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Abstract—A constant speed parametrization (CSP) mapping of
boundary surfaces is proposed for moment-method analysis of an-
tennas and scatterers, along with its approximation using large
higher-order Lagrange-type curved quadrilateral patches. The im-
portance of the proper placement of interpolation nodes that en-
sures minimum mapped parametric space distortion (arc-length
parametrization) is explained and demonstrated on simple exam-
ples. The CSPmapping results in on average five times lower radar
cross section (RCS) error for a spherical scatterer than with the
ray casting (central projection) parametrization mapping. The ex-
tension of the CSP concept to arbitrary surfaces is illustrated in
modeling of the double-ogive target.

Index Terms—Curved parametric elements, electromagnetic
analysis, geometrical mapping, higher-order modeling, moment
methods, scattering.

I. INTRODUCTION

R ELATIVELY recently, the computational electromag-
netics (CEM) community has started to extensively

investigate and employ curvilinear elements for geometrical
modeling of antennas and scatterers [1]–[9] because they offer
greater modeling flexibility and enable larger elements to be
used in meshes of arbitrary structures, particularly when com-
bined with higher-order basis functions for currents and fields.
Most frequently used curved parametric elements for CEM
modeling by far are those involving polynomial parametriza-
tion (e.g., Lagrange interpolating polynomials, Bézier curves,
and splines) [1]–[7], but more complex parametrization based
on rational polynomial functions (e.g., rational Bézier curves
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and nonuniform rational B-splines or NURBS) has also been
adopted in a number of works [8], [9]. Rational polynomial
parametrization allows exact modeling of all conical sections
(e.g., a circle) and can ensure constant surface tangents across
element interconnects, but it comes at the cost of more complex
implementation and impairing the overall polynomial structure,
and thus the resulting opportunities for efficient nonredundant
calculations of field integrals and generalized impedances
(inner products) [3], when polynomial basis functions in para-
metric coordinates are used.
However, practically all works in curvilinear CEM mod-

eling focus on definitions and implementations of particular
basis functions on curved elements, as well as on evaluations
of associated generalized impedances, i.e., integrals in the
curvilinear space, and it appears that none of them address the
problem of how to actually position the interpolation (control)
nodes that guide the geometry of curved elements. On the
other hand, the mapping from the element parent domain to its
curvilinear form, typically done by some kind of projection,
can be performed in an infinite number of ways. This problem,
which apparently has not been adequately investigated and
documented by CEM researchers, turns out to be especially
important when higher-order large curvilinear elements are
constructed and applied (e.g., Lagrange elements of orders
higher than two, when more than three interpolation nodes per
edge drive the element geometry).
This letter focuses on Lagrange-type generalized parametric

quadrilaterals as basic geometrical boundary elements in the
method of moments (MoM) analysis of metallic and dielec-
tric antennas and scatterers within the surface integral equa-
tion (SIE) approach [3] and points out the importance of proper
placement of interpolation nodes such that the resulting map-
ping introduces the least amount of parametric coordinate dis-
tortion in the mapped domain, i.e., it keeps the differential arc
lengths as constant as possible at all points of the mapped sur-
face. The goal of this work is to introduce the constant speed
parametrization mapping of MoM-SIE surfaces and its approx-
imation using large Lagrange quadrilateral patches, and to ex-
plain and emphasize the importance, in general, of achieving
the constant speed parametrization (arc-length parametrization)
along the surface coordinate lines, in an exact or approximate
fashion, in order to obtain final analysis results with the best
possible accuracy, considering the degrees of freedom used to
describe the geometry. Note that an interesting example of a
CEM application of the arc-length parametrization can be found
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Fig. 1. Parent-line to parametric-curve mapping for (a) an arbitrary curve and
(b) a quarter of a circular arc.

in [10], where it is adopted in the context of directivity and
impedance optimizations of planar curved wire antennas. This
letter also derives simple formulas for the exact mapping of
parent line segments and squares to circular arcs and spherical
sections, respectively, which result in uniformly or almost uni-
formly spaced interpolation nodes in the projected domain, thus
keeping the least amount of distortion, and which, in that re-
spect, differ from conventional mapping formulas based on the
central projection parametrization (ray casting). Furthermore,
it demonstrates the general applicability of the constant speed
parametrization (CSP) mapping to more complex curved sur-
faces by positioning the Lagrange interpolation nodes so that
the equidistant points in the parent domain are also equidis-
tant along the corresponding projected arcs in the child domain
through a numerical solution to a set of resulting CSP equations
in the parametric space.

II. RAY CASTING AND CONSTANT SPEED PARAMETRIZATION
GEOMETRICAL MAPPINGS

Consider an arbitrary curve that needs to be parametrized for
the purposes of CEM simulation, as shown in Fig. 1(a). To this
end, we start from the parametric equation for the line segment
in the parent domain, , , ,
and seek a transformation in the form .
Conventionally, the mapping of the line segment is done by pro-
jecting it onto the curve with the common center as the projec-
tion center (an analogous procedure for square-to-surface map-
ping is given in [11] and [12]). This type of mapping can be
referred to as the ray-casting parametrization (RCP) mapping,
given the analogy with ray-casting applications in computer
graphics [13], [14]. Applied to a quarter of a circular arc of ra-
dius , shown in Fig. 1(b), the RCP mapping is then easily de-
rived as

(1)

and the rate of change of differential arc lengths on the

curve comes out to be
, so that it can be clearly seen in the right-hand half

of Fig. 1(b) that the RCP yields nonequidistant projections of
parent interpolation nodes ( ). However, we introduce
here a different mapping, as depicted in the left-hand half
of Fig. 1(b), where the interpolation node at is
mapped to the middle of the left-hand half of the arc, which

Fig. 2. Geometrical modeling of an eighth of a circular arc based on approx-
imations of the RCP and CSP mappings, respectively, using second-order La-
grange parametric curves. Distances between interpolation nodes according to
RCP and CSP mappings are also indicated.

results in uniformly spaced nodes on the parametric curve. The
associated transformation is given by

(2)

for which is constant. We call this type of map-
ping the CSP mapping, as the speed with which the mapped
point traces the curve, expressed in terms of the parameter ( ),
is constant along the curve (for ).
To demonstrate the difference resulting from approximations

of the mappings in (1) and (2) by Lagrange elements, we model
the left-hand half of the circular arc in Fig. 1(b) by a second-
order ( ) Lagrange curve using three equidistant interpo-
lation nodes obtained by RCP and CSP mappings, respectively,
and plot the results in Fig. 2. It can be seen that the CSP curve
approximates the arc geometrically almost exactly, whereas the
RCP curve deviates from it, albeit only slightly. Thus, it is to be
expected that anymodels with the CSPmappingwill yield better
results. Furthermore, the computed is much more uni-
form for the CSP curve. Hence, in addition to a higher geomet-
rical accuracy, we expect better solutions with the CSP mapping
than with the RCP one because the surface-current densities in
MoM modeling are expressed as functions of coordinates in the
parent domain, i.e., and (on generalized quadrilaterals), in
which integrations and testing are performed as well, and with
respect to which the approximation of the CSP mapping intro-
duces less distortion.
We next consider mapping from a square parent domain to

one-sixth of a sphere (of radius ). The exact RCP mapping,
found analogously to (1) [11], [12], is illustrated in the left inset
of Fig. 3, where similar problems as in Fig. 1 with distortion of
the projected parametric space are observed. The use of the CSP
mapping, with keeping the points uniformly distributed along
the corresponding parts of the two great circles on the spherical
patch, again can overcome the problems. As a generalization of
(2), the resulting exact CSP mapping is given by

(3)

and this is depicted in the right inset of Fig. 3.
In general, explicit analytical expressions for the CSP map-

pings are difficult or impossible to find. Instead, positioning the
Lagrange interpolation nodes such that the equidistant points in
the parent domain are also equidistant along the corresponding
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Fig. 3. MoM-SIE analysis of a dielectric ( ) spherical scatterer (six
quadrilaterals, , and ), using RCP and CSP
mapping models: absolute relative RCS error averaged over multiple values of

versus the number of integration points in the Gauss–Legendre formula
(with details of RCP and CSP square-to-surface mappings depicted in the in-
sets).

projected arcs in the child domain is sufficient and can be car-
ried out numerically along an arbitrary parametric line, as will
be demonstrated in an example in Section III.
Finally, note that although the CSP mapping is presented in

this letter in conjunction with Lagrange curvilinear parametric
elements, it can as well be applied to any curve or surface
defined by mathematical equations, including those using
NURBS [15]. Namely, any curve can be reparametrized to
achieve constant speed parametrization [16], which, in general,
must be done numerically [15].

III. NUMERICAL RESULTS OF 3-D MOM-SIE EM MODELING
USING RCP AND CSP MAPPINGS

As the first example of 3-D MoM-SIE EM modeling using
RCP and CSP mapping approaches, consider a dielectric (
, ) spherical scatterer of radius in free space. The
spherical surface is modeled by means of six Lagrange quadri-
lateral patches of the fourth geometrical order ( ),
and with polynomial divergence-conforming hierarchical basis
functions [3] of order in both directions ( and
) for electric and magnetic surface current density vectors on
all patches. It is found that the CSP model, which gives accu-
rate results for the monostatic radar cross section (RCS) up to
the frequency at which , being the wavelength in the
dielectric, performs much better than the RCP model, which re-
sults in noticeable errors even starting from relatively low fre-
quencies (where ) and definitely performs poorly
at frequencies where . In addition, Fig. 3 presents
the respective percentage errors of the RCS calculation [with
respect to the analytical solution (Mie’s series)] averaged over
the frequency range up to where versus the number
of integration points (using the Gauss–Legendre integration for-
mula) in each direction of quadrilateral patches in MoM-SIE
solutions. We conclude from the figure that while both models

produce numerically stable solutions, the CSP model gives five
times lower average error in the considered frequency span.
As the second example, in order to independently identify

the sole influence of the parametrization on the solution accu-
racy, we consider a metallic square plate scatterer (of side length

m), which is geometrically exactly represented by a
flat quadrilateral. While the computed RCS at a frequency of

MHz for the CSP model (standard quadrilateral with
) agrees very well with a completely -refined

reference solution by WIPL-D, the result for a non-CSP quadri-
lateral with for whichwe offset the control points
at by m differs by 46%. The accuracy gain in
the current distribution over the plate is even more pronounced.
As the last example and a demonstration of the general ap-

plicability of the CSP mapping to more complex curved sur-
faces (arbitrarily defined by some sort of mathematical equa-
tions), we perform CSP modeling and scattering analysis of
the metallic double ogive, a benchmark target established by
the Electromagnetic Code Consortium (EMCC), at a frequency
of GHz [17]. First, the ogive is meshed (based on
geometrical equations from [17]) using 24 MoM quadrilateral
patches with , and the model appears in the inset
of Fig. 4. Next, the CSP algorithm is applied to parameter ranges

in and in, respectively. For a para-
metric line defined by , , , we stipulate that the par-
tial arc lengths between any two points are equal to one another,
and equal to of the total arc length spanned by , where
is the number of segments required within the parameter span.
This is done by numerically solving the set of equations

(4)

(5)

where in and in (the very tip
points of the two half-ogives are excluded), and
(there is a jump discontinuity at the plane), using a
standard secant method for numerical root finding and evalu-
ating all the integrals numerically as well. The solutions are
parameters arranged in the CSP manner in the -plane
( , ). On the other hand, as the ogive is
rotationally symmetric, the CSP distribution of the parameter
( ) is given by , .
Finally, interpolation nodes (that define MoM patches) are ob-
tained by substituting parameters and into geometrical
equations of the ogive in [17]. Higher-order MoM CSP results
with (total number of unknowns is 420) for the
RCS of the double ogive are compared in Fig. 4 with simulation
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Fig. 4. RCS of the metallic double ogive at GHz [17] as a function
of the azimuthal angle (the elevation angle is zero) for the horizontal ( )
and vertical ( ) polarizations, respectively: comparison of the higher-order
MoM-SIE solution using CSP parametrization with results obtained by
FEKO [18]; geometrical model with 24 curved ( ) quadrilateral
elements is shown in the figure inset.

results obtained by FEKO [18], and an excellent agreement of
the two sets of results is observed.

IV. CONCLUSION

This letter has introduced a constant speed parametriza-
tion mapping of MoM-SIE boundary surfaces in analysis of
antennas and scatterers and its approximation using large
Lagrange-type quadrilateral patches and has demonstrated the
importance of achieving, at least approximately, the constant
speed parametrization (arc-length parametrization) along the
surface coordinate lines. The proper placement of interpolation
nodes that ensures minimum mapped parametric space distor-
tion is especially important when large high-order curvilinear
elements are constructed and applied. In 3-D MoM-SIE anal-
ysis of a spherical scatterer, the CSP cube-to-sphere mapping
has resulted in on average five times lower percentage error in
RCS computations than with the ray-casting parametrization
mapping. The RCS results have confirmed all conclusions and
expectations derived from the analysis of geometrical results
in Fig. 2. Moreover, we realize that what appeared as slight
geometrical inaccuracies in the model actually translates into
rather considerable errors in the RCS, which emphasizes even
more the importance of proper geometrical mapping, namely,
CSP mapping in the higher-order MoM-SIE case. The proposed
CSP mapping concept has been extended to arbitrary curves

and surfaces (defined by some sort of parametric equations)
employing a numerical solution to a set of resulting CSP equa-
tions in the parametric space, which has been demonstrated in
3-D MoM-SIE modeling of the EMCC double-ogive target.
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