxk
P—E,—_J

. energy dissipation
VISCOUs (ransport &Y P

in which ¢° = u,u, . The transport by viscous diffusion is usually
neglected. The turbulent transport may also be neglected if the
turbulence intensity is not very strong. This is because

p'es g’ >0, p'u, = q°u, = 0. Thus, the main terms of (35) reduce
to

igi =_T"aﬁi Pe =Py _ %au:
9t 2 Hy iy 3.’63 - Pm w,C'gi Vo axk;;k (36)
-7, Mk Xk,

sediment  suspension

turb . production energy dissipation

Experiments (Vanoni, 1946; Einstein and Chien, 19535; Elata and
Ippen, 1961; and others) have shown that both — u,u, and

o,
ax,

are positive and increase with sediment suspension. This implies
that the presence of sediment in suspension would increase turbu-
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lent energy production, beyond the clear water level.

Because the concentration field is homogeneous in the x; and the
X, directions, the mean turbulent mixing fluxes in these directions
must be zero, i.e.

WO =00 =0 (37)
Thus,

Psp—mPg XCg = Psp—mpo mga

To balance sediment settling from upward, the turbulent mixing
flux u,C’ in the x; direction must be positive, i.e.

urC > 0 (38)

Considering g, = -g cos 8 = -g (in which 0 is the angle between
the channel bed and a datum), one has

Ps “mPg mg} <0 (39}
In conclusion, this implies that sediment suspension withdraws
energy from the system and decreases the turbulent kinetic en-
ergy. In other words, the energy required to support suspended-
load comes from the turbulent kinetic energy rather than the mean
flow energy.
Since the presence of sediment increases the viscosity v, the
energy dissipation term is expected to increase in sediment-laden
flows.
Of all three terms on the right-hand side in (36), the last two are
negative {sediment suspension + energy dissipation) and the first
term (turbulent production) is positive, the resultant of the right-
hand side may increase or may decrease the turbulent kinetic en-
ergy. When the system reaches a new equilibrium state, the sum
of the right-hand side must be zero. The sediment suspension al-
ways increases the mean flow energy loss because sediment sus-
pension increases turbulent production that, in turn, comes from
the mean flow energy.
The Richardson number R, is defined as the ratio of the sediment
suspension energy to the turbulent production in (36), i.e.

{40,

Introducing

TR T dﬁl
UMy T €y

in which the turbulent sediment diffusion coefficient € is propor
tional to the momentum eddy viscosity €, Therefore,
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) _ (ps - P 0)8 dx;
R; = Pm e 2z
du,
(%)
The giobal Richardson number is a function of maximum flow
veloCity ¥, ., boundary layer thickness 8, concentration (T', atthe

outer boundary, and near bed concentration Ea at a distance a
above the bed.

_{(Ps—Polg Q%CJO_S
Pm (ilam)z

in which a = 0.05 is taken in this study. Considering &, ,, = #.,
andp,, =p, +{ p,— pO)C it which p_ is the time-depth-aver-
aged concentration, the Richardson number R, is defined as

R =

(4

The Richardson number is important because it expresses the
density gradient intensity in a sediment-laden flow. It vanishes in
a neutral sediment-laden flow because C, oos = E‘l One has
EO_OS > El in most sediment-laden flows, thus R;> 0. The stronger
the density gradient, the larger the Richardson number. In prac-
tice, the Richardson number can be determined from concentra-
tion measurements at C_’O‘Os and C, )

Given p = p, +(p, — p,)C. the Richardson number can also be
written as a function of mass density.

(42)

which is the form used in Coleman (1981, 1986).

3.2 Vertical turbulent diffusion

Vertical turbulent diffusion is usually expressed by an eddy vis-
cosity €,,,, i.e.

£, ~ou, (43)
in which d is the boundary layer thickness or the flow depth A for
a two-dimensional open-channel flow. Therefore, to study the
effect of sediment suspension on turbulent diffusion, one has to
study the effects on u,. Leti=j =3 in (34),

ou’? o’ 0w
ek B N UL
ot T Ui axk 2u3uk Bxk
Ps—Po 7~ _ a“;“g“k _ _2__31’!“3
+ 25— u,Cgy Ixs P Ox (44)
—_
+ 2 P’_a.ui + v az_uf?’z. —2v i‘ﬁ_aﬁ
Pm aJC3 " ax% ’”Bxk Bxk
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Considering (21) and (22) gives that

Wi = (45}

Considering ir, = 0 gives that

m%% =0 (46)

Considering (21) gives that

a"g”:”k _ ou”
Xk - _a;ih

Ouy . Ouj

ox? ol

47

(48)

Then, (44} becomes

a_gng_=2|3s—Po;3?

Pm

83

sediment suspension
du; 2, ou;
+ —p —_—

_ _ 2 ap/u3
ax3 Pm 8x3 pm

ax31

(49)
turbulent transport

2,2

0%u;

m
ox3
e

Ius Guy

+V EAY
™ Qxp dxy
%—J

. energy dissipation
vis. transp . &y 4

In the following, assume clear water flowing in a flume, sediment
is then added to the flow to see how u, adjusts according to the
right-hand side terms.

Like those in (35), the viscous and the turbulent transport terms
are comparatively small, the effects of sediment suspension on
u, are examined through sediment suspension and energy dissipa-
tion.

As those in {36), both the sediment suspension term and the en-
ergy dissipation term are negative. They will dampen the turbu-
lenceintensity u,. Consequently, sediment suspension reduces the
eddy viscosity in the vertical direction and weakens turbulent
mixing. Therefore, the effect of sediment suspension increases the
velocity gradient in a sediment-laden flow.

With reference to the modified log-wake velocity profile (la), one
has

1 du, _ 1—§+@Smn§+_Lcm,

weege kg2 o N

In terms of x and €2, to get the velocity gradient in a sediment-
laden flow greater than that in a clear water flow (x,, and ),
there are three possibilities:
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1) k<xyand £2> €2y
2) k<¥,and =10, and
3) w=x,and 2> Q,

Theoretically, one would thus expect k< ¥, and Q = Q, in sedi-
ment-laden flows.

4 Test of the modified log-wake law in sediment-laden flows

Experiments by Wang and Qian (1989) and Coleman (1986) will
be used to test the modified log-wake law. In both data sets, the
width-depth ratios are less than 5, i.e., the maximum velocity oc-
curs below the water surface. Thus, the boundary layer thickness
is defined as the distance from the bed to the maximum velocity
position, where the velocity gradient is zero. Finally, the velocity
defect form of the modified log-wake law (Ib) reduces to

o= - fmg+ Qs = - 125 1)

in which x and Q are parameters in sediment-laden flows.

The purpose of this test is to determine: 1) whether or not the
medified log-wake law (51} is valid in sediment-laden flows; and
2) how the model parameters k and Q vary with sediment suspen-
sion.

4.1 Effect of average concentration

Wang and (Yian (1989) carried out three types of experiments:
clear water and pure salt water, neutral sediment-laden flows (salt
water + plastic particles), and density sediment-laden flows (clear
water + plastic particles, clear water + natural sands). The spe-
cific gravity of plastic particles ¢ = 1.05, the particle concentra-
tion distribution in clear water is close to uniform, so the clear
water + plastic particle experiments can be regarded as quasi-neu-
tral sediment-laden flows, i.e., the effect of density gradient may
be neglected. Details of the experiments for three sediment sizes
are given in Guo’s (1998) Appendix C. The flume perimeters
were kept the same (smooth boundary, flow depth #=8,9, 10cm,

10"
o Date of Wang and Qian (1989)
5 — Modified Log~Wake Law
‘I o
© - SM4
> 107
< 3
107 &
2 y'=70 (a)
“50’5 i 1 1 1 ! | 1 1 1 1 ] 1 1 1 !
10 15 20 25

o/ u.

flume width b = 30cm, and bed slope § = 0.01). For a given flow
depth, the ditferences among individual runs are only attributed
to different concentrations. The maximum volumetric concentra-
tion was 20%.

For a clear water flow, the shear velocity u, is determined by
Clauser’s method, i.e., taking the log law in & < 0.2. Since the
shear velocity is a kinematic parameter, it is independent of sedi-
ment suspension. Therefore, the shear velocity in a sediment-
laden flow is the same as its counterpart in a clear water flow.
The kinematic molecular viscosity v, due to volumetric sediment
concentration is calculated by (Coleman, 1986)

u[1 +2.5C+6.25C + 15.6263)
v, = -
Po+ (P, — Po)C

(52)

in which p is the dynamic viscosity of water; and C is the volu-
metric sediment concentration. This effective viscosity is used to
determine the lower limit of the log law or the modified log-wake
law.

A least-squares method is used to analyze the velocity profiles

and determine the parameters x and Q. The details can be found §

in Guo (1998). A representative velocity profile, along with the
modified log-wake law, for neutrally-buoyant sediment-laden
flows is shown in Fig. 2. All other profiles can be found in Guo’s
(1998) Appendix C. Four velocity profiles for fine sand (median
size dg, = 0.268mm) with different concentrations are plotted in
Fig. 3. From the above two figures, one sees that: 1) the modified
log-wake law is valid in sediment-laden flows even beyond the
boundary layer thickness; 2) the sediment concentration increases
the thickness of the viscous layer (the viscous sublayer + the
buffer layer); 3) the position of the maximum velocity moves
closer to the water surface as the concentration increases; and 4)
the von Karman constant k decreases as sediment concentration
increases.

The calculated results for all neutral and quasi-neutral particle
experiments are shown in Tables 1 and 2 on page 10, respec-
tively. A plot between C and x, including clear water and pure
saltwater experiments, is shown in Fig. 4. The von Karman con-

1.5
i SM4
10 " h=10cm C.=0.0807
~ U a/h=3 C.=0.0399
© L uw=9.161cm/s k=0.3544
} | §=7.187cm 0=1.867
| 8/h=0.7187 r=0.9997
0.5 b liea=2.186m/s
(b}
0.0 —
10 15 20 25

/U

Fig. 2. A representative velocity profile of neutral sediment-laden flows in narrow channels [(a) semilog coordinates; (b) cartesian coordinates]
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Fig. 3. Effect of average concentration on velocity profiles

stant K decreases with sediment concentration C. A linear rela-
tion between C and ¥ can be fitted to the data as

K _ _
% 1-0.92C

(53)
in which the experimental constant K, is determined to be 0.406,
the value in clear water.

A plot of the volumetric sediment concentration C (the average
values are taken for quasi-neutral particle experiments) versus the
wake strength £ is plotted in Fig. 5. It is shown that the wake
strength £ increases with sediment concentration {molecular vis-
cosity). For Wang and Qian’s (1989) experiments where b/ = 3,
the following regression equation can be obtained:

Q=1.65+3.71C (54)

When C=0, one has Q = 1.65 which is compatible to the result

0.45

F D Date of Wang—Qion {1989)
El% o — Linear Regression

0.40

[w]
m]

k 0.35 k=0.406—-0.372C

0.30

llllllllllli

llllllllllll!lllllllllil

0.0 0.1 0.2 0.3 C.4 0.5

C

Fig. 4. Average concentration effect on the von Karman constant
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in clear water (Guo, 1998).

In sediment-laden flows with density gradient (R, = 0), Cin (54)
should be replaced by the water surface concentrationC_'l. Fortu-
nately, most sediment-laden flows in practice are density flows
where (,_’1 is usually very small. Therefore, the effect of sediment
concentration on the wake strength £ may be neglected in most
practical situations. Moreover in wide channels where b/ = 3, the
wake strength €2 should be neglected (Guo, 1998).

- /b + ifhlh <
ﬂu={ 0.75bh +3.75  ifblh < 5 )

0 ifblh 2 5

4.2 Effect of density gradient

Coleman’s (1986) data set contains all necessary information to
test the modified log-wake law in sediment-laden flows. The flow

S

- o Data of Wang—Qian {1989)
4 — Linear Regression
3 -

Q r m = n| =
m]
2 B 5 o
O

T
1 b/h=3 to 3.75
0 ! ; L I L I !

0.0 0.1 0.2 0.3 0.4

c

Fig. 5. Average concentration effect on the wake strength
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Table 1:  Calculated results of Wang-Qian’s neutral particle experi-

mental data

h blh U 8 Ui C X Q r
{cm) (cmfs) (cm) (m/s)
NF1| 9 333 881 6.77 2.14i0.02;0.389 1.96 0.999
NF2| 9@ 333 881 7.00 217:0.08|0355 1.88 0.999
NF31 9 333 881 761 216 (0.15|0.339 212 0.998
NM1| 10 3.00 9.16 6.79 2.08 (0.02|0.419 2.01 0.999
NM2| 10 3.00 9.16 7.04 212 (0.07|0.365 2.10 0.999
NM3| 10 3.00 9.16 7.65 213 (0.13|0.374 2.29 0.998
NM4 ([ 10 300 9.16 7.94 212 |0.20|0.327 2.09 0.999
NC1{ 10 3.00 9.16 6.33 2.10|0.02|0.400 2.02 0.999
NC2| 10 3.00 916 7.44 210 |0.07[{0409 2.11 0.997
NC3| 10 3.00 916 6.94 2.11|0.13|0.353 2.09 0.998
NC4| 10 3.00 916 7.16 2.12]0.20/0.340 242 0.998

For all runs, the slope S =0.01

Table 2:  Calculated resul;ts of Wng-Qian’s quasi-neutral particle ex-

perimental data

h bih # & U |Cos Col Qg r
RUN | {em) (cmis) (cm) (mis)| (%) (%)
SF1 10 300 916 666 212,053 0410435 1
SF21 10 3.00 9146 6.6 209139 102|039 1.44
SF3| 10 3.00 916 B.57 2.07 |2.86 2280465 1.94 0.998
2.12
1.85

SF4| 10 3.00 916 7.44 208|555 4.6 |0.449
SF51 8 375 84 529 196 (101 9.06|0.360 1.
SF6| 9 349 865 9.01 216|147 13.3(0.356 2.51 0998
SM1( 10 3.00 816 7.06 2.11 | 0.74 0.42(0.421 1.46 0.999
SM2| 10 3.00 8.16 6.55 2.15|2.74 1.20(|0.416 1.71 0.999
SM3( 10 3.00 9.16 7.07 2.16 | 5.07 2.380.398 2.00 1.000
SM4| 10 3.00 916 7.19 219 (7.99 3.99|0.354 1.87 1.000
SM5| 10 300 9.16 883 22 |11.6 6.23(0.3756 1.90 0.999
SME| 10 3.00 9.16 94 2.21{144 7.54|0.348 1.70 0.995
SM7| 10 3.00 9.16 8.68 223 |21.7 13.7|0.355 2.68 1.000
SC1{ 10 3.00 9.16 643 212 |1.04 0.43|0.402 1.81 0.999
8C2| 10 3.00 9.16 679 210 (2.06 0.85|0.38 1.29 1.000
SC3| 10 3.00 9.16 6.64 211|418 1.98|0.378 1.86 1.000
SC4 | 10 3.00 816 719 213 |7.31 3.40|0.378 2.02 0.999
SC5| 10 3.00 9.16 7.356 2.15(11.7 6.51(0.357 2.42 0.99%
SC6| 10 3.00 916 7.54 217 |17.1 93710337 246 0999
SC7| 10 300 916 7.73 216 [21.0 12310.317 215 0.999

For all runs, the slope S =0.01

conditions (smooth boundary, = 170mm, b= 356mm, $=0.002)
were kept constant in all runs. The maximum local volumetric
concentration is 2.3%. Hence, the differences of the velocity pro-
files among individual runs are attributed to the density gradient.
The shear velocity u., like that for neutral particle-laden flows, is
determined to be 0.041 m/s by Clauser’s method.

Fig. 6 shows a representative velocity profile of Coleman’s
(1986) measurements compared with the modified log-wake law.
Fig. 7 shows a comparison of 5 velocity profiles with different
Richardson number R, The von Karman constant k¥ decreases
with R; while the variation of the wake strength €) is not clear at
this moment.

From (41), one sees that the estimation of R, requires the values
of 50_05, a, and C,,, all measured in Coleman’s (1986) experi-
ments. The calculated values of R, for Coleman’s (1986) experi-
mental profiles are shown in Table 3 and plotted versus the von
Karman constant  in Fig. 8. It can be seen that the density gradi-
ent (the Richardson number R,) has a significant effect on the von
Karman constant K. The stronger the density gradient, the smaller
the von Karman constant. An exponential relation between x and

20

R, has been fitted to the data as
& = exp{—0.065R}"'* } (56

in which xj is the von Karman constant 0.406 for clear wates
flows. The general correlation coefficient is 0.89.

The relation between the wake strength Q and the Richardsor
number R; is plotted in Fig. 9, where the density gradient does no
influence the wake strength . The wake strength £2 may be re-
lated to large-scale turbulent mixing (secondary flows).

4.3 Combined effects of average concentration and density gra
dient

A composite expression for the effects of average concentratior
and Richardson number on the von Karman constant may be ex
pressed as

K_KO = exp {—0. 065R?'”6} —0.92Ca0s (57

Table 3:  Calculated results of Coleman’s experimental data

RUN| 8 #imu| Coos € C, R; XK Q r

em) (m/s) [(1077) (107°) (107
1326 1054| 000 000 000 000 0370 2.71 1.000
1259 1.045| 0.84 009 025 090 0351 2.48 0.998
12.70 1.043| 165 016 045 1.81 0.334 2.76 0.998
12.88 1046| 270 023 067 3.04 |0.319 2.72 0.99¢
12.86 1.046| 3.82 034 092 428 |0.322 3.06 0,998
1273 1.052| 489 042 112 547 |0.341 3.70 0,998
12.81 1053| 595 048 140 6.71 |0.295 3.19 0.998
13.29 1.044| 7.21 053 158 B8.49 [0.299 3.21 0.998
1322 1.051| 853 052 179 10.10|0.289 3.34 0.997
10 [13.12 1.063| 1031 064 206 12.13|0.270 3.24 0.999
11 [13.16 1.081| 1135 0.62 225 1355|0261 3.41 0.998
12 11374 1.049| 1186 058 224 14.75|0.253 2.79 0.997
13 |12.74 1.065} 1353 079 271 155 |0.252 3.37 0.998
14 |13.09 1.065| 14.26 077 2.84 16.85|0.245 3.10 0.998
15 112.82 1.075| 16.18 099 3.04 18.58|0.239 3.31 0.99¢
16 |12.76 1.073| 1727 094 318 19.89/0.228 3.1 0.998
17 |14.02 1.065| 16.68 0.77 277 21.29|0222 23 0.996
18 1291 1053|1795 093 312 20.92|0.244 3.00 0.99¢
19 |1292 1072|1979 0985 327 23.28|0.228 3.21 0.99¢
20 [12.91 1.070| 2148 105 337 2521|0217 2.89 0.99¢
21 [12.61 1.048| 000 000 000 000 |0.400 2.60 0.99€
22 12,72 1.027| 095 007 020 1.07 |0.508 3.10 0.99¢
23 [12.46 1.047| 204 013 039 228 |0.431 3.38 0.99¢
24 (1274 1050| 321 021 058 3.68 |0.345 3.01 0.997
25 |12.49 1.060| 463 026 078 527 |0.295 3.09 0.99C
26 [13.01 1.045| 508 031 096 595 [0.324 3.29 0.99¢
27 [12.74 1069| 633 033 115 7.36 |0.319 3.72 0.997
28 [12.91 1.063| 7.59 034 1.29 898 |0.304 3.55 0,998
29 (1301 1.083| 8.84 046 146 105 |0.287 3.65 0.99¢
30 1306 1.092] 102 043 158 122 [0.295 3.79 0.99;
31 [13.25 1.0601 10.9 047 162 13.2 |0.270 3.53 0.99
32 [12.88 1.025| 0.00 000 000 0.00 0432 3.38 1.00¢
33 1308 1.036| 025 002 004 028 0389 3.07 0.9
34 11270 1.044| 048 003 007 054 0457 3.83 0.99
35 [13.06 1.055| 0.84 005 011 0.8 |0.375 3.52 0.9
36 [13.02 1.082| 152 008 018 1.80 |0.342 354 0.99;
37 [12.96 1.081| 172 011 022 202 |0.328 3.77 0.99
38 [13.05 1.114| 17 011 022 183 |0.385 427 0.99
39 (1315 1.006| 239 015 030 257 [0.358 3.91 0.99
40 [13.21 1.101| 23 046 031 271 |0.318 4.06 0.99

Forallruns, S =0.002, A=17cm, b/h=2
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Fig. 6. A representative velocity profile for sediment-laden flows in narrow channels [(a) semilog coordinates; (b} cartesian coordinates]
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5 Conclusions

The influences of sediment suspension on the governing equa-
tions, turbulence intensity and turbulent velocity profiles are in-
vestigated theoretically and experimentally. The theoretical analy-
sis shows that: (1) the modified log-wake law developed in clear
water flows is also valid for sediment-laden flows; (2) sediment
suspension increases mean flow energy loss and decreases turbu-
lence intensity in the vertical direction; (3) sediment suspension
affects the modified log-wake law in two ways: average concen-
tration and density gradient (Richardson numnber); and (4) in sedi-
ment-laden flows, the von Karman constant becomes smaller than
that in clear water, and the wake strength becomes slightly larger.
The comparison with Wang and Qian’s (1989) and Coleman’s
(1986) experimental data confirms the analysis of the effects on
velocity profiles. That is, (1} the modified log-wake law agrees
well with flume experimental data; (2) both average concentration
and density gradient (Richardson number) reduce the von Karman
constant in sediment-laden flows; and (3) the average concentra-
tion slightly increases the wake strength while the density gradi-
ent has little effect on the wake strength, given a width-depth ra-
tio. In practice, the effects of sediment concentration on the wake
strength should be negligible.

6 Symbols

The following symbols are used in this paper:

relative distance from the bed

channel width

instantaneous volumetric sediment concentration
local time-average volumetric sediment concentration
a reference volumetric sediment concentration
time-averaged sediment concentration at £ = 1
prime for sediment concentration fluctuation around the
mean

molecular sediment diffusion coefficient in (4)
particle diameter

median particle diameter

a functional symbol

(= p, / py) specific gravity

gravitational acceleration

gravitational acceleration component along x;
flow depth

subscripts in tensor variables

subscript for water-sediment mixture

pressure

time-averaged pressure

prime for pressure fluctuation around the mean
(=u;u, } turbulent kinetic enetgy

(= Vh/v) Reynolds number

Richardson number in (40)

correlation coefficient

energy or bed slope

time

depth-averaged velocity

),

anaan =R

S“WQ“‘“%&&U

o
.
x>~

R T T

]
o

S

u; instantaneous velocity in direction i, and i =1, 2, 3. “*1”
denotes the flow direction; “2” denotes the lateral direc-
tion; and **3” denotes the vertical direction

I overbar for time-averaged value

", prime for turbulent velocity fluctuation around the mean

e shear velocity

#,,,, maximum velocity at the boundary layer, i.e. at§ = 1

wu, turbulence intensity

Vv volume

X; coordinates

bl normalized distance by viscous length scale

5 boundary layer thickness, which is defined as the distance
from the bed to the position of maximum velocity

£, eddy viscosity in sediment-laden flows

£ sediment diffusivity coefficient

K von Karman constant in sediment-laden flows (i, =0.406
in clear water)

u dynamic viscosity for clear water

U, dynamic viscosity for water-sediment mixture

v kinematic viscosity of clear water

v, kinematic viscosity of water-sediment mixture

P mass density of water-sediment mixture

Po mass density of water

P time-space-averaged value of mass density of water-sedi-
ment mixture

P, mass density of sediment

1 (=x;/ 8) distance from the bed normalized by the bound-

ary layer thickness

Coles wake strength

wake strength

wake strength for clear water

angle between the channel bed and a horizontal datum

SRR
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