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SUMMARY

When compared with commonly used subdomain moment-method analysis, entire-domain analysis of 3D
dielectric scatterers results in a greatly reduced number of unknowns. Unfortunately, the expressions for
matrix elements tend to be quite complicated and their calculation extremely time-consuming if evaluated
directly. It is shown in the paper that, in a Galerkin-type solution with large trilinear hexahedral basic volume
elements and three-dimensional polynomial approximation of volume current inside them, these expressions
can be manipulated analytically for optimized rapid non-redundant integration. Consequently, a method for
the analysis of 3D dielectric scatterers is obtained that is efficient, rapidly converging with increasing degree
of approximation for current, remarkably accurate and very moderate in computer memory requirements. The
applicability of the method of moments is thereby extended to bodies of electrical sizes greatly exceeding
those that can be dealt with by subdomain meth@tld.997 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

The moment-method numerical analysis of 3D dielectric scatterers is one of the most challenging
electromagnetic problems. The principal difficulty is a very large number of unknowns involved
in such an analysis. On one hand, this requires computers of large storage capabilities. On the
other hand, solution for the unknowns is a very time-consuming procedure.

This paper deals with the analysis of 3D dielectric scatterers based on the solution of the
volume integral equation for current (or field) distribution. The existing methods for the solution
of this equation are of subdomain type. Consequently, basis functions of low order (3D pulse
functions or 3D rooftop functions) are used for the approximation of unknown generalized current
distribution inside electrically small volume elements (cubes, parallelepipeds or tetrahédtons).
This results in relatively simple evaluation of the system matrix elements, but in a prohibitively
large number of unknowns for even electrically medium-sized problems. Although there are
subdomain methods which possess the convolution structure of the solution and use the conjugate
gradient FFT technique to speed up the computatitre large number of unknowns nevertheless
limits their applicability severely.

One way of reducing the number of unknowns is to use entire-domain basis functions inside
volume elements much larger than in the subdomain approach. As far as the authors are informed,
such a method has been used for the analysis of 3D dielectric scatterers in one refererfce only,
probably because of analytically quite complex and computationally time-consuming evaluation of
the system matrix elements.

This present paper is aimed at demonstrating that the entire-domain approach can be optimized
so that, with considerable reduction in both the total number of unknowns and the CPU time per
unknown, the moment method becomes a powerful tool for analysis of 3D dielectric scatterers.
The optimized method consists of four principal steps:
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178 B. M. NOTAROS AND B. D. POPOVIC

1. adoption of large trilinear hexahedrons as elements for the approximation of the scatterer
geometry

2. approximation of volume currents by simple and flexible entire-domain 3D polynomials in
local parametric co-ordinates (generally not orthogonal) inside these elements

3. adoption of the Galerkin method for numerical solution of the volume integral equation, and
specific transformations of the Galerkin generalized impedances (the system matrix elements)
which enable their efficient numerical evaluation, and

4. extensive analytical manipulations and careful programming (discussed in great detail in the
paper) in order to minimize the time necessary for the evaluation of the system matrix elements
(i.e. generalized impedances).

An accurate method for the analysis of 3D dielectric scatterers is thus obtained which, on
average, results in at least an order of magnitude fewer unknowns, and consequently very much
reduced total CPU time, when compared with the existing, subdomain, methods. The method
appears to converge rapidly with the increasing degree of polynomial approximation and to be
remarkably stable. The applicability of the moment-method solutions of 3D dielectric scatterers is
thereby greatly extended. For example, problems which would otherwise require very large
computers can be solved efficiently on normal-size personal computers.

2. GENERALIZED IMPEDANCES IN THE GALERKIN SOLUTION OF THE VOLUME
INTEGRAL EQUATION FOR CURRENT INSIDE TRILINEAR HEXAHEDRONS

2.1. Generalized Galerkin impedances for arbitrary volume elements

Imagine first an arbitrary inhomogeneous scatterer, possibly lossy, situated in a vacuum in an
incident electromagnetic field. Let the scatterer be made of a linear dielectric or permigivity
conductivity ¢ and permeabilityu,, and let the angular frequency of the incident wavechéNe
solve for volume currents in the scatterer starting from the volume integral equation and the
method of moments.

Assume first that the scatterer is approximated by a number of arbitrary volume elements. Let
us approximate the complex total (polarization plus conduction) induced current-density \Jector,
inside them by convenient functional series with unknown complex coefficients. The generalized
impedances (the system matrix elements) are then givén by

Zmn = j ‘Jm ' En de (l)

where J,,, represents arbitrary testing (weighting) function inside it element, of volumev,,,
and E, the electric-field vector due to the current component corresponding to arbitrary basis
function J,, in the nth element. Ifn = m, a termAZ,,= —[[jo(e, — €0) + o] * I - I, AV, Must
be added toZ,, but its evaluation is trivial, and we shall not consider it here. For the same
reason we shall not consider the elements of the free-terms (excitation) column matrix of the
system of linear equations (known as generalized volfagEmally, we adopt the Galerkin testing
method, i.e. the same testing and basis functions.

The vectorE, can be evaluated as follows:

E,= —joA, — gradb, 2
An = “‘OJ' ‘]ng(rmrrn) an (3)
Vn
1
P, = — |:J Pn g(rm:rn) an + f Psn g(rm-rn) dSh:| (4)
€ /v, S
g 1y
Pn = div Jn! Psn = Isn* Jn (5)
w (O]
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ENTIRE-DOMAIN MM ANALYSIS OF 3D DIELECTRIC SCATTERERS 179

In these equationsh and ® are the Lorentz potentialg, and ps are densities of total (polarization
plus free) induced volume and surface charggsjs the surface of theith element, andg, is
the outward unit vector normal t6,. Finally, g is the free-space Green function,

e_jBOR / 21T
9rmln) =9(R) = 5 = R= IRLR =1y =1y Bo = o\(€opho) = I

(6)
wherer,, and r, are position vectors of the field point (inside th#h element) and the source
point (inside thenth element), respectively.

Note that, if testing functions are well-behavey), - gradb,, = div(J,.®,) — &, divd,,. Using the
divergence theorem and the above equations, the imped@pgesan be expressed as

Zon = —jo |:J Im - An + pr®p) dVi, + Sg psnr®Pn dSn:| (7)
Vm S

where p,,, and p,, are given in (5), if all subscripte are replaced byn.

2.2. Trilinear hexahedral volume elements

Let us now assume that the basic element of the geometrical model is the trilinear hex&hedron,
sketched in Figure 1. This is a body defined by

r(UV,W) = re + rgu+ ryw + rgwW + rguv + r Uw =+ Fa VW Fygnuvwg (8)
U SUS Uy ViSVEV, W, =SW=W,

wherer is the position vector of a point inside the hexahedron with respect to the global origin,
O, andu, v andw are arbitrary local co-ordinates. The parametersuf), (v,,Vv»,) and (v;,w,) are
local co-ordinates defining the hexahedron sides, apnd,, ry, rw, s fuw T @nd ry,, are
constant vectors, that can be expressed in terms of the position vectors of the hexahedron vertices,
ra f112 -+ Foox Evidently, the hexahedron is defined uniquely by its eight vertices alone,
which can be positioned in space arbitrarily. Except in special cases, the parameiwcco-
ordinate system is not orthogonal, and v and w are not length co-ordinates. All the trilinear
hexahedron edges, as well as all co-ordinate lines, are straight.

The sides of a trilinear hexahedron are known as bilinear quadrilateveltéch are generally
inflexed. They coincide with co-ordinate surfaces. A bilinear quadrilateral is defined uniquely by

AN

211 221

Figure 1. A trilinear hexahedron
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180 B. M. NOTAROS AND B. D. POPOVIC

its four vertices, which can be positioned arbitrarily. A typical bilinear quadrilateral is sketched
in Figure 2.

Finally, a differential volume element at a point,\\w) of the trilinear hexahedron in Figure 1
is given by

ar ar\ or
= = =— X —].—
dV = K dudvdw, K = K(u,v,w) ( Py av) W (9)
If we adopt the current-density vector in the form
. . . ,or ,ar ,or
J=Ji,+ i, + Q=K I, —+ I, —+ 3, — (10)
au ov ow

wherei, = (ar/ou)/|ar/aul, i, = (ar/av)/|ar/av| andi,, = (ar/ow)/|ar/ow| are unit vectors of the local
u-v-w co-ordinate system, and, J, and J, are normalized unknown current-density vector
components, we can eliminate the functié(u,v,w) from the integrals. After simple, but relatively
lengthy, derivations, (3)—(10) result in the following Galerkin generalized impedance corresponding
to the u-components of the vectat in the mth andnth volume elements:

i YWom [Vom [Wam , aor
Zg#hu) =~ jo ‘]u P ' Agu) dum dVm d\Nm

au
Uim v Vim J Wim

Wm [Vom [Wom aJ;Jm 2 Vom [ Wam ,
+ T (I)gu) dum dvm dWm + 2 (_1)p—1 Jum |u:uplm (I)gu) dvm dWm (11)

Uim ¥ Vim Y Wim p=1 Vim ¥ Wim
where
Uzn [Von [Won L ar
AW = o J.—| g(rmry) du, dv, dw, (12)
Uin J Vin J Wip au n
i Uon [Van (Won 9J n
dW = . [ f J' J = o(r ol duy, dv, dw,
We€o Uin J Vin J Win aun
2 Von Wvzn ,
+ 2 (_1)|71 [Jun g(rm!rn)] an de (13)
1=1 Vin v Win u=un

Figure 2. A bilinear quadrilateral
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ENTIRE-DOMAIN MM ANALYSIS OF 3D DIELECTRIC SCATTERERS 181

The vectorsr,, andr,, are given in (8).
The above expression for the Galerkin generalized impedances and the potentials is very
convenient for the following reasons:

1. It is valid for extremely flexible volume elements, trilinear hexahedrons (Figure 1), very
simple to define (by eight points in space only), of any shape and electrical size, and
interconnected arbitrarily.

2. The current-density vector is represented in terms of three local components, as opposed to
four components necessary for (electrically small) tetrahedrons.

3. The expressions have the same form as in the case of much simpler parallelepipedal elements
of side lengthsu, — u,, v, —v; and w, — w;, where the vectord’ is decomposed in local
orthogonal co-ordinates into rectangular componehts], and J, The functionK in (9) is a
kind of Jakobian for mapping the trilinear hexahedron with current dedsitto a rectangular
parallelepiped with normalized current density, Therefore we shall refer to the expressions
in (11)—(13) as the normalized generalized impedances and potentials.

4. The expressions contain only potentials, which, in turn, contain the weakest singularity possible,
of the form 1R. This is very convenient for numerical integration of the integrals. In addition,
no numerical differentiation is necessary (the term drad absent).

2.3. Entireedomain polynomial approximation of current

For the approximation of the components of the normalized current-density vector we adopt
three-dimensional polynomials in the local co-ordinates,

. LW=U=U

Ny
\JI,J = z E z Aijk Ui\/j\l\lk, Vi=EV=\V, (14)

=0 j=0 k=
i=0 j=0 k=0 W, =W =W,

and similarly forJ, and J, In this expansiona,, a,x and a,; are unknown coefficients to be
determined, andN,, N, and N,, are the adopted degrees of the polynomials (the same for all three
components of the current density in a hexahedron). The reason for the adoption of the polynomials
as basis functions is their simplicity and high flexibility. The simplicity enables their rapid
numerical evaluation. The flexibility makes it possible to approximate with reasonable accuracy
very different functions in three variables with only few terms of the three-dimensional power
series. As a consequence, trilinear hexahedrons need not be small, except where dictated by the
scatterer geometry. In addition, the hexahedrons may be of (continuously) inhomogeneous dielectric.

For a single term in a component of the current density vector of the fafp'vw* the
potentials take the form

Ak = Po ik (rupijk + rowPijrik T TawPijeer ruvai,j+1,k+1> (15)

by = Ji Ak [i Pi_yjx + 22: (1) ty Qﬁ?] (16)

In these equationsy, is an integral over the volume of the trilinear hexahedron considered,
u2 V2 W2 o
P = uviwk g(ry,,r) dudvdw a7
Up J vy Jwy

and Q) is an integral over the side of the hexahedron definedibyu (I = 1,2):

Q= f * J " wkgrr) | dvdw (18)

v Jwy

u=uy
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182 B. M. NOTAROS AND B. D. POPOVIC

The vectorry, represents the (fixed) position vector of arbitrary field powit In the Green
function, g, defined in (6), the distancR is given by

R? = R? (uv,w) = [ry — ruv,w)] - [rm — r(uv,w)] (19)

wherer(u,v,w) is given by the parametric equation (8) of the hexahedron. It is a simple matter
to prove thatR? (u,v,w) can be expressed as

R2(w) = a, W2 + 2a,w + a; (20)
ayv) = b,y v?+2b,v+ Db p=123 (21)
Do(U) = Cp U2 + 2Cop U + Gz P = 1,2,3,0=1,2,3 (22)
where the constants,, can be expressed in terms of the vectoygs re, .. ., ruw (for example,

Ci11 = Tuww ruvvs)'

From (14)-(16) and (8) it follows that the Galerkin generalized impedaggg), in (11), can
be represented as a linear combination of four basic types of integral. These are the 3D/3D and
2D/2D Galerkin integrals,

Wm [Vam [Wom
Srikmininkn = f f f U Vip Wiip Py i, () dUy, v, dwy, (23)
Uim v Vim J Wim
Vom [ Wom
i = [ [ O, by e ”
Vim Y Wim

as well as the corresponding 3D/2D and 2D/3D integrals. The vegios the position vector of
a point of themth trilinear hexahedron with co-ordinates, V., and wy,.

2.4. Nonrredundant evaluation of the S integrals

The integrals that need to be evaluated in implementing the proposed method are both numerous
and complicated multiple integrals that can be evaluated only numerically. Therefore it is imperative
for an efficient solution to avoid any redundant operation in evaluating the integrals.

Of all the integrals, the most time-consuming evaluation is that ofShetegrals in (23). The
indicated 3D integration is over the domain of thath hexahedron, while the 3D integration
implicit in the P integral in (17) is over the domain of thath hexahedron. Note, however, that
the co-ordinates), v andw, as well as the corresponding subscripts, in the inteddadsid P are
cyclic. Therefore, for a given pair of hexahedrons, the same sequence & ititegrals (for all
the required values of the subscripts j. Km in jn @andk,) can be used also for the evaluation
of the generalized impedances relating to theand w-components of the vectar in the two
hexahedrons considered. In addition, the same sequence @ itmtegrals can be used in those
3D/3D parts of the impedances in (11) which contain either the poteftiat the potentiald.

Having this in mind, the algorithm has been constructed in which, for any hexahedron pair,
first and only once, the entire sequence of the basic Galerkin inte§rads evaluated. These
integrals are then introduced into all impedances containing them. Such an algorithm is extremely
convenient, because there are nine combinations for the impedagig@s,Z&y, ..., Z@W, and
in all of them it is necessary to evaluate and ®. It is faster for an order of magnitude over
that in which the impedances are evaluated without this procedure.

Finally, it is necessary to devise an efficient and accurate integration procedure for the basic
potential integrals. This is dealt with in the next Section.

3. INTEGRATION OF THE BASIC POTENTIAL INTEGRALS

Consider a trilinear hexahedron and assume that we wish to evaluate the ifggnal (17) at
a point M defined by the position vectar,. The pointM (the field point) may be inside the
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ENTIRE-DOMAIN MM ANALYSIS OF 3D DIELECTRIC SCATTERERS 183

hexahedron or on its surface, as in Figure 3(a), or outside the hexahedron, as in Figure 3(b). It is
assumed that the source point inside the hexahedvidnjs defined by the position vectar In

the Green functiong, of the integralPy,, the distance betweekl and M’, R, is defined in (6),

with the vectorr defined in (8). Letd = R, and denote by (uy,Vo,W,) the source point nearest

to the field point,M. Of course, in the case of Figure 3(a), we hadg= M andd = 0.

When the distancel is relatively small (with respect to the dimensions of the hexahedron), the
extraction of singularity [in the case of Figure 3(a)] or quasisingularity [in the case of Figure 3(b)]
is performed. The principal, (quasi)singular, part of the integrand kernel oPghéntegral, for
R= 0, is the function IR Unfortunately, analytical solution of the integrél(1/R) dV over the
domain of an arbitrary trilinear hexahedron does not seem to exist. Consequently, in extracting
the (quasi)singularity we shall integrateRLbver the domain of a (generally not rectangular)
parallelepiped, the sides of which are obtained by translating the straight segféatsB.B,
and C,C, shown in Figures 3(a) and 3(b). The parallelepipeds which correspond to the cases in
Figures 3(a) and 3(b), are shown in Figures 3(c) and 3(d), respectively. Note that the co-ordinate
segmentsAA,, BB, and C,C, are common for the trilinear hexahedron and the parallelepiped.
For u close tou,, v close tov, and w close tow,, the pointM’(u,v,w) of the trilinear hexahedron
coincides with, or is very close to, the poiM’ (u,vw) of the parallelepiped. Thus, in extracting
the (quasi)singularity in thé;, integral we subtract and add a term of the forrR 1(instead of
the form 1R),

(a) (b)

(c) (d)

Figure 3. (a) Field pointM inside trilinear hexahedron (which contains the source pdit), or on its surface; (b) field
point outside hexahedron; (c) parallelepiped for extraction of singularity in case (a); (d) parallelepiped for extraction of
guasisingularity in case (b)

[J 1997 by John Wiley & Sons, Ltd. Int. J. Numer. Model.10, 177-192 (1997)



184 B. M. NOTAROS AND B. D. POPOVIC

1 uy (Vo (W [ e iBR o 1
Pk = [ J f f (u'v’wk — Upviwi coBd Rp) dudvdw

417 u Jv e R

+ Uik co.d f ’ J ’ f Zépdudvdw] (25)

Up J Vi Jwy

whereR, = |ry, — r,(uv,w)|, andr, is the position vector of the poirtl, In the above equation,
the integrand of the first integral is well behaved in the vicinity of the poaigiv{,w,) and can
be integrated numerically with ease. Note that this integral represents a triple integral over the
domainu S U=Uy Vi SV =V, W = W=W,, which, however, represents the domain of both
the trilinear hexahedron and the parallelepiped.

Let us denote the second integral in equation (25)Pgylt is a simple matter to prove that

. 1
PO = PolKo, Ko = K(UO,Vo,Wo), PO = f de (26)

v Ro
whereV, is the volume of the parallelepiped. The integRal can be integrated analyticalty.
Equation (25) can also be transformed into the following form:

UV COBod

At [(Pé))analytical - (Pé))numerica] (27)

Pik = (Pik)numericai +

which explains that, actually, the difference between the exact (analytical) and approximate
(numerical) solution for the integraP, over the domain of the corresponding parallelepiped
represents a correction for the approximate solution of the intdggalover the domain of the
trilinear hexahedron.

To enhance accuracy of numerical integration, if (quasi)singularity is extracted we shall
subdivide the domain of triple numerical integratian,=u=Uu,, Vy S V=V,, W; = W=W,, into
2' integration subdomains by means of co-ordinate surfacesu,, v=Vv, and w= w,. If the
point M, is inside the hexahedroh,= 3. If it is on one of the sided,= 2. Finally, if it is along
the edge of the hexahedroh= 1. When M, coincides with a vertex of the hexahedron, the
division into subdomains is skipped = 0).

The basic 2D potential integraQf, over the surface of the bilinear quadrilateral, given in
(18), is integrated in a similar manner.

3.1. Optimization of the algorithm for multiple numerical integration

Based on the Gauss-Legendre single-integral integration formula, the integration formula for
the triple integralsPy has the form

(Pijk)numerical = E E E An An A uim an ‘M( Q[R(Um,Vn,WO]

m=1 n=1 I=1

i=0,1,...,Ng+1,j=0,1,....Ng+ 1,k=0,1,..., Ny + 1 (28)

In this expressionN,, N, and N,, are the adopted degrees of the polynomial approximation for
current in the trilinear hexahedron consider&y,, Ng, and Ng,, are degreesy,, v, and w; are
arguments (zeros of the Legendre polynomials) ApdA,, and A, are weights of the corresponding
Gauss—Legendre integration formulas, respectively.

Equation (28) is also the algorithm which can be used directly as the basis for the evaluation
of the considered sequence of triple integrals. Such a program, however, would require unnecess-
arily long computing time, since all indicated operations would be performed for all values of the
summation indicesn, n and |, as well as for all values of the indiceésj and k of the power
basis functions. Fortunately, this can be avoided, because (28) can be transformed into
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ENTIRE-DOMAIN MM ANALYSIS OF 3D DIELECTRIC SCATTERERS 185

e comput Ney computat.
[P]numericaI= {[P]***: E Am Of [H]**: 2 An Of
m1  |BUn) n=1 (Vi)
Now  [computat. W, = w, W_, | = \/j
([G]": DA of [g(R |k=1,..., Ny wk> i=1,...,Ny vj]
=1 W, W, =1 Vo=1
U=u,Ui,
i=1,..., Ny Ui} (29)
UO = 1
where * is evaluation of temp. vectdd, (k =0, ..., Ny), ** is evaluation of temp. vectoH
G=0,..,N,, k=0, ...,N,) and ***is evaluatlon of final resultaN,; = N, + 1, N, = N, + 1,

N, = N, + 1, and the functlonS?Z(w) a,(v) andb,(u) are defined in (20)—(23). The algorithm
summarized in (29) contains a number of numerical détailsich will not be elaborated here.
The corresponding computer program is significantly more rapid than that according to (28): the
necessary CPU time is usually reduced for more than an order of magnitude. This is of extreme
importance, since, during a complete analysis of a given dielectric scatterer, the basic potential
integrals need to be evaluated many times.
The test (outer) integration in the Galerkin integrals is performed only numerically, using the
optimized algorithm proposed in this Section. In doing this, if the integgdts (23) are considered,
it is necessary to replacg(R) by P, ;. Which, at any integration point, should be evaluated for
all necessary values of the indicés j, and k, simultaneously. In addition to this temporary
vector P, ; ., in analogy with the vector&, and Hy in (29), it is necessary to use also temporary
vectorsG, ;. and H; ;. Of course, the proposed optimization of the test integration in the
Galerkin integrals is also of exceptional significance for efficiency of the entire analysis method.
Finally, for reference, in the following Section, let us label the orders of the Gauss—Legendre
integration formula of the basic potential integrdPbsand Q [equations (17) and (18)] b\,
N® and N, and the orders of the outer (testing) integration in the Galerkin integrals
[equations (23) and (24)] bX®, N&, and N®,. Of course, the parameteN? and N® are adopted
individually for all the hexahedrons used for the approximation of the scatterer.

4. NUMERICAL RESULTS AND DISCUSSION

We now illustrate the accuracy and efficiency of the proposed optimized entire-domain method
for the analysis of 3D dielectric scatterers on actual numerical examples. All results were obtained
on a PC-486/66 MHz (8 MB DRAM) using Fortran 77 (Lahey F77L-EM/32).

4.1. Numerical results for basic potential integrals

Consider first the accuracy and efficiency of the proposed procedure of combined
numerical/analytical integration of the volume potential integiRy}s defined in (17). Consider a
highly twisted trilinear hexahedron. Let its vertices be defined by (see Figurgd)= (—0-5\;
—0:3\g; —0-5\p), 112 = (=0:S\g; —0-g; 0-B\p), I121= (—0-N\g; 0-7\g; —0:MNo), M122 = (—0:-A\o;
0:A\g; 0:-6\p), 211 = (0-B\g; —0-B\g; —0:5\g), 212= (0-3Ng; —0:ANg; 0-B\g), 221 = (0:8; 0-S\g;
—0:5\y), r222= (0-8\g; 0:8\; 0:8\), where )\, is the free-space wavelength. Assume that the

[J 1997 by John Wiley & Sons, Ltd. Int. J. Numer. Model.10, 177-192 (1997)



186 B. M. NOTAROS AND B. D. POPOVIC

Table I. Relative error of R&yg Vvs. the integration parameters, for a field point (a) inside a trilinear
hexahedron and (b) outside it. For details please see text

Integration parameters @ (b)
N = 24, Neeg= 1, without extraction 6-51% 1073 —7-001%x 103
NO) = 5, Neeg= 2, without extraction —2-388x 108 —1-731x 108
N = 24, Nseg= 2, without extraction 2:51% 105 —9.497x 104
N®) = 5, Nseg = 2, with extraction 2.14% 10°¢ 8-380x 10°°

boundary parametric co-ordinates are=v, =w, = —1 andu, = v, = w, = 1, and thatN®), =
NE) = N, = N

Table | shows relative errors in the real part of the intedPgl, (its imaginary part is not
singular), vs. the integration parameters. The reference (‘exact’) values of the integrals were those
obtained withN® = 24, N, = 2 and the extraction of (quasi)singularity, wheMg,,is the number
of subsegments of the integration [see the first paragraph following (27)]. The results are presented
for a field pointM situated (a) inside the hexahedron (a singular paint 0), defined in local
parametric co-ordinates ag, = vy = Wyu = 0-4 [see Figure 3(a)], and (b) outside the hexahedron,
but very close to its side defined by= v, [see Figure 3(b)]. In case (b) it was adopted
that ry = (0; 0-592%,; 0), which corresponds to the co-ordinatas= —0-178701,vo = 1 and
W, = —0-0494324 of the pointM, and to the distance from the closest hexahedron side
d =R, = 0-00011020K,. This means that the integral has a very pronounced quasisingularity.
The results were obtained with single-precision arithmetic, i.e. with six significant digits.

We see from Table | that excellent results are obtained (having in mind the single-precision
arithmetic used) with quite a low order of the Gauss—Legendre integration forij{ila=(5), but
only if the procedure of extraction of (quasi)singularity is performed. In other words, this procedure
enables considerable reduction in the ordéP. As a consequence, the resulting CPU time for
the problem analysis appears to be very much reduced (usually for two orders of magnitude) than
in the case without the extraction procedure.

Similar results are obtained also for the integr@g in (18), where the domain of integration
represents the surface of a bilinear quadrilateral (Figufe 2).

4.2. Rodlike dielectric scattererconvergence analysis

We next analyse convergence of the current distribution and of the bistatic scattering cross-
section vs. the parameters of the method for a rod-like dielectric scatterer.

Assume that for the scatterer sketched in Figura 4 A\J10, | = 2\, = 20-8\y (\y is the
wavelength in the dielectric) anel, = €, — jo/(weg) = 75— j119-83 (an electrically long rod-like
scatterer made of a dielectric of high relative permittivity and with high losses). Let the incident

7

Figure 4. Rod-like homogeneous dielectric scatterer of square cross-section
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field be that of a plane wave, with the electric field vecEr= 1 exp(jBo2) ixV/m. According
to the present method, the scatterer in Figure 4 is modelled by a single trilinear hexahedron.
Figure 5(a) shows the results for the distribution of the current density vett@long the long
scatterer axis, and in Figure 5(b) the results for the normalized bistatic cross-section of the
scatterer, S,/\3, in the planed = 0 (the E-plane), for different ordersN, of the current
approximation along the parametiieaxis, with N, = N,, = 1. In all the cases the following values
for the parameters of integration were adoptBi, = 12, N®, = N®, = 4, N&) = 12 andN®) =
N®, = 4. The Figures indicate a rapid convergence of the results with increasing degree
the approximation. We see that the results are stabilized completelyNyith8. Note again that
the scatterer is electrically rather long={ 20-8\,).

Let us now analyse the convergence of the current density vector as a function of the parameters
of integration for the rod-like scatterer considered. The degrees of approximation were adopted

0.6 T T T T T T T T T T T T T T T T T T T

0.5

0.4

0.3

[Jul, A/m?

0.2

0.1

0.0 \ 1 A 1 I 1 L | A 1 A [l i ! 2 1 L J. n

-50 ' 1 L L L 1 L 1 t L L 1 ) ' i L "
0 30 860 90 120 150 180
B O, degrees
(b)

Figure 5. Convergence of results with increasing degree of approximathp, for scatterer from Figure 4

[€er = 75— j119-83,] = 2\ = 20-84 = 100 cm,a = \J/10, E)o = 1 V/m]: () intensity of total current densnid |, along

u-axis; (b) normalized bistatic cross-section of the scatterer, 10Slg#(F), in E-plane ¢ =0) —— N, =1; ———
N, = 2; ----- N,=4; - N,=6; ocoocN,=8;, eee N =10, —— N, =12
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resulting in a stable solution, i.&N, =8 andN, = N, = 1 (see Figure 5). Figure 6(a) shows the
results obtained for different orders of the Gauss—Legendre integration forN{laN®, and
NQ,, relating to the test procedure, with other integration parameters kept constad®)ie.12
and N® = N&), = 4. On the other hand, if we adopt fixed®, = 12 andN®, = N®, =4, and
consider as variables the orders of the Gauss-Legendre integration foREIANE) and NE),
relating to the integration of the basic potential integrd?sand Q, curves in Figure 6(b) are
obtained instead.

We see that the results in Figure 6(a) are entirely in agreement with the conclusion that the
Galerkin method is well defined only if the number of the integration points per co-ordinate in
the test integration is not less than the number of unknowns in that co-ordifratur case, this
means that the theoretically minimal orders of the Gauss—Legendre integration formula are

IJul, A/m?

|Jul, A/m?

(b)

Figure 6. Distribution of total current densitylJ|, along u-axis of the scatterer in Figure 4e[= 75— j119-83,

| =2\o =20-84 = 100cm, a = \/10, E),=1V/m], for different orders of Gauss—Legendre integration formula

(Neu,NewNgy), referring to (a) test procedure and (b) integration of the basic integrals, Nyith 8 and N, =N, = 1

— —(2,2,2),A A A (3,2,2); ——— (4,2,2); ---- (5,2,2y — (6,2,2); ------ (7,2,2)p oo (8,2,2);8 @ @ (9272);, ———
(12,4,4)
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NO, =N, +1,N®=N,+ 1N =N,+1 (30)

With the present method it was found that the orders defined in the above equations, which are
the lowest possible, already result in stable solution, which is also clear from Figure 6(a). (Note
that this is in contrast to the specific Galerkin method for the analysis of metallic scatterers,
where a significantly higher order of Gauss—Legendre integration formulas than the minimal were
found to be necessary.) Such low orders of the Gauss—Legendre formula make the analysis of
dielectric scatterers quite rapid, practically the same as if point-matching is used instead of
Galerkin testing, in spite of multiple integration required in the latter. Of course, this is due also
to the optimized test integrations in the Galerkin integrals.

Figure 6(b) shows that practically the same results are obtained for all values of the order
N& which satisfy the conditiolN&) = N, — 1. Based on this conclusion, as well as on many
other numerical experiments, it was indeed found that the choice of the orders of Gauss—Legendre
integration formula following the rules

NE =N, +1,N&®=N,+1,N& =N, +1 (31)

in all volume elements of the model, resulted in stable results in practically all applications of
the method.

Finally, on the basis of the above examples it can be concluded that, in the analysis of dielectric
scatterers proposed in this paper, it is sufficient to adopt quite low values for the dedyess,
the polynomial approximation of current and the orders of the Gauss—Legendre integration formulas,
(N® and N®). Such favourable numerical performances of the Galerkin method used in this paper
are the result of both the flexibility of the adopted polynomial approximation of current-density
vector J, and of the accuracy and efficiency of the proposed procedure for the evaluation of the
Galerkin generalized impedances. When compared with the existing methods for the analysis of
dielectric scatterers (which, as mentioned, are all of subdomain type), the proposed Galerkin
method requires much fewer unknowns for a given problem (for one, and even for two, orders
of magnitudé).

4.3. Cubical dielectric scattererCPU time

The final check of the efficiency of the proposed method as a whole is the necessary CPU
time. In this Section we analyse the dependence of individual parts of the CPU time on the
parameters of the current approximation and integration by considering a homogeneous dielectric
cube of side lengtha = \,, situated in the field of a plane wave. In all cases we adopt
No=N,= N, =N, N& = N = N&, = N® andN&, = N& = N&, = N® (the cube is modelled
by a single volume element).

Table Il shows the CPU time necessary for the evaluation of the system matrix (the Galerkin
generalized impedances) and of the vector of free terms (Galerkin generalized voliagedpr
different values of the parameteks NO and N®), with N® = N® = Ng. Also given in the Table
are the values for the total number of unknowNs,, corresponding to the cases considered.

Inspecting these data it is possible to conclude that, if we increase the dégred, the
polynomial, i.e. the total number of unknowns, for a constant order of the Gauss—Legendre
integration formula,Ng (left part of the table), the timd,, increases much slower than the
function N2,,, whereNz,. = 9(N + 1)° represents the number of the elements of the system matrix.

Table Il. Dependence of the CPU time necessary for evaluating the system malige®n the parameters
of the method, in the case of the analysis of a dielectric cube in the field of a plane wave

N NJﬂk N:g) Néb) Tmav S N Nunk [\ét) [\éb) Tmav S

1 24 6 6 44.43 4 375 3 3 19-50
2 81 6 6 51.36 4 375 4 4 3060
3 192 6 6 64-09 4 375 5 5 53.55
4 375 6 6 96-67 4 375 6 6 96-67
5 648 6 6 166-53 4 375 7 7 175-43
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We also see that, by increasiig and keepingN constant (right part of the table), the tinTg,.
increases much slower than the functidds)spsp = NE X (2Ng)® = 8N& [This function is pro-
portional to the total number of operations necessary for performing the sixfold integration of the
3D/3D Galerkin integralsS ; . i «, defined in (23), if all the operations were performed inside

all the six summation signs.Ng stands instead ofig, because all inner volume integrations are
performed by extracting the singularity, which implies subdivision into two subsegments in
integrating along all three co-ordinates.] This favourable dependende pbn N and Ng is the
consequence of the adopted efficient, non-redundant evaluation of the Galerkin generalized imped-
ances.

Table Il gives data for the tim@ ., as well as for the computing timé&s necessary for the
solution of the corresponding system of linear algebraic equations by the Gaussian elimination
method, for different degrees &f of the polynomials, with the ordemd® and N® of the Gauss—
Legendre integration formula given in (30) and (31). As we have seen in Subsection 4.2, such a
choice of the integration parameters ensures sufficiently accurate solution, provided that adequate
degrees of the approximation for current are adopted.

Based on the data shown, it is possible to conclude that the depentlen¢d, ) is relatively
close t0T,..= ANZ, (A is a constant), standard also for subdomain solutions obtained by the
method of moments. On the other hand, we see that the Tipevery nearly satisfies the equation
Toys= B N&« (B is a constant), as it should.

As a natural consequence of much smaller number of unknowns and of the efficient evaluation
of the Galerkin generalized impedances explained, it has been found by numerous numerical
experiments that the proposed entire-domain method in all cases was highly superior when
compared with the available (subdomain) methods, far as the total computing time is concerned.

4.4. Spherical dielectric scatterercomparison with the exact solution

This last example is aimed at illustrating the flexibility of the adopted geometrical model, and
the accuracy and efficiency of the proposed procedure for the evaluation of the Galerkin generalized
impedances for a body approximated by relatively large number of trilinear hexahedrons. To that
end a spherical scatterer is very convenient, because the exact solution in that case is available.

Consider a homogeneous sphere made of a perfect dielectric of relative perméitiwity. The
origin of the global Cartesiarx-y-z co-ordinate system is adopted to be at the centre of the
sphere. Assume that the sphere is excited by a linearly polarized plane waveEwitH
exp(—jBo2) ix V/m. Let the radius of the sphere be given pya = 2:744 (& = 1-235.). It turns
out that this is a resonant scattetr.

We approximate the sphere by>x33 X 3 = 27 trilinear hexahedrons, with 8 (3 X 3) =54
(curved and plane) bilinear quadrilaterals approximating its surface, as in Figure 7. The volume
of the model equals the volume of the sphere. Note that the surface of the sphere is approximated
fairly accurately with quite a small number (27) of geometrical elements. The first degree of the
polynomial approximation was adopted in all the 27 hexahedrdhs=(N, = N, = 1), so that
this, essentially, was the subdomain form of the Galerkin method. The number of unknowns was
additionally reduced by automatically enforcing the continuity condition for the normal component
of the vectore.E on adjacent surfaces of hexahedfoisamely, with this, the number of basis
functions along each Cartesian co-ordinate was reduced from 6 to 4). The parameters of integration

Table Ill. Dependence off,,,. and Ty, on the degreeN of the polynomial, for the analysis of a dielectric
cube in the field of a plane wave. The parameters of integratigh,and N, are adopted as in (30) and

(31)
N NJﬂk Ng) ’\éb) Tmat! S Tsys S
1 24 2 2 1.15 0-06
2 81 3 3 4.23 0-43
3 192 4 4 15.22 6-15
4 375 5 5 51-19 54.32
5 648 6 6 166-53 315.60
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4

y=03142a
2=0.9425a

z=0.2391¢a
2=07172a

r=0.6016a

(a) (b)

Figure 7. Approximation of a homogeneous dielectric sphere by 27 trilinear hexahedrons. The sphere surface was first
approximated by 54 bilinear quadrilaterals (a), and then its volume subdivided into 27 hexahedrons (b)

were adopted in accordance with (30) and (31). Symmetry and antisymmetry were partly used.
The resulting number of unknowns wag,,, = 208, and the total computing timg,, = 134-25 s.

Figure 8 shows the results for the bistatic scattering cross-section of the sBhegie, in two
characteristic planes. The results obtained by the proposed method are compared with the exact
results in the form of a Mie serié§,as well as with those obtained by the subdomain hybrid
symmetric FEM/MOM method (for BORY. Excellent agreement is seen between the three sets
of results. However, the number of basis functionserequired by the method from Reference 10
was 15, while with the method proposed in this paper it was as small as about 3.

5. CONCLUSION

The paper describes a procedure for evaluating generalized Galerkin impedances in the moment-
method analysis of arbitrary 3D dielectric scatterers approximated by trilinear hexahedrons with
entire-domain polynomial approximation of volume current. The procedure consists in two steps.
In the first step, the expressions for the impedances are derived which are particularly convenient
for numerical evaluation. In the second step, efficient evaluation is performed of multiple integrals
representing these impedances and of the entire impedance matrix.

Numerical examples are given of the implementation of the combined analytical/numerical

L T e e e L e e e e B Em me me e

4] 30 60 90 120 150 180
©, degrees
Figure 8. Normalized bistatic cross-section, 10 8g{\3), of a homogeneous lossless resonant dielectric sphere

[Boa=2:744,e, = 2, E; = 1 exp(=jBs2) ix(V/m)], in planed =0 this method;® @ e analytical solution in the
form of Mie series®® oo o symmetric FEM/MOM for BOR with 15 basis functiong/ (Reference 10)
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method of integration of basic potential integrals illustrating its efficiency and accuracy. Examples
of stable and rapid convergence of the results with the increasing degree of approximation is also
illustrated for both inner (near) and far fields. A relatively slow increase in CPU time is
demonstrated with the increase of the degree of polynomial approximation of volume current and
the parameters of integration of the Galerkin integrals. As a specific example, the method is used
for the analysis of a spherical dielectric scatterer, for which an analytic solution is available, to
illustrate the accuracy and efficiency of the entire method.

In the authors’ opinion, entire-domain analysis of dielectric scatterers is greatly superior to
subdomain analysis, concerning the number of unknowns, memory requirement and CPU time.
However, these advantages become evident and convincing only if the entire-domain approach is
carefully planned and optimized. This paper shows how this can be done in the most difficult
and critical part of the Galerkin-type analysis of 3D dielectric scatterers, the evaluation of the
Galerkin generalized impedances. It is hoped, however, that some of the procedures outlined in
the paper may be of interest in any type of optimized entire-domain method-of-moment analysis
of electromagnetic systems.
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