
1

Sidelobe Suppression in a Desired Range/Doppler
Interval

Ali Pezeshki,1 Robert Calderbank,2 and Louis L. Scharf1
1Colorado State University, Fort Collins, CO 80523-1373

2Princeton University, Princeton, NJ 80544-1000

Abstract—We present simple methods for constructing
radar waveforms whose ambiguity functions are free of
sidelobes inside a desired range or Doppler interval. We
exploit the time-frequency duality between pulse amplitude
modulation (PAM) and orthogonal frequency division mul-
tiplexing (OFDM) to sequence Golay complementary codes
across time or frequency and clear out range/Doppler
sidelobes. Proper sequencing of complementary codes in
time (PAM design) enables the annihilation of range
sidelobes along a desired Doppler interval. The dual design,
i.e., OFDM signaling of complementary codes, enables the
annihilation of Doppler sidelobes along a desired range
interval. The two designs can be used sequentially to bring
weak targets out of the sidelobes of nearby strong reflectors
inside a range-Doppler interval of interest.

Index Terms—Golay complementary sequences;
OFDM/PAM signalling; Sidelobe suppression, Thue-
Morse sequences

I. INTRODUCTION

In radar, we illuminate a scene with a waveform and
then matched filter the radar return with the transmit
waveform to resolve targets in range and Doppler. Under
the point scatter assumption, much of the analysis can
be performed by looking at the ambiguity function of
the transmit waveform. Ideally, we wish to have an
impulse ambiguity function that is completely free of
sidelobes in range and Doppler, as the the presence of
sidelobes means that weak target can be masked by
nearby strong reflectors. However, as Moyal identity [1]
shows, this is impossible and the best we can hope for
is a “thumbtack” ambiguity function, where the width of
the thumbtack in range and in Doppler is restricted by the
time-bandwidth product of the waveform. The design of
waveforms with thumbtack ambiguity functions has been
one of the main focuses in radar signal processing over
the past six decades. The reader is referred to [1]–[4] and
the references therein for a review of some of the relevant
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literature. Conventional approaches to waveform design
either exploit the available time-bandwidth product to
achieve a desired ambiguity response over the entire
range-Doppler plane, or they solve an optimization prob-
lem to match to a presumed signal-plus-clutter model.
These approaches are generally complicated, seldom
result in closed form solutions, and often lead to non-
unimodular waveforms that do not satisfy the power
constraints of the transmitter.

Asking for a true thumbtack ambiguity response is re-
strictive and often not necessary. Rather it is sufficient to
have an ambiguity response that is thumbtack-like inside
the range-Doppler region that is of interest for imaging.
This approach is particularly important to the operation
of future generations of radar systems where waveform
design and target detection/tracking are expected to be
performed in a closed loop fashion in real-time to enable
adaptive operation. “Pushing sequences” introduced in
[5] and a set of Costas sequences [5],[6] can produce
waveforms for which the ambiguity functions are free of
sidelobes inside a range-Doppler neighborhood around
zero. These approaches rely on frequency hopping at a
fast rate and in general cannot annihilate sidelobes inside
an arbitrary range-Doppler interval.

Our aim in this paper is to develop a systematic way
for clearing out range/Doppler sidelobes inside a Doppler
or range region of interest. Recently, we showed [7]–
[9] that by proper sequencing of only two complemen-
tary waveforms across time it is possible to achieve
an ambiguity response that is free of range sidelobes
inside a desired Doppler interval. The complementary
codes used are Golay complementary codes [10]–[12]
invented Marcel Golay, which have the property that
the sum of their autocorrelation functions is an impulse
in delay. These codes were rediscovered by Welti [13]
and were proposed for use in pulsed radar but they
never found wide applicability due to their sensitivity to
Doppler effect [1],[14]. We showed [8]–,[15] that if the
transmission of a Golay pair of phase coded waveforms
in time is coordinated according to the location of zeros
and ones in a binary sequence, then the magnitude of the
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range sidelobes of the pulse train ambiguity function will
be proportional to the magnitude spectrum of the binary
sequence. Range sidelobes inside a desired Doppler
interval are suppressed by selecting a binary sequence
whose spectrum has a high-order null at a Doppler
frequency inside the desired interval. We showed that
the spectra of Prouhet-Thue-Morse (PTM) sequences
have high-order nulls at all rational (in multiple of 2π)
Doppler shifts. T

In this paper we extend this result to produce impulse-
like ambiguity responses in Doppler over desired range
intervals. The key idea is to view the PTM pulse trains
of [7]–[9] as pulse amplitude modulation (PAM) wave-
forms and to exploit the time-frequency duality between
PAM and orthogonal frequency division multiplexing
(OFDM). The pulse trains reported in [7]–[9] are indeed
PAM designs, and they are constructed by amplitude
modulating a narrow pulse shape by a PTM sequence
of Golay codes. Depending on the choice of the PTM
sequence, the PAM waveform produces an impulse-like
ambiguity response in delay (time shift) over a particular
Doppler interval. If the very same PAM design is used
in the frequency domain then the ambiguity response
will be an impulse in Doppler (frequency shift) across a
range interval. This frequency-domain PAM signal is an
OFDM signal in the time domain, obtained by stacking
the PTM sequence of Golay complementary codes across
different frequency tones. In other words, if we have a
good PAM design in time that annihilates range sidelobes
inside a Doppler interval we can build an OFDM signal
from it that annihilates Doppler sidelobes inside a range
interval, and vice versa.

A key feature of our dual designs is their simplic-
ity. Our waveform library consists of only a pair of
complementary component waveforms and the rest are
enabled by properly sequencing these components in
time or in frequency. Thus, the waveform generators
required at the transmitter can be considerably simpler
than those required by waveform agile schemes (e.g.
see [3],[4],[16]) that exercise a large waveform library.
Unlike Pushing and Costas sequences, our dual designs
do not exploit frequency hopping.

II. IMPULSE-LIKE AMBIGUITY RESPONSE IN RANGE

OVER A DESIRED DOPPLER INTERVAL

In this section, we review the key results of [7]–[9] to
lay a foundation for our new developments, which will
be discussed in Section III.

Definition 1: Two length-L unimodular sequences of
complex numbers x` and y` are Golay complementary
if for k = −(L − 1), . . . , (L − 1) the sum of their

autocorrelation functions satisfies

Cx,k + Cy,k = 2Lδk, (1)

where Cx,k is the autocorrelation of x` at lag k and δk is
the Kronecker delta function. Each member of the pair
(x, y) is called a Golay sequence or a Golay code.

The baseband waveform x(t) phase coded by x` is
given by

x(t) =
L−1∑

`=0

x`s(t− `Tc) (2)

where s(t) is a unit energy pulse shape of chip duration
Tc. The ambiguity function χx(τ, ν) of x(t) is given by

χx(τ, ν) =

∞∫

−∞
x(t)x(t− τ)e−jνtdt (3)

where τ is delay, ν is Doppler frequency, x(t) is the
complex conjugate of x(t).

If the complementary waveforms x(t) and y(t) are
transmitted separately in time, with a T sec time inter-
val between the two transmissions, then the ambiguity
function of the radar waveform z(t) = x(t) + y(t − T )
can be approximated by

χz(τ, ν) =
L−1∑

k=−(L−1)

[Cx,k + ejνT Cy,k]χs(τ + kTc, ν).

(4)
where χs(τ, ν) is the ambiguity function of the pulse
shape s(t) and νT is the relative Doppler shift over a
PRI. Along the zero-Doppler axis (ν = 0), the ambiguity
function χz(τ, ν) is “free” of range sidelobes. 1 Off the
zero-Doppler axis however, the ambiguity function has
large sidelobes in delay (range). The range sidelobes in
the ambiguity function can cause masking of a weak
target that is situated near a strong reflector. The reader
is referred to [7]–[9] for more details and numerical
results that show the sensitivity of Golay complementary
waveforms to Doppler.

Let P = {pn}N−1
n=0 be a discrete binary sequence of

length N and consider the pulse train zP(t) given by

zP(t) =
N−1∑

n=0

pnx(t− nT ) + pny(t− nT ) (5)

where pn = 1 − pn is the complement of pn, and x(t)
and y(t) are Golay complementary waveforms. The nth
entry in the pulse train is x(t) if pn = 1 and is y(t)

1The shape of the ambiguity function depends on the autocorre-
lation function χΩ(τ, 0) for the pulse shape Ω(t). The Golay com-
plementary property eliminates range sidelobes caused by replicas of
χΩ(τ, 0) at nonzero integer delays.
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if pn = 0. Consecutive entries in the pulse train are
separated in time by a PRI T .

The discretized ambiguity function of zP(t) can be
expressed as [8],[15]

χzP (k, θ) =
1
2
[Cx,k + Cy,k]

N−1∑

n=0

ejnθ

+
1
2
[Cx,k − Cy,k]

N−1∑

n=0

(−1)pnejnθ (6)

where θ = νT is the relative Doppler shift over a
PRI T . The first term on the right-hand-side of (6) is
free of range sidelobes. The second term represents the
range sidelobes, as Cx,k − Cy,k is not an impulse. The
magnitude of the range sidelobes is proportional to the
magnitude of the spectrum SP(θ) given by

SP(θ) =
N−1∑

n=0

(−1)pnejnθ. (7)

Range sidelobes inside a desired Doppler interval can
be suppressed by selecting a binary sequence whose
spectrum has a high-order null at a Doppler frequency
inside the desired interval.

We have shown [7]–[9] that the spectrum of a bi-
nary sequence, called the Prouhet-Thue-Morse (PTM)
sequence [17],[18], has a high-order null around zero
and hence it suppresses range sidelobes along modest
Doppler shifts.

Definition 2: [17],[18] Consider the binary representa-
tion of an integer n =

∑
bj2j . The nth element, n ∈ N0,

in a Prouhet-Thue-Morse (PTM) sequence P = (pk)k≥0

over {0, 1} is equal to
∑

bj modulo 2.
Oversampled PTM sequences zero-force the Taylor

moments of the spectrum SP(θ) around rational (in
multiples of 2π) Doppler shifts. An oversampled PTM
sequence, say by a factor m, is obtained by repeating
each 0 and 1 in the PTM sequence m times.

The ambiguity function of a PTM pulse train zP(t) of
Golay complementary waveforms behaves as

χzP (τ, ν) ≈ δ(τ)α(ν), ∀ν ∈ ϑ (8)

where α(ν) is a function of Doppler frequency ν and ϑ
is a Doppler interval in which P has spectral nulls. The
reader is referred to [7]–[9] for details.

Figure 1 shows the ambiguity function of a length-
(N = 28) PTM pulse train of Golay complementary
waveforms, which has a seventh-order null at zero-
Doppler. The horizonal axis is Doppler frequency in Hz
and the vertical axis is delay in sec. The magnitude
of the pulse train ambiguity function is color coded
and presented in dB scale. We observe that the pulse
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Fig. 1. Ambiguity function of a length-(N = 28) PTM pulse train
of Golay complementary waveforms is free of range sidelobes along
modest Doppler frequencies.

train ambiguity function is effectively free of range
sidelobes across a neighborhood of the zero-Doppler axis
(approximately [−300, 300] Hz). The range sidelobes in
this region are approximately 80 dB below the peak
of the ambiguity function. The Golay complementary
waveforms used in this example are built via phase
coding a raised cosine pulse with Golay complementary
sequences of length 64. The chip length is Tc = 100
nsec, the carrier frequency is 17 GHz, and the PRI is
T = 50 µsec.

III. IMPULSE-LIKE AMBIGUITY RESPONSE IN

DOPPLER OVER A DESIRED RANGE INTERVAL

PTM sequencing of Golay complementary waveforms
in time produces impulse-like ambiguity responses in
range across desired Doppler intervals. We now show
that a dual design, which involves PTM sequencing of
Golay pairs across frequency tones, can be used to clear
out Doppler sidelobes across a range interval of interest.

Consider the PTM pulse train zP(t) given in (5). From
here on we drop the subscript P and simply use z(t).
Define the sequence x̂` as

x̂` =
{

x`, ` = 0, 1, . . . , L− 1
0, ` = L,L + 1, . . . , L + K − 1 (9)

where K = [T/Tc]. Similarly define ŷ` by zero-padding
the Golay sequence y` to fill up a PRI. Then we can
write z(t) as

z(t) =
M−1∑

m=0

ams(t−mTc) (10)
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where the sequence {am}M−1
m=0 is obtained by concate-

nating the sequences x̂` and ŷ` according to a PTM
sequence {pn} (original or oversampled), with 0 cor-
responding to x̂` and 1 corresponding to ŷ`.

The PTM pulse train z(t) is a time-domain PAM
waveform, for which the ambiguity function behaves
almost as an impulse in range across the Doppler interval
ϑ:

χz(τ, ν) =
∞∫
−∞

z(t)z(t− τ)e−jνt

≈ δ(τ)α(ν), ∀ν ∈ ϑ (11)

The Doppler interval ϑ, in which we wish to clear
the range sidelobes, determines which PTM sequence
(orginal or an oversampled version) needs to be used.

Consider now the corresponding frequency-domain
PAM waveform z(ω) constructed as

z(ω) =
M−1∑

m=0

ams(ω −mωc) (12)

where ωc denotes the duration of the frequency-domain
pulse shape s(ω). The ambiguity function of z(ω) is
given by

χz(ν, τ) =
∞∫
−∞

z(ω)z(ω − ν)e−jτωdω

≈ δ(ν)α(τ), ∀τ ∈ ∆ (13)

Here, Doppler frequency (frequency shift) ν plays the
same role, with respect to global frequency ω, that the
time delay (time shift) τ plays with respect to global
time t. The delay interval ∆ plays the role of the Doppler
interval ϑ in (11), and determines which PTM sequence
and hence PAM design must be used in the frequency
domain.

Comparing (11) and (13), we observe that the time-
domain PAM design that clears out range sidelobes will
clear out Doppler sidelobes if it is performed in the
frequency domain. However, the frequency-domain PAM
signal in (12) is a time-domain OFDM signal given by

Z(t) =

(
M−1∑

m=0

ame−jmωct

)
S(t) (14)

where Z(t) = F−1{2πz(−ω)} and S(t) =
F−1{2πs(−ω)}. It is easy to verify that the ambiguity

function χz(ν, τ) in (13) can be written as

χz(ν, τ) =
1
2π

∞∫

−∞

∞∫

−∞
Z(t)z(ω − ν)ejω(t−τ)dωdt

=
1
2π

∞∫

−∞
Z(t)




∞∫

−∞
z(−ω)ejω(t−τ)dω


 dt

=
e−jντ

2π

∞∫

−∞
Z(t)Z(t− τ)ejνtdt

≈ α(τ)δ(ν), ∀τ ∈ ∆. (15)

The last integral on the right-hand-side of (15) is the
ambiguity function χz(τ,−ν) of the OFDM waveform
Z(t). We observe that the time-domain OFDM waveform
Z(t), obtained by stacking Golay complementary codes
over OFDM frequencies according to the PTM sequence,
can produce an impulse-like ambiguity response in
Doppler across a range interval of interest.

The above analysis shows that if we have a good
PAM design in time (or OFDM design in frequency) that
annihilates range sidelobes inside a Doppler interval we
can build a time-domain OFDM signal (or a frequency-
domain PAM signal) from it that annihilates Doppler
sidelobes inside a range interval, and vice versa. An
example for these dual designs is shown in Fig. 2.

IV. CONCLUSIONS

In this paper, we extended the results of [7]–[9]
to dual domain to design waveforms whose ambiguity
functions are free of Doppler sidelobes across a range
interval of interest. This was accomplished by exploiting
the time-frequency duality between PAM and OFDM
waveforms. The pulse trains designed in [7]–[9] for
range sidelobe suppression employ PTM sequences of
Golay complementary codes to amplitude modulate a
pulse shape in time. Depending on the choice of the PTM
sequence, the resulting PAM waveform annihilates range
sidlobes inside some Doppler interval. The dual wave-
forms constructed in this paper stack a PTM sequence
of Golay complementary codes across OFDM tones
to annihilate Doppler sidelobes in a range interval of
interest. Sequential application of the two designs can be
used to suppress range sidelobes and Doppler sidelobes
in successions. The proposed designs are simple and only
require a phase code library with two components that
form a complementary pair.

REFERENCES

[1] N. Levanon and E. Mozeson, Radar Signals. New York: Wiley,
2004.



5
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(b) Time-domain OFDM
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