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Abstract

Lagrangian autocorrelations and time scales are estimated from Eulerian
time measurements of the axial turbulent velocity at two points aligned with
the mean velocity. Three Eulerian statistical measures are used to specifiy
the steady turbulent flow: the general space-time correlation evaluated in
the mean flow frame of reference; the integral scale of the space
correlation; and, the variance of the turbulent velocity fluctuation. The
computational model involves a spatially-weighted, time-varying average of
the Eulerian space-time correlation which, when evaluated along the mean flow
axis, is a first approximation to the Lagrangian autocorrelation. The
proposed estimation method is examined when the requirements of both Eulerian
isotropy and Lagrangian isotropy are imposed in a hypothetical homogeneous,

stationary turbulence of incompressible fluid.



1. Introduction

The basic approaches to statistical turbulence are either Lagrangian
or Eulerian. Whereas the Lagrangian approach follows the motion of a
single fluid particle, and is difficult to measure, the Eulerian approach
concentrates on the balance of particle fluxes through a fixed point in the
flow field and is normally easier to determine. Recent research on the
turbulent dispersion phenomenon suggests that the concentration field in a
wide variety of situations can be generated if the Lagrangian
statistics/properties of the flow field are known. Attempts have been made
to deduce the Lagrangian autocorrelation from the Eulerian turbulent
velocity at fixed point in space. Theoretical and empirical approaches to
the Lagrangian-Eulerian relationship are quite diverse. Nevertheless, most
of the attempts have been based on the assumption that the Lagrangian
autocorrelation and the Eulerian autocorrelation, or Eulerian space-time
cross correlation, are of similar shape but different scales. Whereas the
importance of the shapes of those two autocorrelation functions 1s still
debatable except for short range dispersion, the importance of the integral
scales in turbulent diffusion has been confirmed. The purpose of this
research is to demonstrate how a systematic scheme based on a probability
method can estimate Lagrangian statistics by a few anemometers located in
the fixed Eulerian frame of reference.

Diffusion of a fluid particle in a uniform mean velocity, stationary,
homogeneous turbulent flow was first described by Taylor (1921). The mean
square particle displacement was predicted to depend on the Lagrangian

velocity variance and the Lagrangian autocorrelation,
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where the square bracket indicates an ensemble average of N fluid

particles, A is the Lagrangian velocity fluctuation in the ith direction,

[vi] is an abbreviation for [vi(t)] during stationary turbulence, and LR;

]

(Dis a normalized Lagrangian autocorrelation function,

[vi(t)vj(t+t)]
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In a homogenous turbulent flow with uniform shear I' and mean velocity

U, U=T X5, Corrsin (1953) derived expressions for the components of the
dispersion tensor [Xi(t)xj(t)]:
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Notice that the shear-enhanced term (I) in Equation 1.3 and Equation 1.4
dominate the long term dispersion (t > LTll)' The turbulent shear
correlation contribution terms, (III) in Equation 1.3 and (II) in Equation
1.4 are often neglected in the absence of data for LRij’ i¥j. Term (II) in

Equations 1.3, 1.4, and 1.5 are the Taylor's diffusion terms.

2. Estimation of Lagrangian Autocorrelation Function

The Lagrangian autocorrelation function, Equation 1.2, must be formed
from an ensemble average of the time lagged product of single fluid point
velocities which have a common origin. A review of the difficulties
encountered in attempts to relate the Lagrangian function to more readily
measured Eulerian correlation functions is given by Hinze (1975). Corrsin
(1953, 1963a) proposed that the Lagrangian function might be estimated from
the general Eulerian space-time correlation function by properly weighting
the latter to account for fluid point distribution in space and time. His
concept is sometimes called the Independence Hypothesis. The fluid point
velocity is, of course, equal to the local instantaneous fluid velocity at
the position occupied by the point, so this hypothesis has strong physical
appeal. The hypothesis may be expressed in terms of the Lagrangian

kinematics of a fluid particle (Corrsin, 1963a Weinstock, 1976) as follows:

R (I) = fff £ 1J(x x 23 t)P(x;t)dxidxjdx (2.1)
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Note that the coordinate system has its new origin in the mean convective

frame, as shown in Figure 1.

The weighting function, P(x,T ), is the probability of finding a fluid

t 1 1
point injected at the origin in the space (xi, xj, xb) at any time T .

Consider a hypothetical joint normal distribution for P such that
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where x' = (xi,xé,xé) and
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Equation 2.2 for P( x ; T ) introduces a great deal of mathematical
complexity to the formulation of the Lagrangian autocorrelation. Further
simplifications of the problem are necessary!
Experimental evidence (Frenkiel, 1953) suggests that the probability
density function of finding a fluid particle in a spherical cloud should
preserve a Gaussian form. Asymptotically, the probability density function

is not only expected to be joint-normally distributed, but it should be

independent in each direction such that

P(X';t) = T ! 1 1
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In accordance with the expressions for the dispersion tensor [Xi(T)Xj( T )]

developed by Riley and Corrsin (1974), the turbulent flow field is further



constrained in a homogenous uniform shear flow. The homogeneity requires
invariance conditions with respect to the X X3 plane such that in a
uniform shear flow [R;,(T) = [Ry; (T ) = [X;(7 )Xy(7 )] = [Xy(1r )Xg(T)] = O,

However, [Xl(T )X3(T )1 cannot be ignored in a uniformly sheared flow,
because it increases with time significantly faster than the variance of
transverse displacements. This implies that an elliptic cloud evolves with
two mutually correlated displacements along the Xy and X4 axes.

Based on Equation 2.2 and Riley and Corrsin's, expressions the
Lagrangian autocorrelation function may be estimated from four integral
equations iterated simultaneously with Taylor's Equation. The system of

equations is
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X = (xi - rtxé,xé,x3) , and
LRij( 1) = 0 for i#j except at i=l, j=3; and [X%( )], [Xl(T)XB( )], [X
(1)]and [Xg( T)] retain their earlier definitions in Equations 1.3, 1.4,
1.5, and 1.6, respectively.
The present analysis requires that the general Eulerian space-time
correlation be known. It is proposed in this study that the general
Eulerian space-time correlation may be expressed as the product of time

correlation and space correlation in at convective moving frame,
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where X, is the Eulerian fixed point coordinate and 3 is the Eulerian

moving frame coordinate. Predictions of the general Eulerian space-time
correlation are rare and empirical, yet the convective Eulerian space-time
correlations are well documented (Li and Meroney, 1984). Equation 2.5
represents an appropriate approximation which physically takes into account

both the eddy lifetime and the eddy size effect.

For convenience ERij(UT, 0, 0;T ) is hereafter represented by Fl(r

[ee)]

/STij) where sTij = /ERij(UT, o, 0; T)dT.
o

2.1, Isotropic Homogeneous Turbulence with uniform flow

If Lagrangian isotropy exists in a stationary isotropic turbulence,
the mean square displacement tensors will be identical for all diagonal

terms and vanish for all off-diagonal terms, i.e.
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and (2.6)
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A consequence of Lagrangian isotropy is a spherical symmetric probability

density function of finding a fluid particle in the turbulence field; thus,
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where r = (xi2 + xéz + x§2)1/2.



Based on a study of the kinematics of isotropic turbulence, Karman and

Howarth (1938) derived an equation which relates the general double
velocity correlation tensor to the space correlation of the axial velocity

taken along the mean flow axis, f(r), without additional approximation.

R (xl,x X ) = . L 2@ x! xJ + {f(r) + X Bf(r)} 6 (2.8)

81 is the Kronecker delta function.

Experimental measurements of f(r) are satisfactorily approximated by a
simple exponential function. (Hinze, 1975; Comte-Bellot and Corrsin,
1971). The exponential fit does not satisfy the requirement of eveness as
r ~0, but over the entire range of positive correlation the exponential
function rather closely follows the best fit of the measurements. It also
satisfies the inertial subrange theory as noted by Tennekes (1979).
Therefore, f(r)=exp(-r/L) is adopted in the present analysis. L is the
Eulerian integral space scale.

Equation 2.1 can be solved in conjunction with Equation 1.1, 2.7 and

2.8,
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erf represents an error function of its own argument.



To satisfy the requirement of Lagrangian isotropy, the convective

space-time correlation in the lateral direction must be

Iff R, (r,8)P(r,1)dr,d6 do
Fz(t‘k) = E'11 1772773 Fl(t_k) , (2.10)
JI§ gRyp(x,8)P(r,1)drd8do - 10

where r, 6, ¢ are spherical coordinates.

After some manipulation, it is found that

H(a,t,)- -;— K(a,t,)
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Important points to note are (1) that the estimation of Lagrangian
autocorrelation for fluid tracer requires the specification of a single
dimensionless parameter, @ , formed from readily available Eulerian
measures, (2) the time dependent portion of the Eulerian space-time
correlation, F(t,).

Equation 2.9 was solved numerically by an iterative procedure using a
digital computer for various values of the Eulerian diffusivity parameter
. The algorithm makes direct use of the fact that as % > g, and the

bracketed term { } on the right hand side of Equation 2.9 approaches unity.



That is, the =0 case is equivalent to assuming the weighting factor P(x,
D in Equation 2.7 is a Dirac delta function. This limiting case has been

called Burger's hypothesis in the literature (Baldwin and Walsh, 1961).

2.2. Homogeneous uniform shear flow

In a uniform shear flow, a plume evolves as an ellipsoid whose size,
eccentricity, and direction are time dependent due to continuity (Elrick,
1962). For lack of information about LR13(T ) and ER13(x1, X9, Xg3T ), the
probability density function of finding a fluid particle in a moving frame

traveling with a mean velocity T X, may be reasonably approximated by a

three dimensional Gaussian distribution such as

-3/2 -1/2 )
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where [Xi( T)] is defined in Equation 1.3, 1.5, and 1.6 for i=1,2,3,

respectively.
The definition of the Eulerian parameter is generalized to account for

. . 211/2 . .
the anisotropy, i.e., ai = [ui] / STii. Since the general space correlation
L
in a non-isotropic flow is still unknown, the Karman-Howarth relationship

is retained and the Lagrangian autocorrelation functions are assumed to be

the same in all three directions. Such assumptions require that,
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The Lagrangian autocorrelation function in a homogeneous uniform shear flow



becomes
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Equation 2.9 may be shown to be a special case of Equation 2.12 if one
assumes that @l= o= Gq and T =0 and carries out the integration.

A numerical iterative procedure was developed to calculate the
Lagrangian autocorrelation function as stated previously provided that the
convective Eulerian space-time correlation is specified. The computer
program accounts for experimental values Fl(t*) and for the presence of
uniform shear. During the computation at each time step, the temporary

Lagrangian autocorrelation function is assumed to have an exponential form:
Ryt = exp-{Ault*} (2.13)
where A is a function of the Eulerian parameter and time.

After initialization at t =0, A is perturbed by a small magnitude to

compute the mean square particle displacement according to the Taylor's



integral relation, The Lagrangian autocorrelation function at each
successive time step is evaluated from Equation 2.12 and compared for
convergence to Equation 2.13. The new value of A is determined by using a
Newton-Raphson's technique: The relative convergence criterion for A
is set to 107> which provides a relative error less than 1074 for the
estimate of the Lagrangian autocorrelation.

The procedure may be run for various values of o, and the turbulent

shear parameter T gT11- The double integral of Equation 2.12 1is computed

by a Gauss-Legendre quadrature integration scheme. Such a scheme 1is
maintained self-convergent during the iteration by wusing up to 1024

weighting points., Detailed description of the Gauss-Legendre quadrature

method may be found in Carnahan et al. (1969).

3. Eulerian Space-Time Correlation

The formulation of Equation 2.5 assumes that the general Eulerian
space-time correlation can be represented by multiplying the space function
by the empirical function obtained at the origin of the mean convective
frame, ERll(o,o,o;T ). By taking the correlation of two axial velocity
signals at a time lag T, which is equal to the transit time associated
with the fixed probe separation UT , the data become equivalent to the
autocorrelation which an anemometer at the origin of the mean convective
frame would measure. Figure 2 is a summary of such correlation data
reported by several investigators. The dashed curve fitting the data for
grid turbulence is an empirical fit proposed by Comte-~Bellot and Corrsin
(1971). The solid curve represents filtered correlation data in a
simulated boundary layer reported by Li and Meroney (1984). To evaluate
the adequacy of the dashed curve (or the solid curve) for other turbulence
measurements, Figure 3 was prepared. Figure 3 is a summary plot of the

time lagged, peak correlations obtained from two probes separated at



various distance along the axis of a pipe. The solid points (Baldwin and
Walsh, 1961; Baldwin and Mickelsen, 1963) were obtained in an 8-inch pipe
with room air as the fluid and the open points were measured by Atesman
(1971) in a 6-inch pipe of flowing water. The water flow data extend over
a sufficient range to indicate that the empirical curve, Fl(t*), is indeed
an adequate approximation for pipe core flows as well as grid turbulence.

A quantitative test of Equation 2.5 can be made based on data
reported by Champagne et al. (1970) and Comte-Bellot and Corrsin (1971).
These data were obtained from the time lagged correlation of two probes
separated at a fixed axial separation but at several different transverse
separations. Table 1 summarizes the Eulerian space-time correlations for
calculated and measured results, where the calculated results were obtained
by taking x;=0 in the Karman Howarth relationship. The calculated values
become systematically lower than the measured values at larger separatioms,
but the comparison is considered rather good in view of the simplicity of

the formation.

4. Comparison of Present Predictions with Previous Analysis

A sample of the Lagrangian autocorrelation functions predicted wusing
Equation 2.9 are plotted in Figure 4&(Model I:Fl(t*)=exp(—t*); Model
II:Fl(t*)=exp(—ﬂ%§§; Model III:Comte-Bellot and Corrsin; Model 1IV:present
measurement). As noted before, theo=0 curve is the time dependent portion
Fl(t*)’ of the general Eulerian space-time correlation. Despite the
complexity of Equation 2.9, the predicted Lagrangian autocorrelations show
a clear resemblance in functional form to the input Eulerian function (o
=0). Figure 5 illustrates that when the predicted Lagrangian
autocorrelations, Figure 4, are normalized by each Lagrangian integral time
scale, 1T11° the functional form of the autocorrelations is remarkably

similar, except for a Gaussian form for Fl(t*)'



Estimates of the Lagrangian integral time scale are more readily
available than the autocorrelation function itself. Figure 6 shows that
the predicted Lagrangian autocorrelations are a function of @ and approach
zero monotonically in a well-behaved fashion at large time lags. Figure ©6
also presents results reported by other researchers. Discussion of those
data are deferred to a later section.

The fixed-point Eulerian autocorrelation can be obtained as a result
of Equation 2.8 by substituting xi = -UT and x2=x§=0. Therefore, gI;; may

be determined as
© ko ‘
T =T I e " Fl(t*)dt*
(o]

The ratio STll/ETll calculated from the above relationship is shown in
Figure 7. Another ratio of time scale, B = LTlllET11 (Pasquill's Beta), is
readily evaluated by multiplying LT11/ST11 by STlllETll' Figure 8a 1is
produced from Figures 6 and 7 for selected o. Based on atmospheric
observations, Hay and Pasquill (1959) recommended a value of 4.0 for o ,
which is independent of wind speed and stability. Wandel and Kofoed-Hansen
(1962) examined the Lagrangian and Eulerian energy spectra for a fully
developed isotropic homogeneous turbulence. They established a more
complicated relation between the Eulerian and Lagrangian correlation based

on the statistical theory of "shot" noise and the Helmholts theorem. A

rough approximation in the case of smooth energy spectra indicates that
1/ 2

/4 .. : . [u?l
B= i~ where i is the turbulence intemnsity 7 .

Corrsin (1963b) compared the shape of Lagrangian and Eulerian energy

spectra over the inertial subrange. By assuming that the total turbulent
energy was identical in the Lagrangian and Eulerian system, he arrived at a

theoretical prediction for B of

where ¢ is a constant.



By monitoring the trajectories of tetroons and a tethered balloon
system at height of 750 m, Angell (1964) observed an average value for o
near 3.3 and recommended a relation equal to 0.4/i for B. Angell et al.
(1971) made further observations in the atmosphere near Las Vegas, Nevada,
by releasing tetroons past tall towers. B was again found to have average
values near 3 and varied inversely with the turbulence intensity.

Snyder and Lumley (1971) performed direct measurements of Lagrangian
velocity in a grid-generated turbulence field in a laboratory. The fluid
particle was simulated by releasing single spherical beads with different
weights and sizes. Since light particles have only small inertia and
cross-trajectory effect, light-particle correlations were utilized to
estimate Lagrangian fluid properties. They concluded that the Lagrangian
autocorrelation function has similar shape to the Eulerian spatial
correlation and the B8 is roughly equal to 3 when approximated by 1/i.

Turbulence measurements reported by Hanna (1981) were conducted in
the daytime mixing layer near Boulder, Colorado. The average Lagrangian
time scale detected was about 70 seconds for a sampling time of 15 minutes.
The ratio B was found to be 1.7 and inversely proportional to turbulence
intensity, B = 0.7/i.

These results are presented together with some atmospheric
observations in Figure 8b for comparison.

If the atmospheric turbulence intensity is expected to be in the
vicinity of 0.1, the present analysis gives a reasonable estimation of 3<8
<7 which agrees with the atmospheric observations.

Figure 9 presents LRll(t*) for various values of @ and FSTll' The
existence of mean shear does mnot change the Lagrangian autocorrelation

function at small t, (t, © 0.25) but results in a faster decay at larger

t,. FLTH/ST11 is plotted in terms of FSTll for different @ in Figure 10



to emphasize the shear effect. 1T11/ST11 approach 5.0 for large o. Figure
10 may be used together with Figure 7 to predict B in an isotropic

homogeneous uniform shear flow as long as such turbulence parameters as

’

[ull, L, T and gTyp are specified in the turbulence field. Figure 11
displays the predicted B contours for i=0.l. Note that B falls between 3.0
and 5.0 for a wider range of o in the presence of shear than without the
presence of shear (e.g., B = 3.0~5.0 for o= 0.35-3.3 and FSTll = 2.0 while
B=3.0~5.0 for o= 0.19~1.0 and T T11 = 0.0). For atmospheric turbulence,
0 1.0

1701 ——-=1003hence, an averaged B = 4.0 for various strain rates agrees very
well with field observations.

It is difficult to provide complete information about the estimated
Lagrangian statistics for a non—-isotropic turbulent flow since there are
four parameters involved, namely, A, Gy, O and FSTll' However, the
numerical procedure can perform an estimation for amy specified combination
of these four parameters. Figure 12 presents results for L 11/S 11 in an
ideal one dimensional non-isotropic uniform turbulent flow by assuming a, =
Ay = 0. The magnitude of the Lagrangian autocorrelation function as well
as the scale ratio is gradually reduced once the turbulence field 1is
expanded from one~dimension to three-dimension. Figure 13 presents the
resultant T 1/S ratio for two-dimensional turbulent flow with uniform
velocity. LTll/S 11 for a designated three-dimensional turbulence with a,
= 04 is given in Figure 1l4. Reduction of 11/S 11 due to the
redistribution of turbulent energy is clearly observed in Figures 12 to 14,
Variation in TlllS resulting from different a, and aq values 1is
plotted in Figure 15 for an a = 1.0. L 11/S 11 may be obtained without
significant error by using the averaged value of ay and g from Figure 1lé4.
Figure 14 (Figure 13) can be used in connection with Figure 10 as the first
approximation for L 11/S jp in a non-isotropic uniform shear flow.
Similarly, B may be estimated from Figure 10 in conjunction with Figure 7.

Both Philip (1967) and Saffman (1963) employed the Independence



Hypothesis to estimate Lagrangian autocorrelations and scales. The
principal difference between Philip's analysis and the present study is the
choice of a functional form for the general Eulerian space-time correlation

in the mean convective frame of reference. Philip employed the following

function

xi + 3.138 p2 2

mn T
gRyp (%P D) = expl- 7 ( ) * T 70}
$'11

%

where (x + xz)

Phillip predicted Lagrangian autocorrelation functions which appear
as a family of bell shaped curves for various parametric values of o in a
manner quite similar to Figure &b of the present analysis. Philip's
results for LT11/ST11 are reproduced and presented in Figure 6. The
deviations between his results and Model II are due to the use of an
averaged integral length scale regardless of the variation in the space
correlation. The averaging process for L becomes more accurate in the
region where the two curves intercept in Figure 6, a=1.0.

Saffman assumed a functional form for the Eulerian spectral density
function rather than an equivalent general space-time correlation function.
A transform from his spectral density function to the equivalent Eulerian

space-time correlation function revealed that

.2 1 2, 2. L
E ll(r 8,1) = {1 Bl (1-cos“8) }( n )
2 %
where n=— and A= { %— + % [u2]t2} . (3.1)

J2A

The time dependence of the general Eulerian space-time correlation function
resides in the definition of A . The spatial variation of the Eulerian
correlation, Equation ( ), is in accordance with the Karman-Howarth

X\ 2
s
equation for a Gaussian functional form, o B ([f> , chosen as the axial
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space correlation. Fl(t*) is then implied in Equation 3.1 1is [1+“L25l
2 L
. A direct integration of the above expression yields the value of

_5

1177
L . . . . .

gTi1 = O.S%G?Ty@or 2=0.53. Hence, Saffman implicitly fixed to the unique

value 0.53, and this led directly to the unique proportionality which he

derived between the Eulerian group o« and the Lagrangian time scale.

The scale ratio LTll/STll is determined as LT11/ST11 = 0.75 as follows from
his result, I ¢ 0.40Lﬂu%]1/% Figure 6 includes this result for
comparison purposes. By combining these results with the expression

Saffman derived for the autocorrelation scale of the cross-wind components

and assuming isotropy to obtain thanxial scale ETll’ Saffman's prediction

of Pasquill's may be written as
T 1 2.y 1 -1
LI - 0,355 (ifft (1 + %) extClp® - 4QiM e =17 (3-2)
E'11 2i 2i

This relationship labeled "Saffman" is plotted in Figure 8b for comparison
with the results of the present analysis.

Favre (1965) has proposed a method for calculating the Eulerian
space-time correlation from the space correlation through the Independence
Hypothesis. Townsend (1976) also developed an analysis to obtain the
space-time correlation starting from the space-time structure function.
Both analyses took account of the mean particle displacement in the first
approximation and resemble one another. Instead of using the exact form,
the mean square particle displacement is assumed to have its asymptotic
value as

(x3(0)] = (w31,
Such an approximation automatically limits the validity of the approach to
short diffusion times. Their estimated Eulerian space-~time correlation may

be expressed in terms of the present derivation as

Fl(t*) = G( at*)’



and (3.3)

o]

J Glo,ty)de, =1
(o]

b
where G(a,t*) represents the { } term in Equation 20.

If one applies their estimated F,(t,) to the present analysis, the

Lagrangian autocorrelation function is found to be

_ nl
LR]_]_(t‘t"‘) - G ((X,t_‘.\_)
and (3.4)
[oe}
§ G(a,t)dt, =1
o

F,(ty) calculated from Equation 3.3 has been compared with the
measured results from Favre et al. (1962) by Townsend. For a time delay of
U;t/M = 7.57, the effective value of azI(t*) is found to be 0.0648, and the
estimated value of Fl(t*) is 0.48 compared to a measured maXimum
correlation coefficient 0.4l in Favre's experiment. The value 0.48 is
different from Townsend's calculation of 0.85 but consistent with Favre's

computation.

A consequence of the form of [X%(t*)] adopted in such an analysis is
that the predicted Fl(t*) is based on the knowledge of a known mean square
particle displacement (equivalently, the Lagrangian autocorrelation
function). Hence, the methodology employed in their analysis 1is quite
similar to the present approach, except that the unknown in their analysis

is the known variable in the present study and vice versa. In order to

satisfy /ZG( o ,t,)dt, = 1, the present amalysis yieldsod.l and LT11/ST11
= 0.335 according to Equation 3.4. The data point marked as Favre and
Townsend in Figure 6 shows their result is close to the prediction wusing
Comte~Bellot and Corrsin's measured Fl(t*)‘

Lee and Stone (1983) have adopted Equation 2.9 in their Monte Carlo

simulation of one-dimension turbulent diffusion. An analytical expression

to predict the Lagrangian statistics from Eulerian statistics was also



presented. The analytical solution for cloud growth compared favorably
with the results from the Monte Carlo simulation, and both results agreed
with Lagrangian statistics estimated from the present analysis (Figure 5).
Lee and Stone approximated the Lagrangian autocorrelation function at a
short time increment by the Eulerian space-time correlation, and they

assumed that the velocity fluctuations is normally distributed with zero

mean and standard deviation [u%]llz. The Lagrangian autocorrelation
function at &t can be obtained as
2
2.} 5 2 -5 (3.5
R, (58) = D)% exp(- 25 ) § n? ™™ e 2 dn | ->)
L'11 n T
S711 o
211/2
where a = L‘E—-JT&:._

Li and Meroney (1984) proved that Equation 3.5 can be obtained from
the present analysis by replacing ERll(xi’ x5, X337 ) with exp (-ty) exp
(-Xi/L) and assuming the asymptotic approximation, I( Sty) = & ti/Z-
Therefore, the one-dimensional Monte Carloc simulation of turbulence is

mathematically similar to the present analysis but with simplification in

the general Eulerian space-time correlation function.

5. Conclusion

The present analysis presents a method to estimate the Lagrangian
autocorrelation function from some fixed-point Eulerian measurements in a
turbulence field. The shape of the predicted Lagrangian autocorrelation
function strongly depends on the time dependent portion of the Eulerian
space-time correlation. Furthermore, the spatial portion of the Eulerian
space-time correlation and the probability density function used in the
present analysis are in good agreement with the data available for
approximately isotropic turbulence. The expression of the Eulerian

space~time correlation as a product of space and time correlations in a



convective frame provides mathematical simplicity. Experimental results in
an approximately isotropic turbulence field support such a formulation.

The estimated Lagrangian autocorrelation function and its integral
scale obtained from the present approach agree well with estimates reported
from different analyses. The calculated Lagrangian—Eulerian scale ratios
also agree with atmospheric observations. Unfortunately, most previous
analyses were conducted for an isotropic uniform turbulent flow.
Simultaneous measurements of turbulent diffusion and Eulerian velocity
statistics have only been performed by Li and Meroney (1984). In Part 1II
of this study, laboratory measurements of turbulent diffusion are compared
with diffusion behavior calculated from Lagrangian estimates determined
from Eulerian space-time correlation measured in a thick high Reynolds
number boundary layer. In conclusion, the present analysis requires only
two fixed-point Eulerian measurements to yield estimates for the Lagrangian

autocorrelation function and the Lagrangian integral scale.
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Figure 15 Variation in Lagrangian to Space-time integral time

scale ratio for different o, and aq values when al=l.0
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