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Abstract— Detecting a sparse signal in noise is fundamentally
different from reconstructing a sparse signal, as the objective
is to optimize a detection performance criterion rather than
to find the sparsest signal that satisfies a linear observa-
tion equation. In this paper, we consider the design of low-
dimensional (compressive) measurement matrices for detecting
sparse signals in white Gaussian noise. We use a lexicographic
optimization approach to maximize the worst-case signal-to-
noise ratio (SNR). More specifically, we find an optimal solution
for a k-sparse signal among optimal solutions subject to sparsity
level k− 1. We show that for all sparse signals, columns of the
optimal measurement matrix must form a uniform tight frame.
For 2-sparse signals, the smallest angle among angles between
element pairs of this frame must be maximized. In this case, the
optimal solution matrix is an optimal Grassmannian packing.
For k-sparse signals where k > 2, the largest angle among
such angles must be as close to the maximum smallest angle as
possible. We show that under certain conditions, columns of the
optimal measurement matrix form an equiangular uniform tight
frame. For this case, we derive an expression for the maximal
SNR in the worst-case scenario, as a function of the signal
dimension and the number of measurements.

I. INTRODUCTION

Over the past few years, considerable progress has been
made towards developing a mathematical framework for re-
constructing sparse or compressible signals. In particular, the
advent of compressed sensing (see, e.g., [1]–[3]) has created
a great deal of enthusiasm among the signal processing
community, as it suggests that a high dimensional signal
can be accurately reconstructed from a small number of
measurements, using linear programming, provided that the
signal is sparse in a known basis. However, little attention
has been paid to statistical inference based on compressive
measurements from sparse signals, which is the main objec-
tive in many sensing applications.

Detecting a sparse signal in noise is fundamentally dif-
ferent from reconstructing a sparse signal, as the objective
in detection is to maximize the probability of detection or
to minimize Bayes risk, rather than to find the sparsest
signal that satisfies a linear observation equation. Therefore,
sufficient conditions required in compressive sensing for
signal recovery may not apply to signal detection. For
instance, a sufficient condition for the so-called basis pursuit
principle for sparse signal recovery is that the compres-
sive measurement matrix must satisfy a restricted isometry
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property (RIP), or, equivalently, it must be incoherent with
the sparsity basis for the signal [3]–[5]. However, it is not
clear whether or not this condition is in any sense optimal
for detecting sparse signals. The literature on sparse signal
detection (see, e.g., [6]–[8]) is mainly focused on deriving
bounds on the performance of Neyman-Pearson or Bayesian
detectors when the compressive measurements are made with
a random matrix, and not on the design of measurement
matrices that optimize the detection performance.

In this paper, we consider the design of compressive
measurement matrices for detecting sparse signals in white
Gaussian noise. We consider the following binary hypothesis
test: {

H0 : x = n,
H1 : x = s + n,

(1)

where x is an (N × 1) vector that describes the state of
a physical phenomenon. Under the null hypothesis H0, x
is a white Gaussian noise vector with covariance matrix
E[nnH ] = σ2

nI. Under the alternative hypothesis H1, x =
s+n consists of a deterministic signal s distorted by additive
white Gaussian noise n. We assume that the signal of interest
s is composed as

s = Ψθ, (2)

where Ψ ∈ RN×N is a known matrix, whose columns form
an orthonormal basis for RN , and θ is a k-sparse (k � N )
vector, which means that it has at most k nonzero elements
(but at least one). In this case, we say that s is sparse in the
basis Ψ = [ψ1, . . . ,ψN ].

We wish to decide between the two hypotheses based on
a limited number m ≤ N in the vector y = ΦHx from x,
where ΦH ∈ Rm×N is a compressive measurement matrix
that we will design, and the superscript H is the Hermitian
transpose. The observation vector y = ΦHx belongs to one
of the following hypothesized models:{

H0 : y = ΦHn ∼ N (0, σ2
nΦHΦ),

H1 : y = ΦH(s + n) ∼ N (ΦHs, σ2
nΦHΦ).

(3)

We consider a log-likelihood linear detector (e.g., the
Neyman-Pearson detector, which yields the maximum detec-
tion probability for a given SNR and false alarm rate). Since
the detection performance for this detector is a monotonically
increasing function of the SNR, we consider optimizing
an SNR criterion for designing the matrix Φ. To avoid
coloring the noise vector n, we constraint the compressive
measurement matrix ΦH to be left orthogonal, that is we
force ΦHΦ = I.



We use a lexicographic optimization (see, e.g., [9], [10],
and [11]) approach to design the matrix Φ that maximizes
the worst-case detection SNR, where the worst-case is with
respect to the location of nonzero entries of θ and their
values. This is a design for robustness with respect to the
worst sparse signal that can be produced in the basis Ψ. We
show that the worst-case detection SNR is maximized when
the columns of the product ΦHΨ between the compressive
measurement matrix ΦH and the sparsity basis Ψ form
a uniform tight frame. A uniform tight frame is a frame
system, in which the frame operator is a scalar multiple of
the identity operator and every frame element has the same
norm. We also show that when the signal is 2-sparse, the
smallest angle among angles between frame element pairs
must be maximized. This means that the frame in this case
is an optimal Grassmannian packing (see, e.g., [12], [13],
and [14]). For the case where the sparsity level of the signal
is greater than 2, we provide a lower bound on the worst-
case performance. To maximize this lower bound, vector
pairs of the optimal Grassmannian packing must have the
minimum largest angle possible. Under certain conditions,
the minimum and maximum angle between frame element
pairs become equal, and we will have an equiangular uniform
tight frame (see, e.g., [15]–[13]). For this case, we derive an
expression for the maximal worst-case SNR in terms of the
number of measurements m and the signal dimension N .

II. DETECTOR PERFORMANCE AND LEXICOGRAPHIC
OPTIMIZATION

The log-likelihood ratio function (see, e.g., [20]) for (3)
is given by

t(y) = yHΦHs,

and is distributed as{
H0 : t(y) ∼ N (0, σ4

nSNR),
H1 : t(y) ∼ N (σ2

nSNR, σ4
nSNR),

where the detection SNR is

SNR = (sHΦΦHs)/σ2
n. (4)

Our aim is to design Φ to maximize the worst-case SNR with
respect to the location and values of the nonzero entries in
θ. As pointed out earlier, the rationale for maximizing SNR
is that detection performance is monotonically related to the
SNR. For example, consider the Neyman-Pearson test of size
γ, which is the log-likelihood ratio test

t(y)
H1

≷
H0

η,

where the threshold η is chosen to maintain a constant false
alarm probability γ. The detection probability is given by

PD = Q
(
Q−1(γ)−

√
SNR

)
,

where Q(·) is the Q-function. This is the maximum detection
probability for a given SNR under a constant false alarm rate
γ constraint. The SNR, however, depends on the choice of
the compressive measurement matrix ΦH as in (4).

In practice, we might have signals that are not strictly
sparse. However, we can often find a basis (e.g., Fourier or
wavelet) in which the signal has k large coefficients. In this
case, we consider the other coefficients to be negligible and
treat them as zeros. For the detection problem, one approach
is to assume a known value for k and design the measurement
matrix Φ based on this assumption. This approach, however,
runs the risk that the true sparsity level might be different.

An alternative approach is not to assume any specific
sparsity lavel. Instead, when designing the measurement
matrix Φ, we prioritize the level of importance of different
values of sparsity k. In other words, we first find a set
of solutions that are optimal for a k1-sparse signal. Then,
within this set, we find a subset of solutions that are also
optimal for k2-sparse signals. We follow this procedure until
we find a subset that contains a family of optimal solutions
for sparsity levels k1, k2, k3, · · · . This approach is known
as the lexicographic optimization method (see, e.g., [10] and
[11]).

III. THE WORST-CASE PROBLEM STATEMENT

As mentioned above, we will use a lexicographic opti-
mization approach to maximize the worst-case SNR. Since
all sparse signals share the fact that they might only have
one nonzero entry, it seems natural to start with finding an
optimal measurement matrix for parameter vectors θ with
one nonzero entry. Next, among the set of optimal solutions
for this case, we find matrices that are optimal for vectors
θ with two nonzero entries. This procedure is continued for
vectors with more nonzero entries at each step.

Consider the kth step of the lexicographic approach. In
this step, the vector θ has up to k nonzero entries. We do
not impose any prior constraints on the locations and the
values of the nonzero entries of θ. Without loss of generality,
we assume that ‖s‖2 = ‖θ‖2 = 1. We wish to maximize
the minimum (worst-case) SNR, produced by assigning the
worst possible locations and values to the nonzero entries of
the k-sparse vector θ. Referring to (4), this is a worst-case
design for maximizing the signal energy sHΦΦHs inside the
subspace 〈Φ〉 spanned by the columns of Φ, since ΦΦH is
the orthogonal projection operator onto 〈Φ〉.

To define the kth step of the optimization procedure more
precisely, we need some additional notation. Let A0 be the
set containing all (N×m) left orthogonal matrices Φ. Then,
we recursively define the set Ak, k = 1, 2, . . . , as the set of
solutions to the following optimization problem:

max
Φ

min
s

‖ΦHs‖2,
s.t. ΦHΦ = I,Φ ∈ Ak−1,

‖s‖ = 1.

(5)

In our lexicographic formulation, the optimization problem
for the kth problem (5) involves a worst-case objective
restricted to the set of solutions Ak−1 from the (k − 1)th
problem. So, Ak ⊂ Ak−1 ⊂ · · · ⊂ A0.

Before we present a complete solution to these problems,
we first simplify them in three steps. First, since the matrix



Ψ is known, the matrix Φ can be written as

Φ = ΨC,

where C is an (N×m) matrix. Then, ΦHΨ = CHΨHΨ =
CH , and also ΦHΦ = CHΨHΨC = CHC = I. Using (2),
the max-min problems (5) become

max
C

min
θ

‖CHθ‖2,
s.t. CHC = I,C ∈ Bk−1,

‖θ‖ = 1,

(6)

where, similar to the sets Ak, the sets Bk (k = 1, 2, . . . )
are recursively defined to contain all the optimal solutions
of (6). It is easy to see that Bk = {C : ΨC ∈ Ak}.

Let Ω be the set Ω = {1, 2, . . . , N}. Consider a nonempty
subset T of Ω with cardinality |T | = k. Given a vector θ,
let θT be the subvector of size (k × 1) that contains all the
components of θ corresponding to indices in T . Similarly,
given a matrix C, let CH

T be the (m×k) submatrix consisting
of all columns of CH whose indices are in T . Now, suppose
that θ has at most k nonzero elements. Then, CHθ can
be written as CH

T θT for some T . Here, the elements of T
include the location of the nonzero elements of θ. If we
replace CHθ with CH

T θT in the max-min problem, then
besides considering the worst θT that minimizes ‖CH

T θT ‖2,
we also have to take into account the case where the set
T consists of locations in θ that cause ‖CH

T θT ‖2 to be
minimum. Thus, the max-min problem becomes

max
C

min
T

min
θT

‖CH
T θT ‖2,

s.t. CHC = I,C ∈ Bk−1,
‖θT ‖ = 1, |T | = k.

(7)

The solution to (7) is the most robust design with respect
to the locations and values of the nonzero entries of the
parameter vector θ.

The solution to the minimization subproblem

min
θT

‖CH
T θT ‖2,

s.t. ‖θT ‖ = 1,

is well known; see, e.g., [21]. The optimal objective func-
tion is λmin(CTCH

T ), the smallest eigenvalue of the matrix
CTCH

T . Therefore, the max-min-min problem (7) simplifies
to

(Pk)


max

C
min
T

λmin(CTCH
T ),

s.t. CHC = I,C ∈ Bk−1,
|T | = k.

(8)

At each step k, the optimal compressive measurement matrix,
denoted by Φ∗H , is determined from the optimizer C∗ of (8)
as Φ∗H = C∗HΨH . Next, we describe how to solve the
max-min problem (Pk) in (8).

IV. SOLUTION TO THE WORST-CASE PROBLEM

Let ci be the ith column of the matrix CH . As mentioned
earlier, we first find the solution set A1 for problem (P1).
Then, we find a subset A2 ⊂ A1 as the solution for (P2).
We continue this procedure for general sparsity level k.

A. Sparsity Level k = 1

If k = 1, then any T such that |T | = 1 can be written as
T = {i} with i ∈ Ω, and CH

T = ci consists of only the ith
column of CH . Therefore,

CTCH
T = cHi ci = ‖ci‖2,

and the max-min problem becomes

max
C

min
i
‖ci‖2,

s.t. CHC = I,C ∈ B0,
i ∈ Ω.

(9)

Because B0 is the set of (N × m) matrices C with the
property that CHC = I, the constraint C ∈ B0 can be
ignored.

Theorem 1: The optimal value of the objective function of
the max-min problem (9) is m/N . A necessary and sufficient
condition for a matrix C∗ to be in the solution set B1 is that
the columns {c∗i }Ni=1 of C∗H form a uniform tight frame
with norm values equal to

√
m/N .

Proof: We first prove the claim about the optimal value.
Assume false, i.e., assume there exists an optimal matrix
C∗ ∈ B1 for which the value of the cost function is either
less than or greater than m/N . Suppose the former is true.
Let CH

1 be an (m×N) matrix, satisfying CH
1 C1 = I, whose

columns have equal norm
√
m/N . Then, the value of the

objective function in (9) for C = C1 is m/N . This means
that our proposed matrix C1 achieves a higher SNR than C∗

which is a contradiction. Now, assume the latter is correct,
that is the value of the objective function for C∗ is greater
than m/N . This means that

min
i∈Ω
‖c∗i ‖2 = ‖c∗j‖2 > m/N.

Knowing this, we write

tr
(
C∗HC∗

)
= tr

(
C∗C∗H

)
=

N∑
i=1

‖c∗i ‖2

>

N∑
i=1

m/N = m.

However, from the constraint in (9) we know that C∗HC∗ =
I, and tr(C∗HC∗) = m. This is also a contradiction. Thus,
the assumption is false and the optimal value for the objective
function of (9) is m/N .

We now prove the claim about the optimizer C∗. From the
preceding part of the proof, it is easy to see that all columns
of C∗H must have equal norm

√
m/N . If not, since none of

them can be less than
√
m/N , then the sum of all column

norms will be greater than m, which is a contradiction.
Moreover, we write

C∗HC∗ =

N∑
i=1

c∗i c
∗H
i = I. (10)

Multiplying both sides of (10) by an arbitrary (m×1) vector
x from the right side and xH from the left side, we get

N∑
i=1

‖c∗Hi x‖2 = ‖x‖2.



This equation represents a tight frame with frame elements
{c∗i } and frame bound 1. In other words, it represents a
Parseval frame. Since the frame elements have equal norms,
the frame is also uniform. Therefore, for a matrix C∗ to be
in B1, the columns of C∗H must form a uniform tight frame.

This completes the k = 1 case.
Remark 1: The reader is referred to [15]–[14], and the

references therein, for examples of constructions of uniform
tight frames.

B. Sparsity Level k = 2

The next step is to solve (P2). Since our solution for this
case should lie among the family of optimal solutions for k =
1, results concluded in the previous part should also be taken
into account, i.e., the columns of the optimal matrix C∗H

must form a uniform tight frame, where the frame elements
c∗i have norm

√
m/N .

For T ⊂ Ω such that |T | = 2, the matrix CH
T consists of

two columns, e.g., ci and cj . So, the matrix CTCH
T in the

max-min problem (8) is a (2× 2) matrix:

CTCH
T =

[
〈ci, ci〉 〈ci, cj〉
〈ci, cj〉 〈cj , cj〉

]
.

From the k = 1 case, we have ‖ci‖2 = ‖cj‖2 = m/N .
Therefore,

CTCH
T = (m/N)

[
1 cosαij

cosαij 1

]
,

where αij is the angle between vectors ci and cj . The
minimum eigenvalue of this matrix is

λmin(CTCH
T ) = (m/N)(1− | cosαij |).

We assume for simplicity that αij ≤ π/2 (justified for the
case where m� N ), so that

λmin(CTCH
T ) = (m/N)(1− cosαij). (11)

Let αkl be the minimum angle among angles of all possible
vector pairs ci and cj satisfying the constraint of (P2). Let
α be the maximum possible value of αkl. So,

α ≤ αij , i, j ∈ Ω, i 6= j. (12)

Theorem 2: The optimal value of the objective function of
the max-min problem (P2) is (m/N)(1 − cosα). A matrix
C∗ is in B2 if and only if the columns of C∗H form a uniform
tight frame with norm values

√
m/N and the minimum

angle among angles between column pairs is α.
Proof: Since our solution must be chosen from the

family of uniform tight frames with frame elements of equal
norm

√
m/N , the objective function of (P2) is only a

function of the angle αij . Using (11), it is easy to see that the
minimum λmin(CTCH

T ) is (m/N)(1− cosαkl). Using (12),
we conclude that the largest possible value of the objective
function of (P2) is (m/N)(1 − cosα). Note that if we
consider any other uniform tight frame with elements having
norms equal to

√
m/N and a minimum angle β among

angles of all possible pairs of frame elements, then because

β ≤ α, the value of the corresponding objective function is
less than (m/N)(1− cosα).

This completes the k = 2 case.
Remark 2: Methods for constructing uniform tight frames

with frame elements that have a maximum smallest angle
among angles of frame element pairs is equivalent to optimal
Grassmannian packings of one-dimensional subspaces (see,
e.g., [15], [13], and [12]). We will say more about this point
later in the paper.

C. Sparsity Level k > 2

We now consider cases where k > 2. In this case, T ⊂ Ω
with |T | = k can be written as T = {i1, i2, · · · , ik} where
ih ∈ Ω for h ∈ {1, · · · , k}. From the previous results, we
know that an optimal matrix C∗ ∈ Bk must already satisfy
two properties, in addition to C∗HC∗ = I:
• Columns of C∗H must build a uniform tight frame with

equal norms
√
m/N (to be in the set B1),

• The minimum angle among angles of all possible col-
umn pairs of C∗H must be equal to the maximum
possible such angle α (to be in the set B2).

Taking the above properties into account for C∗, the
matrix C∗TC∗HT will be a (k × k) symmetric matrix that
can be written as C∗TC∗HT = (m/N)[I + AT ] where AT is

AT =


0 cosαi1i2 . . . cosαi1ik

cosαi1i2 0 . . . cosαi2ik
...

...
. . .

...
cosαi1ik cosαi2ik . . . 0

 ,
where ih 6= if ∈ T for the entry cosαihif in the (ih, if )th
location. Then,

λmin(C∗TC∗HT ) = (m/N)(1 + λmin(AT )). (13)

Let {αihif } be the collection of k largest angles among
angles between column pairs of the matrix C∗H that satisfy
the constraint in (Pk). Also, let T1 be the set of indexes of
these angles. Thus,

α ≤ αilij ≤ αihif , ih 6= if ∈ T1, il 6= ij ∈ T 6= T1.

Moreover, let δilij be defined as

δilij = cosα− cosαilij , il 6= ij ∈ T.

It is easy to see that

δihif ≥ δilij , ih 6= if ∈ T1, il 6= ij ∈ T 6= T1.

The following theorem holds.
Theorem 3: The optimal value of the objective function

of the max-min problem (Pk) for k > 2 lies between
(m/N)(1−cosα−

∑
ih 6=if∈T1

δihif ) and (m/N)(1−cosα).
Proof: Let xij be a (k× 1) vector that contains values

(1/
√

2) and (−1/
√

2) in the ith and jth locations (i 6= j)
and zeros elsewhere. Then, by using Raleigh’s inequality for
the matrix AT defined above and the family of vectors {xij}
defined by i and j, we conclude that

λmin(AT ) ≤ − cosαilij , il 6= ij ∈ T.



Thus,

min
T
λmin(AT ) ≤ min

T
(− cosαilij ) = − cosα. (14)

On the other hand, the matrix AT can be written as AT =
cosαB+FT where B is a matrix with zeros on the diagonal
and ones elsewhere, and FT is a symmetric matrix with zeros
on the diagonal and the value −δilij in the (l, j)th location
for il 6= ij ∈ T . Then,

λmin(AT )≥ cosαλmin(B) + λmin(FT )

=− cosα+ λmin(FT ).

The matrix FT can be written as FT =
∑

il 6=ij∈T Filij

where Filij is a symmetric matrix with the value −δilij
in the (l, j)th location and zeros elsewhere. Using matrix
properties (see, e.g., [22]), we can write

λmin(FT ) ≥
∑

il 6=ij∈T

λmin(Filij ) = −
∑

il 6=ij∈T

δilij .

Thus,
λmin(AT ) ≥ − cosα−

∑
il 6=ij∈T

δilij .

It is easy to conclude that

min
T
λmin(AT ) ≥ − cosα −

∑
ih 6=if∈T1

δihif . (15)

Using (13), (14), and (15) we get

(m/N)(1− cosα −
∑

ih 6=if∈T1

δihif ) ≤ min
T
λmin(C∗TC∗HT )

≤ (m/N)(1− cosα). (16)

D. Equiangular Uniform Tight Frames and Grassmannian
Packings

The inequality (16) in Theorem (3) suggests that if the
largest and smallest angles among angles between column
pairs are equal, then the optimal value of the objective
function of (Pk) for k > 2 will reach its upper bound.
In this case, the columns of C∗H (where C∗ ∈ Bk) in
fact form an equiangular uniform tight frame. Equiangular
uniform tight frames are optimal Grassmannian packings,
where a collection of N one-dimensional subspaces are
packed in Rm so that the chordal distance between each
pair of subspaces is maximal (see, e.g., [12], [15], and [13]).
Each one-dimensional subspace is the span of one of the
frame element vectors ci. The chordal distance between the
ith subspace 〈ci〉 and the jth subspace 〈cj〉 is given by

dc(i, j) =
√

sin2 αij , (17)

where αij is the angle between ci and cj . When all the
αij , i 6= j, are equal and the frame is tight, the chordal
distances between all pairs of subspaces become equal, i.e.,
dc(i, j) = dc for all i 6= j, and they take their maximum
value. This maximum value is the simplex bound given by

dc =
√

(N(m− 1))/(m(N − 1)). (18)

Fig. 1. Performance comparison between matrices C∗ and R for some
equiangular cases

This bound, however, can only be reached for some values
of m and N . It is shown in [18] that vectors ci could be
equiangular only when 1 < m < N − 1 and

N ≤ min{m(m+ 1)/2, (N −m)(N −m+ 1)/2} (19)

for frames with real elements, and

N ≤ min{m2, (N −m)2} (20)

for frames with complex elements. If the above conditions
hold, then the optimal solution for (Pk) for k > 2 is a matrix
C∗H such that its columns form an equiangular uniform tight
frame with frame elements of equal norm

√
m/N and angle

α defined as

α = arcsin

(√(
m− 1

m

)(
N

N − 1

))
. (21)

The optimal value of the objective function of (Pk) in this
case is (m/N)(1− cosα).

In other cases where N and m do not satisfy the condi-
tion (19) or (20), the bound (16) suggests that we use an
optimal Grassmannian packing where the k largest angles
among angles between column pairs of the matrix C∗H are
as close to the angle α as possible. This is, however, a very
difficult problem since even finding optimal Grassmannian
packings for different values of N and m is still an open
problem. The reader is referred to [12] and [15] for the state
of the art in this field.

We have thus considered a worst-case design criterion in
which we assume nothing about the vector θ, and our design
is robust against arbitrary possibilities of this unknown.

V. SIMULATION RESULTS

We have compared the performance of our robust (worst-
case) designed matrix C∗ with that of a random matrix R
with i.i.d Gaussian N (0, (1/m)) entries, which is typically
used in compressive sensing for signal recovery (see, e.g.,
[3]). To satisfy the constraint in problem (8), we make R to
be left orthogonal. We have run two sets of simulations. In
both cases, the value of the objective function in (8) when



TABLE I
PERFORMANCE COMPARISON BETWEEN MATRICES C∗ AND R FOR

SOME NON-EQUIANGULAR CASES

minimum λmin (dB)
Matrix C∗ Matrix R

m N k = 1 k = 2 k = 1 k = 2
4 40 −10 −16.517 −19.393 −33.979
6 36 −7.78 −10.793 −14.609 −22.596
9 48 −7.27 −9.03 −12.815 −15.297

the matrix R is used is an average taken over objective
functions of 100 realizations of the matrix R. In the first
case, the value m increases from 10 to 40 and N = 50.
For such values, the condition (19) is satisfied and columns
of the optimal matrix C∗H form an equiangular uniform
tight frame. Figure 1 shows the comparison between the
performance of our designed matrix C∗ with the matrix R
for k = 1, 2, . . . , 5.

For cases where N and m do not satisfy the condition (19),
we were unable to find an optimal matrix C∗ for k > 2. But,
for cases k = 1 and 2, we found three optimal matrices from
the website [23]. Table I shows the comparison between the
performance of these matrices and the matrix R.

Note that values of the objective functions in Figure 1
and Table I are in dB. As can be seen, in all scenarios,
the performance of the optimal matrix C∗ is better than the
matrix R.

VI. CONCLUSIONS

In this paper, we have considered the design of low-
dimensional (compressive) measurement matrices for detect-
ing sparse signals in white Gaussian noise. The detector
could be any log-likelihood detector (e.g., the Neyman-
Pearson detector) since for all such detectors, the detection
performance is an increasing function of the SNR. We have
found optimal solutions for the problem of maximizing the
worst-case detection SNR, and consequently the worst-case
detection probability for 1- and 2-sparse signals. When the
signal’s sparsity level is larger than 2, we have found lower
and upper bounds on the performance of the optimizer,
which meet under certain conditions. We have given an
expression for the maximal SNR in the worst-case scenario,
as a function of the signal dimension and the number of mea-
surements, by utilizing the equivalence between equiangular
uniform tight frames and optimal Grassmannian packings of
one-dimensional subspaces.
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