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SUMMARY
When compared with commonly used subdomain moment-method analysis, entire-domain analysis of 3D
dielectric scatterers results in a greatly reduced number of unknowns. Unfortunately, the expressions for
matrix elements tend to be quite complicated and their calculation extremely time-consuming if evaluated
directly. It is shown in the paper that, in a Galerkin-type solution with large trilinear hexahedral basic volume
elements and three-dimensional polynomial approximation of volume current inside them, these expressions
can be manipulated analytically for optimized rapid non-redundant integration. Consequently, a method for
the analysis of 3D dielectric scatterers is obtained that is efficient, rapidly converging with increasing degree
of approximation for current, remarkably accurate and very moderate in computer memory requirements. The
applicability of the method of moments is thereby extended to bodies of electrical sizes greatly exceeding
those that can be dealt with by subdomain methods. 1997 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

The moment-method numerical analysis of 3D dielectric scatterers is one of the most challenging
electromagnetic problems. The principal difficulty is a very large number of unknowns involved
in such an analysis. On one hand, this requires computers of large storage capabilities. On the
other hand, solution for the unknowns is a very time-consuming procedure.

This paper deals with the analysis of 3D dielectric scatterers based on the solution of the
volume integral equation for current (or field) distribution. The existing methods for the solution
of this equation are of subdomain type. Consequently, basis functions of low order (3D pulse
functions or 3D rooftop functions) are used for the approximation of unknown generalized current
distribution inside electrically small volume elements (cubes, parallelepipeds or tetrahedrons).1–3

This results in relatively simple evaluation of the system matrix elements, but in a prohibitively
large number of unknowns for even electrically medium-sized problems. Although there are
subdomain methods which possess the convolution structure of the solution and use the conjugate
gradient FFT technique to speed up the computation,3 the large number of unknowns nevertheless
limits their applicability severely.

One way of reducing the number of unknowns is to use entire-domain basis functions inside
volume elements much larger than in the subdomain approach. As far as the authors are informed,
such a method has been used for the analysis of 3D dielectric scatterers in one reference only,4

probably because of analytically quite complex and computationally time-consuming evaluation of
the system matrix elements.

This present paper is aimed at demonstrating that the entire-domain approach can be optimized
so that, with considerable reduction in both the total number of unknowns and the CPU time per
unknown, the moment method becomes a powerful tool for analysis of 3D dielectric scatterers.
The optimized method consists of four principal steps:
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1. adoption of large trilinear hexahedrons as elements for the approximation of the scatterer
geometry5

2. approximation of volume currents by simple and flexible entire-domain 3D polynomials in
local parametric co-ordinates (generally not orthogonal) inside these elements

3. adoption of the Galerkin method for numerical solution of the volume integral equation, and
specific transformations of the Galerkin generalized impedances (the system matrix elements)
which enable their efficient numerical evaluation, and

4. extensive analytical manipulations and careful programming (discussed in great detail in the
paper) in order to minimize the time necessary for the evaluation of the system matrix elements
(i.e. generalized impedances).

An accurate method for the analysis of 3D dielectric scatterers is thus obtained which, on
average, results in at least an order of magnitude fewer unknowns, and consequently very much
reduced total CPU time, when compared with the existing, subdomain, methods. The method
appears to converge rapidly with the increasing degree of polynomial approximation and to be
remarkably stable. The applicability of the moment-method solutions of 3D dielectric scatterers is
thereby greatly extended. For example, problems which would otherwise require very large
computers can be solved efficiently on normal-size personal computers.

2. GENERALIZED IMPEDANCES IN THE GALERKIN SOLUTION OF THE VOLUME
INTEGRAL EQUATION FOR CURRENT INSIDE TRILINEAR HEXAHEDRONS

2.1. Generalized Galerkin impedances for arbitrary volume elements

Imagine first an arbitrary inhomogeneous scatterer, possibly lossy, situated in a vacuum in an
incident electromagnetic field. Let the scatterer be made of a linear dielectric or permittivitye,
conductivity s and permeabilitym0, and let the angular frequency of the incident wave bev. We
solve for volume currents in the scatterer starting from the volume integral equation and the
method of moments.6

Assume first that the scatterer is approximated by a number of arbitrary volume elements. Let
us approximate the complex total (polarization plus conduction) induced current-density vector,J,
inside them by convenient functional series with unknown complex coefficients. The generalized
impedances (the system matrix elements) are then given by6

Zmn 5 E
Vm

Jm · En dVm (1)

where Jm represents arbitrary testing (weighting) function inside themth element, of volumeVm,
and En the electric-field vector due to the current component corresponding to arbitrary basis
function Jn in the nth element. Ifn 5 m, a termDZmn5 2e[jv(en 2 e0) 1 sn]21 Jm · Jn dVm must
be added toZmn, but its evaluation is trivial, and we shall not consider it here. For the same
reason we shall not consider the elements of the free-terms (excitation) column matrix of the
system of linear equations (known as generalized voltages6). Finally, we adopt the Galerkin testing
method, i.e. the same testing and basis functions.

The vectorEn can be evaluated as follows:

En 5 2jvAn 2 gradFn (2)

An 5 m0 E
Vn

Jng(rm,rn) dVn (3)

Fn 5
1
e0
FE

Vn

rn g(rm,rn) dVn 1 R
Sn

rsn g(rm,rn) dSnG (4)

rn 5
j
v

div Jn, rsn 5 2
j
v

isn · Jn (5)
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179entire-domain mm analysis of 3d dielectric scatterers

In these equations,A and F are the Lorentz potentials,r and rs are densities of total (polarization
plus free) induced volume and surface charges,Sn is the surface of thenth element, andisn is
the outward unit vector normal toSn. Finally, g is the free-space Green function,

g(rm,rn) 5 g(R) 5
e2jb0R

4pR
, R 5 uRu, R 5 rm 2 r n, b0 5 vÎ(e0m0) 5

2p

l0
(6)

where rm and rn are position vectors of the field point (inside themth element) and the source
point (inside thenth element), respectively.

Note that, if testing functions are well-behaved,Jm · gradFn 5 div(JmFn) 2 Fn divJm. Using the
divergence theorem and the above equations, the impedancesZmn can be expressed as

Zmn 5 2jv FE
Vm

(Jm · An 1 rmFn) dVm 1 R
Sm

rsmFn dSmG (7)

where rm and rsm are given in (5), if all subscriptsn are replaced bym.

2.2. Trilinear hexahedral volume elements

Let us now assume that the basic element of the geometrical model is the trilinear hexahedron,5

sketched in Figure 1. This is a body defined by

r (u,v,w) 5 rc 1 ruu 1 rvv 1 rww 1 ruvuv 1 ruwuw 1 rvwvw 1 ruvwuvw, (8)
u1 # u # u2, v1 # v # v2, w1 # w # w2

where r is the position vector of a point inside the hexahedron with respect to the global origin,
O, and u, v and w are arbitrary local co-ordinates. The parameters (u1,u2), (v1,v2) and (w1,w2) are
local co-ordinates defining the hexahedron sides, andrc, ru, r v, rw, ruv, ruw, r vw and ruvw are
constant vectors, that can be expressed in terms of the position vectors of the hexahedron vertices,
r111, r112, . . ., r222. Evidently, the hexahedron is defined uniquely by its eight vertices alone,
which can be positioned in space arbitrarily. Except in special cases, the parametricu-v-w co-
ordinate system is not orthogonal, andu, v and w are not length co-ordinates. All the trilinear
hexahedron edges, as well as all co-ordinate lines, are straight.

The sides of a trilinear hexahedron are known as bilinear quadrilaterals,7 which are generally
inflexed. They coincide with co-ordinate surfaces. A bilinear quadrilateral is defined uniquely by

Figure 1. A trilinear hexahedron
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its four vertices, which can be positioned arbitrarily. A typical bilinear quadrilateral is sketched
in Figure 2.

Finally, a differential volume element at a point (u,v,w) of the trilinear hexahedron in Figure 1
is given by

dV 5 K dudvdw, K 5 K(u,v,w) 5 S­r
­u

3
­r
­vD ·

­r
­w

(9)

If we adopt the current-density vector in the form

J 5 Juiu 1 Jviv 1 Jwiw 5 K21 SJ9
u

­r
­u

1 J9
v

­r
­v

1 J9
w

­r
­wD (10)

where iu 5 (­r /­u)/u­r /­uu, iv 5 (­r /­v)/u­r /­vu and iw 5 (­r /­w)/u­r /­wu are unit vectors of the local
u-v-w co-ordinate system, andJ9

u, J9
v and J9

w are normalized unknown current-density vector
components, we can eliminate the functionK(u,v,w) from the integrals. After simple, but relatively
lengthy, derivations, (3)–(10) result in the following Galerkin generalized impedance corresponding
to the u-components of the vectorJ in the mth and nth volume elements:

Z(u,u)
mn 5 2 jv Eu2m

u1m

Ev2m

v1m

Ew2m

w1m

SJ9
u

­r
­uDm

· A (u)
n dum dvm dwm

1 Eu2m

u1m

Ev2m

v1m

Ew2m

w1m

­J9
um

­um

F(u)
n dum dvm dwm 1 O2

p51

(21)p21 Ev2m

v1m

Ew2m

w1m

J9
um uu5upm

F(u)
n dvm dwm (11)

where

A(u)
n 5 m0 Eu2n

u1n

Ev2n

v1n

Ew2n

w1n

SJ9
u

­r
­uDn

g(rm,rn) dun dvn dwn (12)

F(u)
n 5

j
ve0

FEu2n

u1n

Ev2n

v1n

Ew2n

w1n

­J9
un

­un

g(r m,rn) dun dvn dwn

1 O2
l51

(21)l21 Ev2n

v1n

Eww2n

w1n

[J9
un g(r m,r n)] |

u5uln

dvn dwnG (13)

Figure 2. A bilinear quadrilateral
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181entire-domain mm analysis of 3d dielectric scatterers

The vectorsr m and r n are given in (8).
The above expression for the Galerkin generalized impedances and the potentials is very

convenient for the following reasons:

1. It is valid for extremely flexible volume elements, trilinear hexahedrons (Figure 1), very
simple to define (by eight points in space only), of any shape and electrical size, and
interconnected arbitrarily.

2. The current-density vector is represented in terms of three local components, as opposed to
four components necessary for (electrically small) tetrahedrons.1

3. The expressions have the same form as in the case of much simpler parallelepipedal elements
of side lengthsu2 2 u1, v2 2 v1 and w2 2 w1, where the vectorJ9 is decomposed in local
orthogonal co-ordinates into rectangular componentsJ9

u, J9
v and J9

w. The functionK in (9) is a
kind of Jakobian for mapping the trilinear hexahedron with current densityJ into a rectangular
parallelepiped with normalized current densityJ9. Therefore we shall refer to the expressions
in (11)–(13) as the normalized generalized impedances and potentials.

4. The expressions contain only potentials, which, in turn, contain the weakest singularity possible,
of the form 1/R. This is very convenient for numerical integration of the integrals. In addition,
no numerical differentiation is necessary (the term gradF is absent).

2.3. Entire-domain polynomial approximation of current

For the approximation of the components of the normalized current-density vector we adopt
three-dimensional polynomials in the local co-ordinates,

J9
u 5 ONu

i50

ONv

j50

ONw

k50

auijk uivjwk, 5 u1 # u # u2

v1 # v # v2

w1 # w # w2

6 (14)

and similarly forJ9
v and J9

w. In this expansion,auijk, avijk and awijk are unknown coefficients to be
determined, andNu, Nv and Nw are the adopted degrees of the polynomials (the same for all three
components of the current density in a hexahedron). The reason for the adoption of the polynomials
as basis functions is their simplicity and high flexibility. The simplicity enables their rapid
numerical evaluation. The flexibility makes it possible to approximate with reasonable accuracy
very different functions in three variables with only few terms of the three-dimensional power
series. As a consequence, trilinear hexahedrons need not be small, except where dictated by the
scatterer geometry. In addition, the hexahedrons may be of (continuously) inhomogeneous dielectric.

For a single term in a component of the current density vector of the formauijkuivjwk the
potentials take the form

Aijk 5 m0 auijk SruPijk 1 ruvPi,j11,k 1 ruwPi,j,k11 1 ruvwPi,j11,k11D (15)

Fijk 5
j

ve0

auijk Fi Pi21,j,k 1 O2
l51

(21)l21 ui
l Q(l)

jkG (16)

In these equations,Pijk is an integral over the volume of the trilinear hexahedron considered,

Pijk 5 Eu2

u1

Ev2

v1

Ew2

w1

uivjwk g(rM,r ) dudvdw (17)

and Q(l)
jk is an integral over the side of the hexahedron defined byu 5 ul (l 5 1,2):

Q(l)
jk 5 Ev2

v1

Ew2

w1

vjwk g(rM,r ) |
u5ul

dvdw (18)
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The vector rM represents the (fixed) position vector of arbitrary field pointM. In the Green
function, g, defined in (6), the distanceR is given by

R2 5 R2 (u,v,w) 5 [r M 2 r (u,v,w)] · [rM 2 r (u,v,w)] (19)

where r (u,v,w) is given by the parametric equation (8) of the hexahedron. It is a simple matter
to prove thatR2 (u,v,w) can be expressed as

R2(w) 5 a1 w2 1 2 a2 w 1 a3 (20)

ap(v) 5 bp1 v2 1 2 bp2 v 1 bp3, p 5 1,2,3 (21)

bpq(u) 5 cpq1 u2 1 2 cpq2 u 1 cpq3, p 5 1,2,3,q 5 1,2,3 (22)

where the constantscpqt can be expressed in terms of the vectorsrM, rc, . . ., ruvw (for example,
c111 5 ruvw · ruvw).

From (14)–(16) and (8) it follows that the Galerkin generalized impedance,Z(u,u)
mn in (11), can

be represented as a linear combination of four basic types of integral. These are the 3D/3D and
2D/2D Galerkin integrals,

Simjmkminjnkn
5 Eu2m

u1m

Ev2m

v1m

Ew2m

w1m

uim
m vjm

m wkm
m Pinjnkn

(rm) dum dvm dwm (23)

T(p,l)
jmkmjnkn

5 Ev2m

v1m

Ew2m

w1m

vjmm wkmm Q(l)
jnkn

(rmuum5upm
) dvm dwm (24)

as well as the corresponding 3D/2D and 2D/3D integrals. The vectorr m is the position vector of
a point of themth trilinear hexahedron with co-ordinatesum, vm and wm.

2.4. Non-redundant evaluation of the S integrals

The integrals that need to be evaluated in implementing the proposed method are both numerous
and complicated multiple integrals that can be evaluated only numerically. Therefore it is imperative
for an efficient solution to avoid any redundant operation in evaluating the integrals.

Of all the integrals, the most time-consuming evaluation is that of theS integrals in (23). The
indicated 3D integration is over the domain of themth hexahedron, while the 3D integration
implicit in the P integral in (17) is over the domain of thenth hexahedron. Note, however, that
the co-ordinatesu, v and w, as well as the corresponding subscripts, in the integralsS and P are
cyclic. Therefore, for a given pair of hexahedrons, the same sequence of theS integrals (for all
the required values of the subscriptsim, jm, km, in, jn and kn) can be used also for the evaluation
of the generalized impedances relating to thev- and w-components of the vectorJ in the two
hexahedrons considered. In addition, the same sequence of theS integrals can be used in those
3D/3D parts of the impedances in (11) which contain either the potentialA or the potentialF.

Having this in mind, the algorithm has been constructed in which, for any hexahedron pair,
first and only once, the entire sequence of the basic Galerkin integralsS is evaluated. These
integrals are then introduced into all impedances containing them. Such an algorithm is extremely
convenient, because there are nine combinations for the impedances,Z(u,u)

mn , Z(u,v)
mn , . . ., Z(w,w)

mn , and
in all of them it is necessary to evaluateA and F. It is faster for an order of magnitude over
that in which the impedances are evaluated without this procedure.

Finally, it is necessary to devise an efficient and accurate integration procedure for the basic
potential integrals. This is dealt with in the next Section.

3. INTEGRATION OF THE BASIC POTENTIAL INTEGRALS

Consider a trilinear hexahedron and assume that we wish to evaluate the integralPijk in (17) at
a point M defined by the position vectorrM. The point M (the field point) may be inside the

Int. J. Numer. Model.,10, 177–192 (1997)  1997 by John Wiley & Sons, Ltd.



183entire-domain mm analysis of 3d dielectric scatterers

hexahedron or on its surface, as in Figure 3(a), or outside the hexahedron, as in Figure 3(b). It is
assumed that the source point inside the hexahedron,M9, is defined by the position vectorr . In
the Green function,g, of the integralPijk, the distance betweenM and M9, R, is defined in (6),
with the vectorr defined in (8). Letd 5 Rmin, and denote byM0(u0,v0,w0) the source point nearest
to the field point,M. Of course, in the case of Figure 3(a), we haveM0 ; M and d 5 0.

When the distanced is relatively small (with respect to the dimensions of the hexahedron), the
extraction of singularity [in the case of Figure 3(a)] or quasisingularity [in the case of Figure 3(b)]
is performed. The principal, (quasi)singular, part of the integrand kernel of thePijk integral, for
R < 0, is the function 1/R. Unfortunately, analytical solution of the integrale (1/R) dV over the
domain of an arbitrary trilinear hexahedron does not seem to exist. Consequently, in extracting
the (quasi)singularity we shall integrate 1/R over the domain of a (generally not rectangular)
parallelepiped, the sides of which are obtained by translating the straight segmentsA1A2, B1B2

and C1C2 shown in Figures 3(a) and 3(b). The parallelepipeds which correspond to the cases in
Figures 3(a) and 3(b), are shown in Figures 3(c) and 3(d), respectively. Note that the co-ordinate
segmentsA1A2, B1B2 and C1C2 are common for the trilinear hexahedron and the parallelepiped.
For u close tou0, v close tov0 and w close tow0, the pointM9(u,v,w) of the trilinear hexahedron
coincides with, or is very close to, the pointM9p(u,v,w) of the parallelepiped. Thus, in extracting
the (quasi)singularity in thePijk integral we subtract and add a term of the form 1/Rp (instead of
the form 1/R),

Figure 3. (a) Field pointM inside trilinear hexahedron (which contains the source point,M9) or on its surface; (b) field
point outside hexahedron; (c) parallelepiped for extraction of singularity in case (a); (d) parallelepiped for extraction of

quasisingularity in case (b)

 1997 by John Wiley & Sons, Ltd. Int. J. Numer. Model.,10, 177–192 (1997)
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Pijk 5
1

4p FEu2

u1

Ev2

v1

Ew2

w1

Suivjwk
e2jb0R

R
2 ui

0vj
0wk

0 cosb0d
1
Rp
D dudvdw

1 ui
0vj

0wk
0 cosb0d Eu2

u1

Ev2

v1

Ew2

w1

1
Rp

dudvdwG (25)

where Rp 5 urM 2 r p(u,v,w)u, and rp is the position vector of the pointM9
p. In the above equation,

the integrand of the first integral is well behaved in the vicinity of the point (u0,v0,w0) and can
be integrated numerically with ease. Note that this integral represents a triple integral over the
domain u1 # u # u2, v1 # v # v2, w1 # w # w2, which, however, represents the domain of both
the trilinear hexahedron and the parallelepiped.

Let us denote the second integral in equation (25) byP9
0. It is a simple matter to prove that

P9
0 5 P0/K0, K0 5 K(u0,v0,w0), P0 5 E

Vp

1
Rp

dVp (26)

where Vp is the volume of the parallelepiped. The integralP0 can be integrated analytically.8

Equation (25) can also be transformed into the following form:

Pijk 5 (Pijk)numerical1
ui

0vj
0wk

0 cosb0d
4p

[(P9
0)analytical2 (P9

0)numerical] (27)

which explains that, actually, the difference between the exact (analytical) and approximate
(numerical) solution for the integralP9

0 over the domain of the corresponding parallelepiped
represents a correction for the approximate solution of the integralPijk over the domain of the
trilinear hexahedron.

To enhance accuracy of numerical integration, if (quasi)singularity is extracted we shall
subdivide the domain of triple numerical integration,u1 # u # u2, v1 # v # v2, w1 # w # w2, into
2l integration subdomains by means of co-ordinate surfacesu 5 u0, v 5 v0 and w 5 w0. If the
point M0 is inside the hexahedron,l 5 3. If it is on one of the sides,l 5 2. Finally, if it is along
the edge of the hexahedron,l 5 1. When M0 coincides with a vertex of the hexahedron, the
division into subdomains is skipped (l 5 0).

The basic 2D potential integral,Q(l)
jk , over the surface of the bilinear quadrilateral, given in

(18), is integrated in a similar manner.

3.1. Optimization of the algorithm for multiple numerical integration

Based on the Gauss–Legendre single-integral integration formula, the integration formula for
the triple integralsPijk has the form

(Pijk)numerical5 ONGu

m51

ONGv

n51

ONGw

l51

Am An Al ui
m vj

n wk
l g[R(um,vn,wl)]

i 5 0, 1, %, Nu 1 1, j 5 0, 1, %, Nv 1 1, k 5 0, 1, %, Nw 1 1 (28)

In this expression,Nu, Nv and Nw are the adopted degrees of the polynomial approximation for
current in the trilinear hexahedron considered,NGu, NGv and NGw are degrees,um, vn and wl are
arguments (zeros of the Legendre polynomials) andAm, An and Al are weights of the corresponding
Gauss–Legendre integration formulas, respectively.

Equation (28) is also the algorithm which can be used directly as the basis for the evaluation
of the considered sequence of triple integrals. Such a program, however, would require unnecess-
arily long computing time, since all indicated operations would be performed for all values of the
summation indicesm, n and l, as well as for all values of the indicesi, j and k of the power
basis functions. Fortunately, this can be avoided, because (28) can be transformed into
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185entire-domain mm analysis of 3d dielectric scatterers

[P]numerical5 H[P]*** : ONGu

m51

Am |comput.
of

bpq(um) | F[H]** : ONGv

n51

An |computat.
of

ap(vn) |
S[G]*: ONGw

l51

Al |computat.
of

R2(wl) | g(R) |Wk 5 wl Wk21

k51, %, Nw1

W0 5 1 | WkD |Vj 5 vn Vj21

j51, %, Nv1

V0 5 1 | VjG

|Ui 5 um Ui21

i51, %, Nu1

U0 5 1 | UiJ (29)

where * is evaluation of temp. vectorGk (k 5 0, . . ., Nw1), ** is evaluation of temp. vectorHjk

(j 5 0, . . ., Nv1, k 5 0, . . .,Nw1) and *** is evaluation of final results.Nu1 5 Nu 1 1, Nv1 5 Nv 1 1,
Nw1 5 Nw 1 1, and the functionsR2(w), ap(v) and bpq(u) are defined in (20)–(23). The algorithm
summarized in (29) contains a number of numerical details5 which will not be elaborated here.
The corresponding computer program is significantly more rapid than that according to (28): the
necessary CPU time is usually reduced for more than an order of magnitude. This is of extreme
importance, since, during a complete analysis of a given dielectric scatterer, the basic potential
integrals need to be evaluated many times.

The test (outer) integration in the Galerkin integrals is performed only numerically, using the
optimized algorithm proposed in this Section. In doing this, if the integralsS in (23) are considered,
it is necessary to replaceg(R) by Pinjnkn

, which, at any integration point, should be evaluated for
all necessary values of the indicesin, jn and kn simultaneously. In addition to this temporary
vector Pinjnkn

, in analogy with the vectorsGk and Hjk in (29), it is necessary to use also temporary
vectorsGkminjnkn

and Hjmkminjnkn
. Of course, the proposed optimization of the test integration in the

Galerkin integrals is also of exceptional significance for efficiency of the entire analysis method.
Finally, for reference, in the following Section, let us label the orders of the Gauss–Legendre

integration formula of the basic potential integralsP and Q [equations (17) and (18)] byN(b)
Gu,

N(b)
Gv and N(b)

Gw, and the orders of the outer (testing) integration in the Galerkin integrals
[equations (23) and (24)] byN(t)

Gu, N(t)
Gv and N(t)

Gw. Of course, the parametersN(
G
b) and N(

G
t) are adopted

individually for all the hexahedrons used for the approximation of the scatterer.

4. NUMERICAL RESULTS AND DISCUSSION

We now illustrate the accuracy and efficiency of the proposed optimized entire-domain method
for the analysis of 3D dielectric scatterers on actual numerical examples. All results were obtained
on a PC-486/66 MHz (8 MB DRAM) using Fortran 77 (Lahey F77L-EM/32).

4.1. Numerical results for basic potential integrals

Consider first the accuracy and efficiency of the proposed procedure of combined
numerical/analytical integration of the volume potential integralsPijk, defined in (17). Consider a
highly twisted trilinear hexahedron. Let its vertices be defined by (see Figure 1):r111 5 (20·5l0;
20·5l0; 20·5l0), r112 5 (20·5l0; 20·5l0; 0·5l0), r 1215 (20·7l0; 0·7l0; 20·7l0), r122 5 (20·4l0;
0·4l0; 0·6l0), r211 5 (0·5l0; 20·5l0; 20·5l0), r212 5 (0·3l0; 20·3l0; 0·5l0), r 2215 (0·8l0; 0·5l0;
20·5l0), r 2225 (0·8l0; 0·8l0; 0·8l0), where l0 is the free-space wavelength. Assume that the
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Table I. Relative error of Re{P000} vs. the integration parameters, for a field point (a) inside a trilinear
hexahedron and (b) outside it. For details please see text

Integration parameters (a) (b)

N(
G
b) 5 24, Nseg5 1, without extraction 6·5173 1023 27·0013 1023

N(
G
b) 5 5, Nseg5 2, without extraction 22·3883 1023 21·7313 1023

N(
G
b) 5 24, Nseg5 2, without extraction 2·5193 1025 29·4973 1024

N(
G
b) 5 5, Nseg5 2, with extraction 2·1473 1026 8·3803 1026

boundary parametric co-ordinates areu1 5 v1 5 w1 5 21 and u2 5 v2 5 w2 5 1, and thatN(b)
Gu 5

N(b)
Gv 5 N(b)

Gw 5 N(
G

b).
Table I shows relative errors in the real part of the integralP000 (its imaginary part is not

singular), vs. the integration parameters. The reference (‘exact’) values of the integrals were those
obtained withN(

G
b) 5 24, Nseg5 2 and the extraction of (quasi)singularity, whereNseg is the number

of subsegments of the integration [see the first paragraph following (27)]. The results are presented
for a field point M situated (a) inside the hexahedron (a singular point,d 5 0), defined in local
parametric co-ordinates asuM 5 vM 5 wM 5 0·4 [see Figure 3(a)], and (b) outside the hexahedron,
but very close to its side defined byv 5 v2 [see Figure 3(b)]. In case (b) it was adopted
that rM 5 (0; 0·5925l0; 0), which corresponds to the co-ordinatesu0 5 20·178701,v0 5 1 and
w0 5 20·0494324 of the pointM0 and to the distance from the closest hexahedron side
d 5 Rmin 5 0·000110206l0. This means that the integral has a very pronounced quasisingularity.
The results were obtained with single-precision arithmetic, i.e. with six significant digits.

We see from Table I that excellent results are obtained (having in mind the single-precision
arithmetic used) with quite a low order of the Gauss–Legendre integration formula (N(

G
b) 5 5), but

only if the procedure of extraction of (quasi)singularity is performed. In other words, this procedure
enables considerable reduction in the orderN(

G
b). As a consequence, the resulting CPU time for

the problem analysis appears to be very much reduced (usually for two orders of magnitude) than
in the case without the extraction procedure.

Similar results are obtained also for the integralsQ(l)
jk in (18), where the domain of integration

represents the surface of a bilinear quadrilateral (Figure 2).5

4.2. Rod-like dielectric scatterer: convergence analysis

We next analyse convergence of the current distribution and of the bistatic scattering cross-
section vs. the parameters of the method for a rod-like dielectric scatterer.

Assume that for the scatterer sketched in Figure 4a 5 l0/10, l 5 2l0 5 20·8ld (ld is the
wavelength in the dielectric) andeer 5 er 2 js/(ve0) 5 75 2 j119·83 (an electrically long rod-like
scatterer made of a dielectric of high relative permittivity and with high losses). Let the incident

Figure 4. Rod-like homogeneous dielectric scatterer of square cross-section
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field be that of a plane wave, with the electric field vectorEi 5 1 exp(2jb0z) ixV/m. According
to the present method, the scatterer in Figure 4 is modelled by a single trilinear hexahedron.
Figure 5(a) shows the results for the distribution of the current density vector,J, along the long
scatterer axis, and in Figure 5(b) the results for the normalized bistatic cross-section of the
scatterer, Sbist/l2

0, in the plane f 5 0 (the E-plane), for different ordersNu of the current
approximation along the parametricu-axis, with Nv 5 Nw 5 1. In all the cases the following values
for the parameters of integration were adopted:N(t)

Gu 5 12, N(t)
Gv 5 N(t)

Gw 5 4, N(b)
Gu 5 12 andN(b)

Gv 5
N(b)

Gw 5 4. The Figures indicate a rapid convergence of the results with increasing degreeNu of
the approximation. We see that the results are stabilized completely withNu 5 8. Note again that
the scatterer is electrically rather long (l 5 20·8ld).

Let us now analyse the convergence of the current density vector as a function of the parameters
of integration for the rod-like scatterer considered. The degrees of approximation were adopted

Figure 5. Convergence of results with increasing degree of approximation,Nu, for scatterer from Figure 4
[eer 5 75 2 j119·83,l 5 2l0 5 20·8ld 5 100 cm,a 5 l0/10, (Ei)0 5 1 V/m]: (a) intensity of total current density,uJuu, along
u-axis; (b) normalized bistatic cross-section of the scatterer, 10 log(Sbist/l2

0), in E-plane (f 5 0) — — Nu 5 1; – – –
Nu 5 2; ----- Nu 5 4; ª Nu 5 6; j j j Nu 5 8; O O O Nu 5 10; ———— Nu 5 12
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resulting in a stable solution, i.e.Nu 5 8 and Nv 5 Nw 5 1 (see Figure 5). Figure 6(a) shows the
results obtained for different orders of the Gauss–Legendre integration formulaN(t)

Gu, N(t)
Gv and

N(t)
Gw, relating to the test procedure, with other integration parameters kept constant, i.e.N(b)

Gu 5 12
and N(b)

Gv 5 N(b)
Gw 5 4. On the other hand, if we adopt fixedN(t)

Gu 5 12 andN(t)
Gv 5 N(t)

Gw 5 4, and
consider as variables the orders of the Gauss–Legendre integration formulaN(b)

Gu, N(b)
Gv and N(b)

Gw,
relating to the integration of the basic potential integrals,P and Q, curves in Figure 6(b) are
obtained instead.

We see that the results in Figure 6(a) are entirely in agreement with the conclusion that the
Galerkin method is well defined only if the number of the integration points per co-ordinate in
the test integration is not less than the number of unknowns in that co-ordinate.7 In our case, this
means that the theoretically minimal orders of the Gauss–Legendre integration formula are

Figure 6. Distribution of total current density,uJuu, along u-axis of the scatterer in Figure 4 [eer 5 75 2 j119·83,
l 5 2l0 5 20·8ld 5 100 cm, a 5 l0/10, (Ei)0 5 1 V/m], for different orders of Gauss–Legendre integration formula
(NGu,NGv,NGw), referring to (a) test procedure and (b) integration of the basic integrals, withNu 5 8 and Nv 5 Nw 5 1
— — (2,2,2),g g g (3,2,2); – – – (4,2,2); ---- (5,2,2);o —— (6,2,2); ------ (7,2,2);j j j (8,2,2);O O O (9,2,2); ————

(12,4,4)

Int. J. Numer. Model.,10, 177–192 (1997)  1997 by John Wiley & Sons, Ltd.



189entire-domain mm analysis of 3d dielectric scatterers

N(t)
Gu 5 Nu 1 1, N(t)

Gv 5 Nv 1 1, N(t)
Gw 5 Nw 1 1 (30)

With the present method it was found that the orders defined in the above equations, which are
the lowest possible, already result in stable solution, which is also clear from Figure 6(a). (Note
that this is in contrast to the specific Galerkin method for the analysis of metallic scatterers,9

where a significantly higher order of Gauss–Legendre integration formulas than the minimal were
found to be necessary.) Such low orders of the Gauss–Legendre formula make the analysis of
dielectric scatterers quite rapid, practically the same as if point-matching is used instead of
Galerkin testing, in spite of multiple integration required in the latter. Of course, this is due also
to the optimized test integrations in the Galerkin integrals.

Figure 6(b) shows that practically the same results are obtained for all values of the order
N(b)

Gu which satisfy the conditionN(b)
Gu $ Nu 2 1. Based on this conclusion, as well as on many

other numerical experiments, it was indeed found that the choice of the orders of Gauss–Legendre
integration formula following the rules

N(b)
Gu 5 Nu 1 1, N(b)

Gv 5 Nv 1 1, N(b)
Gw 5 Nw 1 1 (31)

in all volume elements of the model, resulted in stable results in practically all applications of
the method.

Finally, on the basis of the above examples it can be concluded that, in the analysis of dielectric
scatterers proposed in this paper, it is sufficient to adopt quite low values for the degrees,N, of
the polynomial approximation of current and the orders of the Gauss–Legendre integration formulas,
(N(

G
t) and N(

G
b)). Such favourable numerical performances of the Galerkin method used in this paper

are the result of both the flexibility of the adopted polynomial approximation of current-density
vector J, and of the accuracy and efficiency of the proposed procedure for the evaluation of the
Galerkin generalized impedances. When compared with the existing methods for the analysis of
dielectric scatterers (which, as mentioned, are all of subdomain type), the proposed Galerkin
method requires much fewer unknowns for a given problem (for one, and even for two, orders
of magnitude5).

4.3. Cubical dielectric scatterer: CPU time

The final check of the efficiency of the proposed method as a whole is the necessary CPU
time. In this Section we analyse the dependence of individual parts of the CPU time on the
parameters of the current approximation and integration by considering a homogeneous dielectric
cube of side lengtha 5 l0, situated in the field of a plane wave. In all cases we adopt
Nu 5 Nv 5 Nw 5 N, N(t)

Gu 5 N(t)
Gv 5 N(t)

Gw 5 N(
G
t) and N(b)

Gu 5 N(b)
Gv 5 N(b)

Gw 5 N(
G

b) (the cube is modelled
by a single volume element).

Table II shows the CPU time necessary for the evaluation of the system matrix (the Galerkin
generalized impedances) and of the vector of free terms (Galerkin generalized voltages),Tmat, for
different values of the parametersN, N(

G
t) and N(

G
b), with N(

G
t) 5 N(

G
b) 5 NG. Also given in the Table

are the values for the total number of unknowns,Nunk, corresponding to the cases considered.
Inspecting these data it is possible to conclude that, if we increase the degree,N, of the

polynomial, i.e. the total number of unknowns, for a constant order of the Gauss–Legendre
integration formula,NG (left part of the table), the timeTmat increases much slower than the
function N2

unk, whereN2
unk 5 9(N 1 1)6 represents the number of the elements of the system matrix.

Table II. Dependence of the CPU time necessary for evaluating the system matrices,Tmat, on the parameters
of the method, in the case of the analysis of a dielectric cube in the field of a plane wave

N Nunk N(
G
t) N(

G
b) Tmat, s N Nunk N(

G
t) N(

G
b) Tmat, s

1 24 6 6 44·43 4 375 3 3 19·50
2 81 6 6 51·36 4 375 4 4 30·60
3 192 6 6 64·09 4 375 5 5 53·55
4 375 6 6 96·67 4 375 6 6 96·67
5 648 6 6 166·53 4 375 7 7 175·43
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We also see that, by increasingNG and keepingN constant (right part of the table), the timeTmat

increases much slower than the function (NG)3D/3D 5 N3
G3 (2NG)3 5 8N6

G. [This function is pro-
portional to the total number of operations necessary for performing the sixfold integration of the
3D/3D Galerkin integrals,Simjmkminjnkn

, defined in (23), if all the operations were performed inside
all the six summation signs. 2NG stands instead ofNG, because all inner volume integrations are
performed by extracting the singularity, which implies subdivision into two subsegments in
integrating along all three co-ordinates.] This favourable dependence ofTmat on N and NG is the
consequence of the adopted efficient, non-redundant evaluation of the Galerkin generalized imped-
ances.

Table III gives data for the timeTmat, as well as for the computing timeTsys necessary for the
solution of the corresponding system of linear algebraic equations by the Gaussian elimination
method, for different degrees ofN of the polynomials, with the ordersN(

G
t) and N(

G
b) of the Gauss–

Legendre integration formula given in (30) and (31). As we have seen in Subsection 4.2, such a
choice of the integration parameters ensures sufficiently accurate solution, provided that adequate
degrees of the approximation for current are adopted.

Based on the data shown, it is possible to conclude that the dependenceTmat (Nunk) is relatively
close toTmat 5 A N2

unk (A is a constant), standard also for subdomain solutions obtained by the
method of moments. On the other hand, we see that the timeTsys very nearly satisfies the equation
Tsys5 B N3

unk (B is a constant), as it should.
As a natural consequence of much smaller number of unknowns and of the efficient evaluation

of the Galerkin generalized impedances explained, it has been found by numerous numerical
experiments that the proposed entire-domain method in all cases was highly superior when
compared with the available (subdomain) methods,5 as far as the total computing time is concerned.

4.4. Spherical dielectric scatterer: comparison with the exact solution

This last example is aimed at illustrating the flexibility of the adopted geometrical model, and
the accuracy and efficiency of the proposed procedure for the evaluation of the Galerkin generalized
impedances for a body approximated by relatively large number of trilinear hexahedrons. To that
end a spherical scatterer is very convenient, because the exact solution in that case is available.

Consider a homogeneous sphere made of a perfect dielectric of relative permittivityer 5 2. The
origin of the global Cartesianx-y-z co-ordinate system is adopted to be at the centre of the
sphere. Assume that the sphere is excited by a linearly polarized plane wave withEi 5 1
exp(2jb0z) ix V/m. Let the radius of the sphere be given byb0a 5 2·744 (2a 5 1·235ld). It turns
out that this is a resonant scatterer.10

We approximate the sphere by 33 3 3 3 5 27 trilinear hexahedrons, with 63 (3 3 3) 5 54
(curved and plane) bilinear quadrilaterals approximating its surface, as in Figure 7. The volume
of the model equals the volume of the sphere. Note that the surface of the sphere is approximated
fairly accurately with quite a small number (27) of geometrical elements. The first degree of the
polynomial approximation was adopted in all the 27 hexahedrons (Nu 5 Nv 5 Nw 5 1), so that
this, essentially, was the subdomain form of the Galerkin method. The number of unknowns was
additionally reduced by automatically enforcing the continuity condition for the normal component
of the vectoreeE on adjacent surfaces of hexahedrons5 (namely, with this, the number of basis
functions along each Cartesian co-ordinate was reduced from 6 to 4). The parameters of integration

Table III. Dependence ofTmat and Tsys on the degreeN of the polynomial, for the analysis of a dielectric
cube in the field of a plane wave. The parameters of integration,N(

G
t) and N(

G
b), are adopted as in (30) and

(31)

N Nunk N(
G
t) N(

G
b) Tmat, s Tsys, s

1 24 2 2 1·15 0·06
2 81 3 3 4·23 0·43
3 192 4 4 15·22 6·15
4 375 5 5 51·19 54·32
5 648 6 6 166·53 315·60
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Figure 7. Approximation of a homogeneous dielectric sphere by 27 trilinear hexahedrons. The sphere surface was first
approximated by 54 bilinear quadrilaterals (a), and then its volume subdivided into 27 hexahedrons (b)

were adopted in accordance with (30) and (31). Symmetry and antisymmetry were partly used.
The resulting number of unknowns wasNunk 5 208, and the total computing timeTtot 5 134·25 s.

Figure 8 shows the results for the bistatic scattering cross-section of the sphere,Sbist/l2
0, in two

characteristic planes. The results obtained by the proposed method are compared with the exact
results in the form of a Mie series,10 as well as with those obtained by the subdomain hybrid
symmetric FEM/MOM method (for BOR).10 Excellent agreement is seen between the three sets
of results. However, the number of basis functions perld required by the method from Reference 10
was 15, while with the method proposed in this paper it was as small as about 3.

5. CONCLUSION

The paper describes a procedure for evaluating generalized Galerkin impedances in the moment-
method analysis of arbitrary 3D dielectric scatterers approximated by trilinear hexahedrons with
entire-domain polynomial approximation of volume current. The procedure consists in two steps.
In the first step, the expressions for the impedances are derived which are particularly convenient
for numerical evaluation. In the second step, efficient evaluation is performed of multiple integrals
representing these impedances and of the entire impedance matrix.

Numerical examples are given of the implementation of the combined analytical/numerical

Figure 8. Normalized bistatic cross-section, 10 log(Sbist/l2
0), of a homogeneous lossless resonant dielectric sphere

[b0a 5 2·744, er 5 2, Ei 5 1 exp(2jb0z) ix (V/m)], in plane f 5 0 ——— this method;O O O analytical solution in the
form of Mie series;10 j j j symmetric FEM/MOM for BOR with 15 basis functions/ld (Reference 10)
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method of integration of basic potential integrals illustrating its efficiency and accuracy. Examples
of stable and rapid convergence of the results with the increasing degree of approximation is also
illustrated for both inner (near) and far fields. A relatively slow increase in CPU time is
demonstrated with the increase of the degree of polynomial approximation of volume current and
the parameters of integration of the Galerkin integrals. As a specific example, the method is used
for the analysis of a spherical dielectric scatterer, for which an analytic solution is available, to
illustrate the accuracy and efficiency of the entire method.

In the authors’ opinion, entire-domain analysis of dielectric scatterers is greatly superior to
subdomain analysis, concerning the number of unknowns, memory requirement and CPU time.
However, these advantages become evident and convincing only if the entire-domain approach is
carefully planned and optimized. This paper shows how this can be done in the most difficult
and critical part of the Galerkin-type analysis of 3D dielectric scatterers, the evaluation of the
Galerkin generalized impedances. It is hoped, however, that some of the procedures outlined in
the paper may be of interest in any type of optimized entire-domain method-of-moment analysis
of electromagnetic systems.
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