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Abstract— A network structure for canonical coordinate de-
composition is presented. The network consists of two single-
laver linear subnetworks that together extract the canonical
coordinates of two data channels. The connection weights of the
networks are trained by a stochastic gradient descent learning
algorithm. Each subnetwork features a hierarchical set of lateral
connections among its outputs. The lateral connections perform
a deflation process that subtracts the contributions of the al-
ready extracted coordinates from the input data subspace. This
structure allows for adding new nodes for extracting additional
canonical coordinates without the need for retraining the previous
nodes. The performance of the metwork is evaluated on a
synthesized data set.

I. INTRODUCTION

Canonical correlation analysis [1]-[4] provides a minimal
description of the correlation between two data channels by
concentrating the linear dependence of the channels into a
small set of canonical variables. Canonical correlations are
maximal invariants to uncoupled linear transformations of two-
channel data [3],[4]. The corresponding canonical coordinates
resolve the channels into coordinates that are only pairwise
correlated [3],[4]. Canonical coordinates have been used to
decompose Wiener filters and Gaussian communication chan-
nels into their canonical modes, where each mode corresponds
to a scalar Gaussian channel or Wiener filter [3],[4]. They
provide an elegant framework for analyzing linear dependence
and mutual information between twe data channels. In this co-
ordinate system, the linear dependence and mutual information
between the original channels are decomposed into those of
canonical coordinates of the channels, which are determined
by the corresponding canonical correlations. The canonical
correlation associated with each pair of canonical coordinates
determines the contribution of that pair to the linear depen-
dence and mutual information between the channels [3],[4].

The conventional methed of finding canonical coordinates
[3].[4] involves computation of square-root-inverses of covari-
ance matrices followed by an SVD of a coherence matrix.
These operations become computationally intractable and inef-
ficient especially for large dimensional data. In addition ail the
singular values and singular vectors of the coherence matrix
have to be evaluated even though only the most significant
singular values and their associated singular vectors are used
in most applications. These deficiencies make the conventional
scheme inefficient for real-time applications. Consequently, to
perform the canonical coordinate decomposition efficiently, a
method is required to extract the most significant canonical
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coordinate pairs and the corresponding canonical correlations
recursively, and without any matrix inversion, matrix square
root computation or direct SVD operations.

Neural networks have been proven to be powerful tools for
performing complex transformations. Several neural network-
based approaches haven been reported for extracting principal
components of a stochastic vector process directly from the
input data set [5]-[10]. In [11], a neural network structure has
been proposed for computing the reduced-rank Wiener filter
[4],[12]. A neural network-based approach has been reported
in [13] for performing canonical correlation analysis. How-
ever, this network only finds the most significant canonical
coordinate pair and the corresponding canonical correlation.

In this paper a network and a set of updating rules for
performing canonical coordinate decomposition is presented.
First, the problem of finding the first canonical coordinate pair
is formulated as a constrained minimization problem. Then,
given the first v canonical coordinate pairs, the problem of
finding the (r + 1)th pair is formulated as one of finding
the first canonical coordinate pair after the contributions of
the first r pairs are deflated from the input data subspace.
This formulation is used to propose a network structure that
consists of two single-layer linear subnetworks, The weights
of the subnetworks are trained using a stochastic gradient
descent iearning algorithm. Each subnetwork consists of a set
of lateral connections that whiten the output. The idea of using
lateral connections among the outputs was first exploited in [7]
for recursive extraction of principal components. In fact, the
structure of each subnetwork is similar to the structure of the
network reported in [7]. The lateral connections are trained
to deflate the contributions of the already extracted canonical
coordinates from the input data subspace. This structure allows
for adding new nodes for extracting a new canonical coordi-
nate without the need for retraining the previous nodes. This
is very useful since in most cases the number of canonical
coordinates or canonical correlations required is not known a
priori. It is also useful where the statistics of the data channels
are slowly varying with time. A simulation example is given
to demonstrate the validity of the proposed network and the
learning rules.

II. CANONICAL COORDINATE DECOMPOSITION: A REVIEW

Consider the two random vectors, x € R™*1 and y € R#*!
with m being the smaller dimension (m < n). Assume that
x and y have zero means and share the composite covariance
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This composite covariance matrix has the following block tri-
diagonal decomposition [3],[4].
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where R_1/2R,,R;T/2 = 1, R/2RT/2 =R, and F, G and

K are chosen to be the economical SVD of the coherence
matrix C = R;/*R;, R 7/ That is,
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C=R;)*R,R;7/*=FKGT and FTCG=K,
FTE=1, G'G=1, K =diaglki,ka,..-,km];
. (3
The diagonal matrix K is the canonical correlation matrix
of canonical correlations k;. The canonical correlations are
arranged in descending order (1 > %1 2 ... > ky, > 0).
The canonical coordinates of x and y are defined as

u F' 0 RM? 0 X
=0 e el e

where the elements of u are the canonical coordinates of x
and the elements of v are the canonical coordinates of y.
Correspondingly, the matrices

WP =FTR;}? and DT =GTR;}Y? (5)

map X and ¥ to their corresponding canonical coordinates u
and v. Thus we may rewrite the canonical coordinate map of

(4) as
u wT o b
vi=|lo DT ||yl ©)

The composite vector of canonical coordinates, [u7v”]7 has
covariance matrix

u T T _ Ryw Ruy

SRl bl o
_TWIR,,W WR,,D] [f kK]
~ | D"RypeW DTR,D | | K I

which indicates that the canonical coordinates uw and v are
individually white but diagonally cross-correlated. The canon-
ical correlation matrix is the cross covariance matrix of u and
v and is given by

EfuvT] = K = W'R,,D = F'R.}/?R,,R;T/2G (8)

The diagonal elements of this matrix are arranged in descend-
ing order. Thus the first canonical coordinate pair {u1,v;} has
the largest correlation.

The conventional method of canonical coordinate decom-
position, i.e. (4), requires the computation of the SVD of
the coherence matrix C = R;J}/QR%,R;;'/Q and the products
FTR;_,I/ 2 and GTR;J/ 2. However, the major computational

burden is not just the SVD. The procedure before and after
the SVD involves computation of square-root-inverses that re-
quires more than (Hmin{m®n,n?m)} flops. These operations
become computationally intractable and inefficient for large
dimension data. This motivates our next discussion.

IT1I. CANONICAL COORDINATE DECOMPOSITION
NETWORK

This section presents a network and a set of updating rules
to recursively extract the canonical coordinates of two data
channels. The updating rules are derived so that no matrix
inversion or square root computation is required. The network
may be trained in either batch or sequential mode and thus
may be used for online applications as well.

Let {uy,v;} denote the ith pair of canonical coordinates of x
and y. The canonical correlation associated with this pair is k;,
which is the ith diagonal element of the canonical correlation
matrix K. Correspondingly the ith columns of matrices W and
D, denoted by w; € R™*! and d; € R™*?, are respectively,
the mapping vectors that map x and y to their jth canonical
coordinates u; and v;. The canonical correlation k; is then
k; = E[wlxyTd;] = wIR,,d;. We further refer to w; and d;
as the ith canonical coordinate mappings.

Noting that k; = wiR,,d; is the largest canonical cor-
relation, the problem of finding the first canenical coordinate
mappings, w; and d;, may be formulated as the maximization
problem

max Wi Rg,d; 9

wi,dy

subject to the constraints

wiR;;wi =1 and d7R,d;=1. (10)

Using the method of Lagrange multipliers we may rewrite the
constrained optimization problem defined by (9) and (10) as
minimizing the objective function J; of the form

J1 = ~wiRyydy + (WIR Wy — 1)-)-‘-12*-‘-
+(dTRyyd1 - 1)%'3:

where Ay 1 and A, ; are Lagrange multipliers that enforce the
constraints in {10).

Now, assume that the first 7 < m columns of W and D
have already been found. Let W, € R™>" and D, € R™*"
be the matrices that, respectively contain the first » columns
of W and D. That is

an

W,.={w1,...,w,-] and Dr:[dl:-'-;drl- 12

The first r canonical coordinates of x and y are then given by

U= fu, ... up) =W?:x
vy =[v1,...,0,]T =Dy

(13)

By intreducing deflation we may minimize the deflated version
of J1 to find the next canonical coordinate mappings. It can
be shown [14] that the (r+1)th canonical coordinate pair of x
and ¥, {w,41,0r41}, 18 the first canonical coordinate pair of
(I— Rz W, WP )x and (1— Ry, D, D )y. Thus, the problem of
finding the (r+1)th canonical coordinate mappings w, 1 and
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d,;1, may be formulated in the context of (11} with x and ¥
being replaced by their deflated versions (I—R;, W, W7 )x and
(I-R,yD,-DY }y. We may now write the problem of finding the
canonical coordinate mappings W, and d,,; as minimizing
the objective function

Jr1 = v T (I~ Rye W WIR,, (1 — Ryy D, DI ), 4.1
+( r+1R:czwr+l - 1))‘”1 -+ (dr+1RyydT+1 - 1))r+1 z
4
where A, 1 and A. o are Lagrange multipliers that guaran-
tee the unit variance property of the new pair of coordinates;

and d7, Rydrai=1. . (15

Taking the partial derivatives of J; with respect to w,; and
d,.1 yield

[i 8 -
OW,pg

aJ-
aarJrl] =

T _
Wr 1 ReeWrpy =1

_(I - R;t:zwrw;{')Rry(I - Rnyf‘D?)TdT+1
+Rmzwr+1Ar+l,l
—(I —~RyyD, DY Ryu (I — R W, W) Tw, 1y
+Ryydr+1)\r+l,2
{16)
At the solution the constraints in (15) are satisfied. Moreover,

due to deflation, w,.; and d.4+; are respectively, orthogonal
to R,z W, and Ry, D,. That is

wl R;;W,=0 and d’ R, D, =0 an

Using (15) and (17) the optimal values of Lagrange multipliers
in (14} are found to be

Art =Ari11 = Arp12 =W Roydrpr  (18)

From (6), the (r+1)th canonical coordinate pair of x and y is
given by
Uppt = wfﬂx

(19
Ury1 = dz+1y
Using (13) and (17) we may rewrite {19) as
g1 = Wiy (I - R W, Whx = wl, x'~ qu, 20)
vpg1 = A5 (1= Ry, DD )y = a7, x — pI'v,
where
T T
=w__ R, W
q- r+1 ™ (21)

T
P? =d, ;1 1RyyD:

The pair of equations in (20) may be used to define a
network structure for extracting the (r+1)th pair of canonical
coordinates, given the first r pairs. Each equation in (20)
defines a single layer subnetwork that features a feedforward
set of weights from the input to the output and a set of lateral
connections that connects the first r nodes to the (r+1)th
node. Figure 1 shows the structure of this network. In this
structure, W,. and D,. are the weight matrices that map x and
y to their first r canonical coordinates u, and v,. Given these
weights, the network may be trained, by minimizing J.4; in
(14), to extract the (r+1)th canonical coordinate pair and the
corresponding mappings. The weight vectors w..; and dr1
are trained to maximize the correlation between the outputs
tip4+1 and vry; and make them unity variance. The lateral

Fig. 1. The structure of the network for recursive extraction of canonical
coordinates of x and y.

weight vector g, is trained to orthogonalize u, (the first r
canonical coordinates of x) to u,,; (the (r+1)th canonical
coordinate of x.) Similarly, the lateral weight vector p,. is
trained to orthogonalize v, (the first v canonical coordinates
of y) to ve41 (the (r+1)th canonical coordinate of y.) The
lateral connections perform a deflation process that subtracts
the contributions of the already extracted coordinates from the
linear subspaces of x and y. This structures allows for adding
new nodes for extracting additional canonical coordinates
without the need for retraining the previous nodes.

Using the stochastic gradient descent learning algorithm,
with instantaneous values of covariance matrices inserted into
(16), we may derive the following updating rules for w,.;,
and &, :

W1 (G + 1) = wrga (7)) + [(x(G + 1} = S-(7 + Du(7 + 1))-
(i +1) - %G+ DxG+ DT
W () A1 (G + DIBG + 1)
dr1 (7) + [y + 1) = T (G + Dve(5 + 1))
i+ L) —y(G+ Dy +1)7
1 (e (5 + DIBG +1)

dr+1(j + 1) =

where 7 is the index of iteration. Matrices S, and T, are
updated to asymptotically approximate R W, and R, D,
respectively. From (18), the Lagrange multiplier A, =
Arg1,1 = Arg1,2 Shall be updated to asymptotically approxi-
mate Wz+1R:cydr+1 = ky41. Thus the updating rules for S,,
T, and Aryq are

Se( +1) = 7780 (5) + spx( + Dul G+ 1)
Tr(d + 1) = 75 Tr () + 7y0 + VI (G + 1)
/\r+1(j'+l) -—J—)\r+1( )+

AW (x5 + DyT (G + Ddrya(5)
(23)
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Finally using (21) the learning rules for the lateral weight
vectors q,., and p,. may be written as

9.1+ 1} =S (G + WG+ 1)
p.(i+ 1) =TI+ Ddrsa(+1)
Thus, we may summarize the training algorithm for extracting

the (r+1)th canonical coordinate pair for r =0,1,...,m —1
and the corresponding mapping vectors as

(24)

ue(i +1) = WIx(i + 1)

ve(f+ 1) =Dly(i+ 1)

ey (5 + 1) = Wl (G + %G+ 1) ~ a7 (Fur(G + 1)

Ve (G + 1 =47, (G + Dy + 1) — I Give(G + 1)

A (G 1) = g Ao (3) + i (G + DyT (G + Ddrga ()

Se(i+ 1) = 738 + FrxG + el (G + 1)

Te(i+1) = $R TG+ Sy + ¥ G+ 1)

Weg1(G+ 1) =wers(G) + (X + 1) = S0 + Dus(d + 1)or(G + 1)
=x( + 1x(G + ) wep1 (DA (G + D]BG + 1)

Grpa{d + 1) =dei{d) + {6+ 1) = TG + ve( + 1))ure (5 + 1)
—y(i + ¥ + DT (DA G+ DIBG + 1

L0+ =8TE+ Dwea(G + 1)

PG+ 1 =TI G+ g1 (G + 1)
(25)

The initial values wng1(0) € R™*!, d,4q1(0) € R™,
q.(0) € ™1, p,.(0) € R™™1, §,(0) € R™*", T,.(0) € R™*",
and A, may be chosen randomly. The learning rate 7 may be
varied or kept fixed [15]. It is important to note that, owing to
the deflation performed by the lateral connections, the outputs
within each subnetwork are decoupled. Thus during extraction
of the (r+1)th pair of canonical coordinates there is no need
to retrain the previous nodes and the weight matrices W, and
D, are not changed.

IV. SIMULATION RESULTS

In this section, the propesed network is used to recursively
extract the canonical coordinate mappings for a synthesized
data set. The performance of the network is demonstrated
by presenting the plots of squared error between the actual
canonical coordinate mappings, computed using the direct
method in (5), and the ones estimated by the network, along
with the plots of squared error for canonical correlations. Let
w; and d;, respectively, denote the estimate of the ith pair
of the actual canonical coordinate mappings w; and d;. We
define €2 and €2 as the squared estimation error of the ith
canonical coordinate mappings w; and d;. That is,

6‘2“. = |jw; — w;||2 and ei = |id; ~ aiuz

Also, ef = (ki — k;)?, is defined as the squared estimation
error of the ith canonical correlation k;. The actual canonical
correlation k; is found from the SVD in (3). From (18), it
is seen that the ith canonical correlation k; is estimated by
the Lagrange multiplier A;. The data set is formed from 500
samples of two data channels governed by the linear model

x=H;n,
y = Hym, + Hy.x

where x € R**!, y € R}, The matrices H, € R**, H, ¢
R5%E and H,, € R®** are known matrices, and n, € R**1

and 1, € R®*! are two independent white Gaussian vectors.
The network is trained for 2500 epochs using the training
algorithm in (25). The learning rate is varied lincarly from
G=5%x10"%t0 8 =5x 107% in 2500 steps. All the initial
values in (25) are randomly selected.

Figure 2 shows the squared estimation errors €2 , i € [1,4]
vs. the epoch index for 10 independent initializations of the
network. It is seen that in all the cases the squared error
approaches zero within a misadjustment error and thus the
weights of the upper subnetwork (Fig. 1) converge to the actual
canonical coordinate mappings that map the first data channel
X into its canonical coordinates u.

The plots of the squared estimation errors e, ¢ € [1,4]
vs. epoch index for the 10 initializations are shown in Fig. 3.
The convergence behaviors are very similar to those in Fig.
2. Tt is seen that in all the cases the squared error approaches
zero within a misadjustment error and thus the weights of the
lower subnetwork (Fig. 1) converge to the actual canonical
coordinate mappings that map the second data channel y into
its canonical coordinates v.

Figure 4 shows the squared estimation errors eﬁ‘,, i€ [1,4]
vs. the epoch index for the 10 initializations. The plots show
that the squared error decays to zero in all the cases. The
estimate of the ith canonical correlation is given by the
Lagrange multiplier A;. These plots indicate that A;’s converge
to the actual canonical correlations k;’s in all the cases.

V. CONCLUSION

A new network for recursive extraction of canonical coor-
dinates/correlations of two data channels is introduced. The
network is based on a constrained minimization problem that
exploits a deflation process. The deflation process is performed
by incorporating lateral connections into the subnetworks.
The learning rules are derived using a stochastic gradient
descent algorithm. The structure of the network along with the
learning rules ailow for adding a new node to the network in
order to extract a new pair of canonical coordinates without
the need to retrain the previous nodes. Unlike conventional
methods, no matrix inversion, matrix square root computation,
direct SVD is required during the training. A simulation
example demonstrates the validity of the proposed network and
learning rules. The results confirm that the extracted canonical
coordinate mappings approximate the true ones.
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