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Abstract

During cornering winds, dual conical vortices form in the separated flow along the leading
edges of flat roofs. These vortices cause the most extreme wind induced suction forces found
anywhere on the building, so it is important to predict them accurately. The quasi-steady
theory is commonly used to predict building surface pressures using upstream flow conditions.
However, many studies have concluded that the quasi-steady theory should not be used in
the separated flow regions of a building, because it underpredicts the peak and rms pressure
coeflicients, C,v and C,, . A wind tunnel study of a low-rise building is performed to examine
why Cpv and C,, . are underpredicted. The study uses simultaneous pressure and velocity
measurement to assess the basic assumption of quasi-steady theory in this situation, which is
that an instantaneous change in wind direction (w) will have the same effect on vortex position
and strength as a long-term change in . This assumption is found to be valid only for wind
angles of 45° + 10°, and primarily for low-frequency changes in w. This ought to actually result
in an overprediction of C,v and C,_, as quasi-steady theory is shown to overestimate the
effects of vortex motion due to lateral turbulence. However, the quasi-steady theory ignores
the contributions to C,v and G, from random vortex motion and random changes in vortex
strength. The authors apply an analytical model of the vortex flow that links vortex behaviour
to surface pressure to assess these contributions, and show that their absence results in the net
underprediction of C,v and C,_, even when the quasi-steady theory is applied fully, with no
linear simplifications. © 2001 Elsevier Science Ltd. All rights reserved.
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Nomenclature

B largest building plan dimension (either length or width)

C, pressure coefficient = (p — prer) /3 pUks

Cps C, at the point S (The point S moves in time along on the roof
surface, tracking directly beneath the moving vortex core. Cp,(1)
is measured at a given x as the minimum of the concurrently
measured C,, (¢) values for a row of taps normal to the roof edge)

Cru C, at a given fixed tap location

C;Om" mean C, as a function of the nominal wind angle

C},““G mean C, as a function of the instantaneous wind angle,

_ calculated from Cpom
;J“m‘:‘j mean C, as a function of the instantaneous wind angle, measured

experimentally

Cp, Cpv mean, and peak negative values of the pressure coefficient time
serics C, (1), where C,(1) = (p(t) — prec(1)) /3 pUl)

Chrearr Cpmms mean and rms values of pressure coefficient time series

Cprn I component of C,__ due to turbulence intensity

Cpm X component of C,_ due to variable ‘X’, where X is one of ¢,
and o

f frequency

fr(x) probability distribution function (pdf) for the variable ‘x’

G gust factor

g integral of centripetal acceleration from inviscid region, through
core, to roof

H height of building

Iy turbulence intensity in the longitudinal (along wind) direction

k ratio of velocities (constant)

p static pressure

q flow head(=1pU?)

R dummy variable

t time

U flow speed

Urer flow speed measured upstream at roof height

U (point) U at the location (point) ex: Uc, Um

X distance from the apex or leading edge corner, measured along
the leading edge

¥ distance from the leading edge wall, along a line normal to the
leading edge

z distance above the roof surface

o wind angle above the vortex, relative to the vortex core axis

¢ angle formed along the roof surface with respect to the leading

edge
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o angle formed between the ray of the vortex core position and the
leading edge
n transfer function to calculate C, at a fixed tap based on tap
location and Cp,.
0 horizontal wind direction relative to the entire building (0-360°
scale)
0 air density
Oy standard deviation of quantity represented by the variable x
(ex: U, Cp)
W wind angle relative to a given edge and corner (90° is normal to
the edge)
o’ normalized fluctuations in the virtual or effective wind angle,
w’(t) — [wvirtual _ a)(t)] = w(t)
Wnom nominal wind direction, determined by the orientation of the
model building
¢ dummy variable
Subscripts generally denote the position in space at which a quantity is
measured, i.e., Cy is the pressure coefficient at the point S, which is directly
beneath the center of the moving vortex core.
Overbars indicate time averaged quantities (ex: g).
Prime symbols indicate fluctuating quantities (ex: g').

1. Introduction

The quasi-steady theory is a simple, practical model which links a building’s
surface pressure fluctuations directly to fluctuations in the local wind vector. The
accuracy of the quasi-steady theory is important because it is the assumption
embodied in many building codes [1], where the design pressure is calculated using
an equation of the form

P =q:GCp, (1)

where ¢, is the flow head at height z = %p((]z)z, G the expected gust factor, C, the
mean pressure coefficient.

The C, values are generally measured through wind tunnel studies, and the results
are tabulated for various building types and atmospheric boundary layer conditions.
If Eq. (1) is valid, then knowledge of the velocity time series at the roof height on the
location where a building is to be constructed allows a prediction of the loads on the
roof once the building is in place.

On buildings with flat roofs and sharp roof/wall edges, flow separation occurs
along the roof edge. This separation may take on two forms. For flow +20° about
the normal to the roof edge, a condition called bubble separation dominates. In this
situation, there is high suction between the roof edge and the point of reattachment.
Peak suctions are generated when cylindrical vortices are formed along the roof edge
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and are convected through the separated flow zone towards the re-attachment point
[2]. For flow £25° from a cornering flow, dual conical vortices exist. These are
responsible for the largest suctions on the rooftop.

Unfortunately, many studies have concluded that the quasi-steady theory fails to
adequately predict pressures in separated flow, and in particular beneath or near the
conical vortices [3-6].

1.1. Review of quasi-steady theory

The quasi-steady equation can be derived from two assumptions:

(1) The flow field is steady, inviscid, irrotational, and incompressible, and so obeys
the Bernoulli equation, given by

LoURe(0) + (1) = §pUst (1) + ™ (0),
where the subscript ref indicates the position of reference measurement (usually
upstream and to the side of the model), and the subscript M indicates a suitable
measurement position anywhere in the flow field.
(2) The steady condition can be extended to a quasi-steady regime where the entire

flow field velocity changes simultaneously if the flow is Reynolds number
independent, or Um(#) = kUrer(t), where k is the constant.

Finally the pressure coefficient C, is defined as

€1y = M~ PR
H(t) = — .
%P (Urer )2
Combining these three equations at the point M gives
UL (1) — U} Urer (1)\ 2 )
CPM(I) _ ref(l) 2M(z) _ < f(t)> (1 _ k,_) (Zd)
(Uref) Uret

Time averaging Cp,, (1) gives Cj, = Cpy (1) = (1 +I%) (1 — k?), since (U(t)/lj)2 =

1 4 I{; hence
o) = (Yt Cou
i Uet ) 1+13

Here, a third assumption is introduced: If the value of Cj,, is dependent upon wind
direction, a function Cj,, (0) can be used. This implies that the expected value of Cp,, (1)
is independent of the previous wind direction, the rate of change of wind direction, or
the mean wind direction, and depends only on the value of 6(¢) at that instant.

The turbulence intensity term, 77, is often neglected. Assuming that this
relationship applies to p{i measured on the surface of a building, one obtains
the quasi-steady expression often used in wind engineering:

CPQ_S(t) = <E£;L(:_)> Cﬁ(eref(l))' (3)

(2b)



D. Banks, R.N. Meroney | J. Wind Eng. Ind. Aerodyn. 89 (2001) 569-598 573

The function C;(0) that is used in Eq. (3) is typically produced from wind tunnel
studies in which the model building is rotated through 360° at 5° or 10° increments.
The mean pressure coefficient | C,(#) ) is calculated for each rotation position, and
this is tabulated as the Cj3(6) value’ for the corresponding wind direction. Once
compiled, these values produce the C,, . (0) or C5(0) plot typically reported in wind
engineering literature. In this paper, I will refer to this function as the mean value of

C,(t) for a nominal wind direction of 0, or C;omg(f)) As Richards has demonstrated
{71, C“"mo(()) is not theoretically the same as the value of C,(#) when the wind
drrectron has an instantaneous value of 8(r) = 8. This latter functron will be referred
to in this paper as C™(f). As will be shown in Section 4.1, where C2°™(6) is
calculated from C"lSl 6), C“°m0 has lower peaks than C‘"S‘G(G) Since the quasi-
steady theory purports to estlmate the effects of mstantaneous wind direction
change, C"‘S‘@(H) is a more correct function for use in Eq. (3) than C“"m"(@).

2. Experimental methods
2.1. Experimental design

The first quasi-steady assumption implies that at a building tap, the surface
pressure coefficient, C,,, is a function solely and directly of the velocity of the flow
passing immediately over that tap, U,. The second quasi-steady assumption, that
Uiap(1) = kUes(1), implies that the correlation between Uy, and a reference velocity
measured anywhere else in the flow field is 1.0. When these two implications are
combined, quasi-steady theory is seen to predict a cross correlation of 1.0 between

Cp,,, (1) and Upet(2).

Measurements show that the actual cross correlations are much lower [5], and that
the correlation between C,, and upstream flow velocity drops very quickly as the
distance between the reference location and the building is increased [8]. This is
at least in part because the correlation between any two points in the turbulent
boundary layer flow drops as the distance between them increases. This means that
for Eq. (3) to be strictly correct, Ur and 6,¢ must be measured directly above the
tap, and the validation amounts to a confirmation of Bernoulli’s theorem.

This loss of correlation between Uyr and Uy, does not preclude the use of quasi-
steady theory for all but this trivial case, however. The objective of quasi-steady
theory is to allow pressure statistics such as mean C,, C,,_ (dc,), the probability
distribution function (pdf) and the power spectrum of C[? $(f) to be assessed from
the local wind statistics and a general knowledge of Cs(6). As long as 04, and the
normalized Uy, have similar statistical properties to 6rr and the normalized U,
then Eq. (3) should accurately predict these pressure statistics. In cases where Eq. (3)
fails to do so, it is often assumed that this is because the building has altered the
nature of the flow passing around it in such a way that the statistics of 0y,p and Uyap
no longer match those of as O.f and Us. This is often referred to as “building
interference”.
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In the case of taps near the conical vortices, measurements indicate that the
statistics of velocities measured directly above the taps are indeed substantially
different from those of the undisturbed upstream flow, exhibiting a much greater
turbulence intensity, as well as flow reversals [9]. However, the correlation between
these U, measurements and C,, are quite low (less than 0.5) because Cj,, is
controlled not by the immediate Uy, velocity, but rather by the proximity and
strength of the vortex. The location and strength of the vortex, in turn, are controlled
in large part by the speed and direction of flow above the vortex. The nature of this
control will be briefly described in the following section, but for now it is worth
noting that this assessment is corroborated by the high cross correlation (above 0.8)
between the flow velocity measured at a point M directly above the core and the
suction at a point S directly beneath it. These points are depicted in Fig. 1, along
with some of the nomenclature used in this report.

In addition, as shown in Fig. 2, the flow velocity and direction statistics above the
vortex provide a very good match to those of the undisturbed upstream reference
flow. To the extent that Uy and @y control the vortex, then, one would therefore
expect the quasi-steady theory to do a reasonably good job of predicting pres-
sure statistics under the vortex. To understand how and why this is not generally the
case, this study experimentally measures the validity of the immediate quasi-steady

+ L

Z Point M

Point S

y - Front view
v top view [section A-A]

Single conical vortex shown as shaded triangle (Second vortex not shown)
Dashed line indicates the position of the vortex core’s axis

@= wind angle of reference wind relative to the roof’s leading edge

a = wind angle relative to vortex core axis at the point M

¢, = vortex core angle with respect to the roof’s leading edge

the point § is on the roof surface directly beneath the vortex core

the point M is above the shear layer, directly above the vortex core

Fig. 1. Nomenclature for model of vortex mechanism.
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Fig. 2. Probability distributions, with skewness and kurtosis, for: (@) Unm(?): Wind vector directly above
the vortex core. (O) Up,,: wind vector at roof height when building model has been removed from the
tunnel.

relationship,

2
30 = (229 catouon, @

M

using concurrent measurement of C,(z), Um(t) and Oum(2).

2.2. Model scale tests

As noted above, the location of the vortex is an essential parameter for
determining the expected suction at any given pressure tap near the vortex.
Simultaneous flow visualization and pressure measurement show that the peak
suction always appears beneath the moving vortex core [10], so ¢¢(f) can be
measured using a row of simultancously sampled pressure taps normal to the roof
edge. Several such rows were drilled in a 1 :50 model of the TTU WERFL field site
[11] (see Fig. 3). The model was placed in the CSU B2 turbulent atmospheric
boundary layer developed by Ham [12]. This boundary layer features a power law
exponent of 0.14 with turbulent intensities at roof height of 19% (along wind) and
15% (lateral).

Pressures at all 48 taps were measured sequentially at 23809 Hz, for a per-tap
return frequency of 496 Hz, using a Pressure Systems Inc. (PSI) ESP48 transducer
unit mounted inside the model. A restrictor tubing system with a flat response
(Gain=1.00 £ 0.05, linear phase) out to 200 Hz was used for pressure measurements.
The tap diameter was 0.5 mm.

Horizontal (x and y) velocities were simultaneously measured, also at 496 Hz,
using a Thermal Systems Inc. (TSI) model 1241 x-wire hot-film probe connected to a
1050 constant temperature anemometer. The probe was positioned at a point M
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row #1: x=30mm
tap# ymm gtap 270

9 8 14.9 row #4: x=112mm .

10 11 2041 tap# ymm_gtap € |

11 14 250 32 5 26 £ 240 ‘/¢\

row #2 x=60mm 33 10 541 x i
tap# ymm gta 34 15 7.6 210 !

12 8 7.6 33 20 101

13 11 104 3/ 25 1286

14 14 134 37 30 15.0 180 |

15 17 15.8 row #5; x=137mm

16 20 184 tap# _y,mm _gtap

17 25 226 19 5 2f Ll PO SN . .
18 30 266 20 10 42 :

row #3: x=87mm 21 15 62 120 1
tap# _y.mm _gta 22 20 83 Ty

38 5 33 23 25 103 ;

39 10 66 24 30 124 R R

40 15 98 25 35 143

41 20 129 26 45 182 ] wafeees

42 25 160 27 55 219

43 30 190 28 65 254

44 35 219 20 85 318 oo

45 45 273 30 135 446 E

46 55 323 31 175 519 3 y (mm)
47 65 368 0 ' ' '
48 85 443 0 50 100 150

Fig. 3. Top view of 1:50 model of TTU WERFL building showing position and numbering of roof-top
pressure taps used in this experiment.

located above the shear layer. A typical location for many of the measurements
presented in this paper was 16 mm directly above tap #40, but the probe was also
placed above other taps.

A conditional sampling procedure was employed during the data analysis to
isolate the effects of various parameters. For example, to eliminate the effects of
vortex motion on the mean values of Uy or the C,(¢) profile, only those velocities or
pressures measured when a target tap measured the minimum C, for row #3 would
be included in the statistics. (This procedure was employed in generating the data for
Figs. 2 and 5.) Another example used in this study is to calculate statistics using only
those C,(t) or ¢¢(r) values measured when w(7) was within a certain range (Fig. 6).
The conditional sampling technique is detailed in Ref. [13].

3. The vortex flow mechanism model

As mentioned above, the pressure coefficient beneath the vortex core is a function of
the vortex strength, as well as the wind speed and wind direction above the vortex. Banks
and Meroney have studied this relationship and developed the following expression for
the surface pressure coefficient directly beneath the moving vortex core [13,14}:

2 = 2
Cp(t) = (%%) 1 — <U—gr(ef—)> (1 + sin®(a(£))g(w(2), )}, (5)
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where o is the wind angle (w = 90° for flow normal to the wall nearest the tap),
o is the wind direction relative to the vortex core (Note that the flow
direction changes by an amount Aw = ¢ as it passed over the roof edge, so
that w = a). Uy is the total flow speed at a measurement point above the shear
layer, directly above the vortex core (selected experimentally at z=3.5 times
the mean core height), Uy is the flow velocity at roof height upstream of the
model.

Many of these terms were illustrated in Fig. 1. The term g expresses the pressure
drop across the vortex core from the point M to the point S, and is an indication of
the quality or strength of the vortex; g = 0 for no vortex, while g ~ 1.5 for a well
formed vortex. The function g can be divided by separation of variables:

g(o(1), 1) = g(w)g'(1),

where ¢'(¢) is a nearly Gaussian random variable which accounts for random
changes in the vortex quality, and §(w) decreases with increasing w, possibly as the
result of the lack of axial flow destabilizing the conical vortex. This model is
developed and validated in some detail in Refs. [13,15].

3.1. Comparison of the vortex flow mechanism model with Q-S theory

Note that C,, does not correspond to the suction at a single tap, since the vortex
core moves in response to changes in wind direction, as shown in Fig. 4. This
complicates the comparison of Egs. (4) and (5). However, the pressure at a single tap
can be calculated from Cj, if the location of the core (¢(7)) is known. Since the
mean core position is a function of the wind angle w(f), the position of the tap
relative to the core dictates Cp,, according to the equation:

Cp,,p (@) = (Cp (@) = Cp)n(@) + Cp,,

where C,, is the asymptotic value of C,(¢) in the middle of the roof, beyond the
influence of the vortex. The function # is explained in Fig. 5. It acts as a transfer
function, using the mean C,(¢) pressure profile shape and the location of the vortex

= 20

S 18 1

g 16 1

~ 141

g 12

%5 10 -

c 8 -

£ 64 ® Row #2 (x/H=.75)
8 4] o Row#3 (vH=11)
2 2 | —— Linear regression
(8]

S0 , : :

20 40 60 80
instantaneous wind angle, a(t)

o

Fig. 4. Position of vortex core as a function of wind direction.
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=10° T T 0 =
104 (@) for grap=10 3
9 1 5
: R <
o) w=25° | 1 8
: ¢, =6.5° E
084 & ! 0 wind angle, @ | ; , ; =
~ | 0 20 40 60 80 |
' | 5
[o% Ol w=
o -~ Data symbols 3
— 0.6 - ul correspond to those B
S 3 from the curves £
o g] on the right. 3
g | 2
g 1] | g
b 044 o S
& g B
- 8
Sl -
T -
0.2 A °>>| N
| | 0z
| E
| 1 i
| @=70° | §Q
0.0 T T T T T T ¢ = 150 £
00 05 10 15 20 25 30 35 40 ¢ 2 ©

iap/dc (POSsition of tap relative 0 10 20 30 40

to location of vortex core) ¢[degrees]

Fig. 5. Calculation of C,(®) at a given tap using the mean C, profile and the location of the tap relative to
the location of the vortex core for each wind direction .

core relative to the tap in question to convert the Cy(w) function into a Cp,, (@)
function.

The vortex core also moves randomly about its mean position for any given wind
direction. This is illustrated in Fig. 6, where the vortex core position above tap row
#2 (taps 12-18) was determined at each time step using the instantaneous location of
the peak suction.

It is known that changes in turbulence intensity affect the mean reattachment
position for bubble separation [16]. It has been postulated that this is the result of
very high frequency turbulence (of the same scale as the shear layer) increasing
entrainment between the shear layer and the separated flow zone [17]. It is possible
that changes in this high frequency shear layer turbulence from one moment to the
next influence the size and motion of the vortex.

Regardless of their causes them, for the purpose of this analysis, these fluctuations
in vortex position are considered random, and their effects on the time dependent
value of C,,, can be incorporated in Eq. (5) through the term w':

Cp.ap(t) = (Cps(t) - Cpa)”l(w(l + a)/)) + Cp,.
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Fig. 6. (a—c) Histogram of vortex core position in tap row #3 for various instantaneous wind angles during
a test with a nominal wind angle of wpom = 45°. All w(¢) values are +2.5°.

Since there is a linear relationship between ¢.(¢) and (?), the random changes in
vortex position have been expressed as random changes in a “virtual” or effective
wind angle by defining

wvirlual (l) _ (U(l) .

w(t)

The pdf of &' is very similar to that of ¢_(¢) in Fig. 6c. It is a Gaussian random
variable with mean 0 and ¢,y = 1/3.
The full equation for C,(¢) at a tap under the region of vortex influence in now

given by

o' (1) =

(Um0
) = (FHE) ),
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o Wind direction 20mm
above tap #41 [degrees]

20 30 40 50 60 70 80 90
«: Mean wind angle [degrees]

Fig. 7. The dependence of wind direction at the point M on upstream wind direction.

Cpap(®) =

[1 ) (%(@) (1 +sin’(2(1))3((1))g' (1) = Cp, | n(@(1 + @) + G,
Uver

Since a(7) is essentially a function of w(r) (see Fig. 7), Eq. (6) has the same form as
the quasi-steady equation. The influence of the ¢'(r) and «'(z) terms is assessed in
Section 4.2.

3.2. Frequency considerations: coherence and spectral analysis

The quasi-steady theory has been interpreted to imply that the coherence, cross-
correlation (between taps) and spectrum of wind-induced pressures should be equal
to those of the local wind velocity head. This has been shown to be invalid, as the
pressure spectra attenuate faster than the velocity spectra [18,19], and the local
pressure coherence and cross-correlation under the separated flow zones are greater
than that of the incident flow [20].

The increased cross-correlation is the result of the existence of a coherent flow
structure (the conical vortex), which is not in the upstream flow. This is an essential
consideration when calculating total loads. This aspect of what is sometimes
considered “building interference” will not be directly addressed in this paper, other
than the qualitative discussion which follows here.

Calculating the pressure spectrum from that of the incident flow has been
addressed successfully for taps on the windward wall through the use of an
admittance function, which cuts off the incident flow turbulence at fB/U =~ 0.2, or
gusts roughly five times the largest building plan dimension (B) [21}. The flow
mechanism described in Refs. [13—15] and embodied in Eq. (6) suggests that a similar
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admittance can be used to describe the relationship between upstream flow and roof
pressures beneath the conical vortices.

In the vortex flow mechanism model, the vortex can be seen as a wheel being spun
by the flow passing over it. Through the term g, this spinning amplifies the pressure
drop associated with a given wind gust above the vortex, so that the pressure drop at
the surface is more severe than that due simply to the additional flow speed. As a
result, while all gusts can be expected to directly influence the surface pressure
through the Uy (f)/mean(Uy) term, only those gusts large enough to spin the vortex
faster (fB/U<10) would be fully “amplified” at C,. The size of gust needed
decreases as the vortex gets smaller near the apex of the roof, so the admittance
would be a function of x.

Only lateral gusts (i.e., changes in w(f)) that are larger than the building
(fB/U < 1) would be expected to move the vortices, causing them to “sway” from
side to side. Since an increase in o for one conical vortex implies a decrease in w for
the other, and C,, increases as w(r) approaches 60°, the vortex sway will also
produce low frequency suction fluctuations which are correlated to low frequency
upstream lateral turbulence. This has been observed through simultaneous pressure
measurement over the whole roof surface [22]. For many taps, especially those
that are intermittently under the vortex and in the re-attachment zone, the vortex
core position (as expressed by the n(w) term) is the dominant influence on surface
pressure. As a result, these taps will exhibit a strong correlation in suction with
the lower frequency lateral turbulence that causes the mean vortex position to
change.

The notion of an admittance is fundamental to the validation of the quasi-steady
theory; it is clear that for low enough frequencies, the quasi-steady theory will hold
true. For example, a wind direction change lasting over a minute at full scale
(fB/U = 0.03) ought to have the same effect as a shift in mean wind direction,
while a gust with fB/U = 10 would not be expected to affect the mean flow pattern
around the building in any significant way. As long as gusts which are of sufficient
size and duration to affect a structural element of interest are passed on to
the building surface pressure in keeping with Eq. (3), then the quasi-steady model
is, for practical purposes, valid for point pressures. In this context, the question is
not so much one of the validity of the quasi-steady model, but rather one of its
frequency limits. For this reason, the effects of data filtering will be addressed in
Section 4.1.

4. Discussion of results

4.1. Part I: mean pressures

As noted in the introduction and in Ref. [7], the expected value of C,(t) when the
wind instantaneously comes from an angle 6, which is calculated as

CP%(0y) = C,(1) when 8(t) = 0o,
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Fig. 8. Graphical illustration of the relationship between the C*¥ and C3°™ curves and the 0(¢) and
C‘“S‘g(r) probability distribution functions, for the case of §= 10o

is not the same as the measured or expected value of C,(#) for a nominal or run-
averaged wind direction of 6, which is calculated as

Crem(fy) = Cp(t) when 0(z) = 6.

The expected value of cemd(9for a given wind direction 6y can be calculated from
C;-“S“’(O); since the wind direction has a Gaussian distribution,

| @) exp=(0 - 00)/200)" 0. )

CnomH 0
=75
Since C“°m0 (0) is known, Eq. (7) was solved by assuming a C‘“S“’(B) function and
1terat1vely improving this assumption by minimizing the remdual
The distribution of 6(¢) causes C‘“S“’(H) to be averaged over a range of wind angles
when calculating C}}"m(’(@o) This is 1llustrated in Fig. 8 for data on the front face of a
circular cylinder, where the C[‘}"m(’(()g) curve was adapted from data in Ref. [24]. If
the mean wind direction is 10°, then the probability that C,(f) = 1.0 is directly

! Note that Papoulis [23] shows that a relationship such as that expressed in Eq. (7) can be approximated
as C(0) ~ C™(8) — (d>Cem?(6)/d6%)(a3/2), which in the case of Fig. 8 agrees quite well with the
full iterative solut10n to Eq. (7) This approximation has proven much less accurate for C,(0) under a
vortex.
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related to the probability that 6 =2°, and the probability that C,(r) = 0.2 is related
to the probability that & = 30°. The net result of combining the 0(¢) pdf for § = 10°
with the C‘“S‘G(H) curve is the negative exponential C[‘}"me pdf shown in the upper
right corner of Fig. 8, where the shaded region of the Cnom‘) pdf corresponds to the
shaded region of the 6(¢) pdf. Section 4.3 provides more detdlls on the calculation of
this type of C;“’me pdf, but for now we will simply note that the mean or expected
value of this Ch°™ pdf gives Ceme (10%).

We see from this procedure that the value of C;"m" (2°) is a weighted average of
the surrounding Cf*¥(6) values, which must be less than Cinstf (29 since this is a
peak value. In general, |C1°™ ()] will be less than |CF( H)ffor peak values.

The underlying assumptlon for this type of calculatlon is that a universal
function |Cm5‘0(0)| exists for this tap; or that regardless of the nominal
wind dlrectlon §, an instantaneous shift in wind direction to 6 will produce
the same surface pressure at that tap. This assumption has been tested at CSU using
data from the experimental configuration described in Section 2, where 0(t) is
measured at the point M. Fig. 9 shows data from tests where the x-wire was placed
24mm above tap #41. This point is about 3 times as far above the surface as the
expected vortex core height at @ = 45°, and is out of the separated flow, above the
shear layer.

Each plot includes two C**'? curves, calculated above from Eq. (7) using g, = 8"
and ¢, = 10°, and the Cgom" curve for tap #9 from which they are derived. These
curves illustrate again how |Ci™| > |C2°™| at pressure peaks like those at & = 20°
and w = 60°. Each individual plot shows the measured C‘“S“’( ) values for the given
nominal wind angle (C‘“S“’( (1), Wnom)). The 51mu1taneously recorded C,(¢) and

w(t) time series were sorted by w, and successive groups of 500 data points were
averaged for each filled circle data point. This procedure was repeated after the C,
and o time series were filtered at 2 Hz (5th order Butterworth filter) to produce the
open circle data points. The measured ¢, for the unfiltered and filtered w(¢) time
series was 10° and 8°, respectively.

While the plots for wpem = 15° and wpem = 25° confirm that the value of C“"mg
does not necessarily lie on the C™Y curve, the C‘“S“’ curves do not follow the
predicted C'? values very well, especially for w(t)< 15°. This indicates that the
separation bubble on the other wall, which is responsible for the secondary nega-
tive peak at w = 0°, does not establish fully when the wind momentarily shifts to
w(r) =0°.

For wpem = 35° and wyem = 45°, the measured and predicted CI‘;‘“O curves show
good agreement as the conical vortex moves away from the leading edge and over the
tap. Quasi-steady theory assumes that C})“S“’ will fall on the predicted C”‘S‘o curve, so
for these angles, quasi-steady theory can be expected to be accurate.

For Wpom = 55° and wnem = 65°, the unfiltered experimental data still follow the
predicted C‘“S“’ behaviour for w<60° but for w > 60°, these data stay at a higher
suction than the predicted curve. We suspect that this is because the vortex is more
likely to remain stable during a brief wind direction excursion of @ > 65° than for a
longer duration wind direction change. This is confirmed by the fact that the data do
follow the predicted C;,“S‘o curves when low pass filtered.
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Fig. 9. Testing the quasi-steady assumption of wind angle dependence, tap #9.
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Fig. 10. (a-¢) Components of C,, for tap #9.

where I, (the lateral turbulence intensity) is commonly substituted for og [4,5]. This
linear approximation is only useful when the value of a linear fit to C,(6) is valid
over a range of around 420y, which is seldom the case, especially for most crucial
wind directions, near pressure peaks. Note also that the linear approximation is
much more effective if a4 is small. The value of o¢, from Eq. (13) is also depicted in
Fig. 10a.

As might be expected from the results in Fig. 9, quasi-steady prediction agrees
quite well with the measured values for 30° <w < 60°, since the measured C};‘S‘H (w)
follows the predicted Cg‘s‘e(w) quite well in this region. And since the measured
Cg‘s“’(w) does not follow the predicted curve when w > 60°, but instead remains
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due to instantaneous changes in wind direction (oy), and the C,,,. what would
be attributed to o if a unique C™ did actually exist. Finally, we will also examine
the contribution to C,__ of the g'(f) and ' terms from Eq. (6), the effects of which

are neglected in quasi-steady theory.

4.2.1. The quasi-steady C,,_ equation

The rms value of any function R = R(x;, xa,...,%,) can be estimated using the
relation
— pRpe— 2 - 2
OR OR OR
2 = —_— —_— ... —_—
or = <8x1 le> +<8x2 on> + <8x,, axn> . 9)

If the turbulence intensity term from Eq. (2b) is re-introduced into Eq. (3), the quasi-
steady equation can be written as

. Ut (1)) C5(0)
CO 8¢, 0) = | == L 10
’ ( ) ( Utet ) 1+ 112] ( )
Note again that the function C5(8) = CP%(9) is the most accurate function to use in
the quasi-steady equation, since it yields C,(¢, 6(¢) = 0) = C}}‘S“’(H) and Gp(t, 0(1)) =
Crem?(6) in Eq. (10). This implies that C;(60) = Cinstf(9) /(1 4 1) should be used in
the standard quasi-steady relation, Eq. (3).
Applying Eq. (9) into Eq. (10), where x is the normalized velocity and x; = C,(6),
gives

Cnom@(e) 2
02 1 (0) = [ L—220Iy | 402, since o =21 (11)
GO TN+ 12) v C5(6) (o) — <Y

The first term in Eq.(11) depends directly on the value of Cgome(w) and the
turbulence intensity. The second term accounts for the effects of shifting wind

direction, oy, also refered to as lateral turbulence.

4.2.2. Calculating the contribution of lateral turbulence, 64

Eq. (11) is also given in Ref. [7], as is a method of solving for the expected value of
Cpems (0):

0% 5)(0) = Cp,,, 0(0) = E[(C7*(0) — om0 (6))’]
1 *® ~\2 = 2
= Cp(0) = C2(0)) exp(—(0 - 6)/200)" dO. (12
[ () - @) o0 - By2e)” . (12

If this integral is solved using the unique C*(®) curve, it provides the predicted
Cp,, contribution of oy for the full quasi-steady evaluation. If instead the CI‘;‘S“’((»)
data points shown in Fig. 9 are used in Eq. (12), then the actual contribution of gg to
o¢p is obtained. The results of both calculations are shown in Fig. 10a.

If instead the linear approximation (Eq. (8)) is used to calculate ac, (), the result is

20, (13)

Oc;(0) =
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data from taps beneath the conical vortices for certain wind directions has displayed
a bi-modal distribution [5,31] which is not well represented by any of these models. It
will be shown in the following section that the various shapes of the C, pdf’s beneath
the conical vortices are largely due to instantaneous changes in the wind direction,
which are well predicted by quasi-steady theory if Eq. (3) is evaluated fully.

4.3.1. Calculating the pdf

If both the (U/U)* and C3(0) terms in Eq. (3) are linearized, then the pdf for Cp(7)
becomes Gaussian, since the pdf for 6(¢) and U(¢) are Gaussian [5]. As mentioned
above, wind pressures on buildings rarely are Gaussian, so this approximation
cannot be considered valid.?

The pdf of C375(7) can be evaluated fully from Eq. (3) using the general principal
that the probability distribution of a function z = x - y can be calculated using the
convolution integral

£z = [ fempe0

This can be evaluated discretely as

fe) = 3 Hlatuiin) (212

- X, — Ax
Xn=Xmin

where Ax = x;;1—x;, and fr(x) =0 for x<xmip and x > xpax. Applying this to
Eq. (3) for tap #9 gives
C5(6),=—0.4

S (€3 = 3" Sy (€SGO e (0
Cy(6),=—2.3
C5(0), + AC(0)
" “‘(cp-«m - Acp-w))’ (14

so that, for example, the probability that CX~5 = —1 is the sum of the weighted pro-
babilities that when C,(0) = —1, (U/U)? = 1, and when C,(6) = ~1.5, (U/U)*=
0.67, etc.

The pdf’s f{;;, 52 and fc,() can be calculated from the Gaussian pdf’s of U(¢) and
0(r). In general, i% x is a function of &, and ¢ has a known pdf f:(£), then

Folx) = fé(‘fl) f;(éz) T fé(fn)

M W@ T e 1)
where the X’ is the partial derivative of x with respect to £, and # is the number of
different roots for a given value of x. Applying Eq. (15) to the function C}]PS‘G for
a9 = 10° from Fig. (9) resulted in anywhere from 2-4 roots. For example, since
C};‘s‘e = —2 for both 6 = 72° and 49°, fc,s) (—2) would have two roots, so that the
probability that C, = —2 is the sum of the weighted probabilities that 6 =72° or 49°.

2Holmes [32] has shown clearly how the (U/ U )2 term is expected to produce a skewed distribution, so
that it is perhaps worth asking why any of a building’s pressure taps would register a Gaussian C, pdf.



588 D. Banks, R.N. Meroney | J. Wind Eng. Ind. Aerodyn. 89 (2001) 569-598

fairly constant for any instantaneous wind angle, the quasi-steady theory (both the
linear estimate and the full integral) actually overpredicts C,_, due to oy at these
wind angles.

The linear model also underpredicts C,, p at the peaks (w=25° and 60°), and
overpredicts C,,.. o when the C,(6) slope is high. These errors are paradoxically
reduced if the differential in Eq. (13) is performed crudely, with large Aw steps both
in the derivative and between the location where it is evaluated.

4.2.3. Contributions to oc, neglected by quasi-steady theory
Applying Eq. (9) into Eq. (6) yields two additional terms:

2 2 2 2

O-%Jp(g) = (Cprms;”) +(CPrms_9) +(Cprms_.‘1’) +(Cprms_wl) )
where the first two terms are the turbulence intensity and wind direction shift (lateral
turbulence) terms from Eq. (11), and the last two terms are calculated as

- 2
o) = (14 1) () siwa)g(opm(@ey,

ref

Copar(@) = (1 (@) = ) 2% 5,

(Note that the techniques to be described in Section 4.3.1 can be used to generate a
more accurate prediction of C,,. . from fy(w') and n(w) than the above linear
approximation.)

Cpos g accounts for random changes in the vortex quality or strength, while
Cp,e_or accounts for random changes in the vortex position (recall Fig. 6). These two
terms are shown as functions of wpom in Fig. 10(b), along with the turbulence
intensity and wind direction shift terms. The values of oy and o, have been
estimated at 0.45 and 0.33, respectively. Fig. 10(c) shows how the omission of these
terms compensates for the quasi-steady theory’s over prediction of the effects of
lateral turbulence for some wind angles (e.g. near 70°), but leads to underprediction
at the crucial worst case wind angles (near 45°).

4.3. Probability distribution functions

While matching the predicted and measured rms C,, values is an important aspect
of quasi-steady theory validation, a comparison of the probability distribution
function (pdf) of C[?’S(t) and C,(1) provides a comprehensive picture of the
accuracy of the quasi-steady model. This is particularly important for the prediction
of peak suction events, since the pdf's of surface pressures on all faces of a square
cylinder but the front are not normal (Gaussian) [27,28]. Studies have also shown
that the skewness and kurtosis (flatness) varies greatly with the position on the
building [29], so that a knowledge of Cp, .. (C5) and C,_, (o¢,) is not adequate to
predict the expected peak suction.

Weibull, gamma, and log-normal distributions have all been used with reasonable
success to represent C, pdf’s for different building pressure time series [30]. However,
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those calculated from the predicted C};‘S‘O curves for w<50°, but do not agree for
® > 60°. In particular, the pdf for w,om = 85° appears as a narrow spike at
C,(0) = 1.5, because C‘“S‘H is almost independent of w for this wind angle.

Eq. (15) can also be used to derive f (U] 0y from fy. In this case, there is only one
root, so that

2 = = ex
Jwyoy 2 U 2UcyV 21 P

Combining f U0y with the fc g curves in Fig. 11 as described in Eg. (14)
produces the pdf) s shown in Flg 12. These are compared to histograms of the
experimental data. Note that C5(0) = C;“S‘O(O) /(1 + I%) was used to determine /o)
as advised in Eq. (10). Also shown in Fig. 12 are selected Gaussian pdf’s calculated
using the mean and rms from the experimental data, as well as selected C, pdf’s
calculated from the measured Cms“’(@) that were shown in Fig. 11. Fig. 12(b)
presents the same data on a semllog scale which allows a better look at the tails of
the pdf’s.

Uy 0 (—(U - 0)2)
: .

4.3.2. Quasi-steady inaccuracy near C5 =0

Eq. (3) does not allow the possibility that C,(¢) > 0 for tap #9, since Cz(8) is
never >0. The data indicate, however, that C,(#) does occasionally become positive,
especially when |C5(0)| becomes small, such as for w <30°. This is at least partly due
to the nature of the static pressure fluctuations in the wind tunnel, which have been
studied in more detail in Ref. [9].

Static pressure time series were simultaneously measured during this experiment
using pressure taps on the walls of the tunnel, as well as pitot tubes at model height
and 1.5m above the tunnel floor. These measurements indicate the presence of static
pressure fluctuations at these various locations which were correlated at low
frequencies, but which were not correlated to the flow velocity. Applying this
knowledge to the definition of C,(r) gives

p?\;latic( ) pi?w( ) statlc rdndom( ) piéatlc random (t)

jp (m)z %p(ljrf:f)2
= CR (0 + G (1),

CPM (t) =

so that the experimental values have a random noise component is added to
the quasi-steady C, measurement. This random noise component, C;;‘(t), was mea-
sured experimentally by comparing the static pressure fluctuations between the
various locations mentioned above. It has a normal distribution with C; () = 0 and
ocpr = 0.12 (see Fig. 13). As a result, it has little influence on larger |C,| values, but
will change the pdf for small |C,| values. The pdf changes can be calculated with
the convolution integral
c2 s

16 (o) = [ fep (o= €8 SN (€2 9) A, (16)

“Pmin
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Fig. 11. Probability distributions of C,(0) at tap #9 for various nominal wind directions.

(This is the procedure that was used to derive the f,(C,) pdf in Fig. 8.) Fig. 11
shows the fc,g) curves for tap #9 that were calculated for various nominal wind
angles using a Gaussian pdf with oy = 10° for fp(6). The sharp peaks are the result of
small C},(0) values at the various Ci»% maxima and minima. Of particular interest is
fes0) for wpom = 457, which has peaks at C, = —0.3 and —2.35. This is essentially
what causes the bimodal behaviour of f¢,; this will be discussed further later in this
paper.

Also shown are selected fc; ) curves derived from applying Eq. (15) to curve fits of
the measured C})":‘(’(()) values of Fig. 9. As expected, these pdf’s agree fairly well with
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histograms than the predictions made with the measured C‘“St" curves. This could
also have been anticipated from Fig. 10, where the quasi- steady over-prediction of
Cp...._6 compensates for the absence of a C,,_ v term.

The vortex motion which is expressed by the @’ term is not included in the quasi-
steady model. As a result, the quasi-steady theory is bound to underestimate the
frequency of peak suction events, since these events are tied to the presence of the
vortex core above the tap. In the quasi-steady model, this can only occur during a
shift in wind direction, while in fact random core motion can move the vortex over
the tap for any wind direction.

For w(t) <30° and w(r) > 70°, this under-prediction is compensated for in quasi-
steady theory by the over-prediction of the effects of g4 by the use of C}}‘s‘o curve in
Eq. (10), which incorrectly assumes that a shift in instantaneous wind direction to
w(t) = 65° produces the same suction regardless of wyom.

5. Conclusions

Since the quasi-steady theory is based in part on Bernoulli’s equation, it would not
be expected to predict C, values well under the separated flow around a rooftop
conical vortex. However, because the vortex transfers to the roof surface the effects
of flow speed and direction changes above the separated flow zone, there is
some reason to believe that the quasi-steady theory could produce reasonably accu-
rate results when applied fully. In fact, a full quasi-steady evaluation is able to
reproduce the skewed C, probability distribution function (pdf) shapes reasonably
well, including the bi-modal pdf which is observed at cornering wind directions for
some taps near the vortex.

However, the results of this study caution against the use of quasi-steady theory to
predict peak and rms pressure coefficients near the roof-top conical vortices. For
certain taps at certain wind angles, the quasi-steady theory can produce accurate
predictions for these fluctuating pressure coefficients. However, this accuracy is
achieved through a fortuitous combination of incorrect assumptions which offset
each other’s effects.

The basic assumption of quasi-steady theory as applied fully to the pressures near
the vortex is that any change in wind direction will result in a known change in
vortex position and strength. This is demonstrated in this study to be the case only
for mean wind angles of 35°<w<55°. At other mean wind angles, momentary
changes in wind direction have much less effect on the vortex than quasi-steady
theory assumes. This essentially means that quasi-steady theory overpredicts the
effects of lateral turbulence on taps near the conical vortex for mean angles above
60° or below 30°.

Quasi-steady theory neglects the effects of random changes in vortex strength and
position. These changes are described in this study by the terms ¢’ and o
respectively. The effects of these terms on C,,, at a tap near the roof corner are
quantified in this study, and are seen to be comparable to the effects of lateral
turbulence.
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Fig. 12. (a) Probability distributions of C,(¢) at tap #9 for various nominal wind directions (linear plots).

This additional calculation was performed for all the plots in Fig. 12, and is shown to
account for the existence of C, values greater than 0. An example of the changes to
the pdf is shown in Fig. 13(b) for wpom = 45°.
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Fig. 13. Effect of Random static pressure fluctuations on pdf of C, (tap #9, for nominal wind
direction =45°).

Onom = 45°. When (1) <20°, tap #9 is generally beyond the reattachment point, and
so has C, ~ Cpy. For w(t) > 30°, the tap is typically beneath the zone of flow
separation, and lower C,’s are evident. The bimodal distribution is the result of the
tap being intermittently inside the separated flow zone, where a C,, pdf like that for
Opom = 65° dominates, and outside the separated flow, where a C, pdf like that for
Wpom = 25° dominates. Another way to think of the bimodal distribution is that it is
the half-way point of the histogram transition from having a peak at C, = —0.4 and
C, = —2. This is perhaps more evident in the log plots, as the negative tail rises up as
Wnom INCTEAses.

The change in the position of the reattachment and the vortex core is largely due
to the change in the instantaneous wind angle. This is well modeled by the quasi-
steady theory, especially for w(f) <50°, as is evident in Figs. 9 and 11. The result
is that the quasi-steady predictions of f¢ s match the measured histograms well
for () <50°, as seen in Fig. 12. However, the quasi-steady prediction of fc,(, for
o(t) > 60° is much less accurate, as was seen in Fig. 11. This has surprisingly little
effect on the overall pdf, which on the linear plot (Fig. 12(a)) matches the data fairly well.
This is because of the dominance of the f( /0y distribution, which might be expected in
this region, given the dominance of C,_ i seen in Fig. 10 for these wind angles.

When viewed on a log scale in Fig. 12(b), the quasi-steady predictions made using
the unique predicted C};“S‘H curve actually show a better agreement with the data



D. Banks, R.N. Meroney | J. Wind Eng. Ind. Aerodyn. 89 (2001) 569-598 593

— quasi-steady prediction #Es quasi-steady using PDF of measured Cp"™*
— = Gaussian distribution o Histogram of measured Cp(t) data

Probability

Probability

Probability

Probability

4
(b) - Cp(t) - Cp(H)
Fig. 12. (b) Probability distributions of C,(¢) at tap #9 for various nominal wind directions (log plots).

4.3.3. Discussion of pdf shape

Both the predicted and the measured histogram of C,(¢) for tap #9 when wnom =
45° shows two peaks, an abrupt one at C, = 0.5 and the more gradual peak at
C, = 1.2 (see Fig. 13). This is the result of the extreme bimodal nature of fc,(e) for
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The net effect is that when the quasi-steady theory is used to predict a C, pdf for a
tap near the vortex, it produces a surprisingly good match to the data for mean wind
angles less than 30° or greater than 60°. This is because the overprediction of the
influence of lateral turbulence has compensated for the neglected terms. However, in
the crucial range of 30° <w < 60°, where the worst case suctions are likely to occur,
the lateral turbulence is fairly accurately described by the quasi-steady model. The
net effect here then is the underprediction of the worst peak suctions.

Finally, we would like to make the following suggestions for further study of the
application of the quasi-steady model:

® The use of C, pdf’s rather than C,_, or Cpv provides much more insight into the
nature of the data and of the quasi-steady model’s predictions.

e Since the basic quasi-steady assumption is seen to be increasingly inaccurate as @
approaches 90° or 0° (flow normal to a wall), quasi-steady theory is not expected
to properly describe the suction beneath bubble separation, where the relative
influence of the ¢’ term is expected to be at its greatest.

® This study was performed in a single boundary layer, which was designed to
simulate conditions at the TTU WERFL site. In a different boundary layer, the
ratio of the effects of Iy, 6g, ¢’ and ' can be expected to change, which further
underlines the danger of using a theory which inaccurately characterizes their
relative influences on C,(1).

® The parameters which control ¢’ and «' are not known at this time. It is
conceivable that very small scale turbulence (of the order of the shear layer
thickness) influence this random vortex change. Such small and rapid fluctuations
may best be investigated at full scale.
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