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Flow Contraction

The steady rotational flow of an inviscid fluid in a two-dimensional channel toward
a sink or a contraction is treated. The velocity distribution at upstream infinity is
approximated by a linear combination of uniform flow, linear shear flow, and a

cosine curve. The combinations were adjusted to simulate flows ranging from
laminar to turbulent. Vorticity is assumed conserved on streamlines. The resulting
linear equations of motion are solved exactly. The solution show the dependence of
the corner eddy separation and reattachment on flow geometry and approach flow
vorticity and velocity distribution typified by a shape factor.

Introduction

When a viscous fluid flows in a channel or pipe toward an
abrupt contraction eddies form in the corners immediately
preceding that contraction. The shape of the corner eddies
and their upwind extent are said to be functions of the upwind
profile, viscosity, and the state of the fluid (laminar or tur-
bulent). Yet, surprisingly, viscosity is not required to
reproduce the phenomenon of separation and reattachment!
This paper will examine a variety of inviscid flow con-
figurations during which corner eddies appear in a two
dimensional channel flow contraction and relate the size of
the eddy to different descriptors of the approach flow.

Because of the complex nature of separation dynamics
realistic theoretical models including exact solutions for the
separation flow are limited. There is an extensive literature on
well separated flows about bluff bodies and subsequent wake
development (Wu, 1972; Thwaites, 1960). To produce
realistic flow patterns most analyses depend upon
measurements to specify undefined base pressure,
prespecification of separation or reattachment points, and
almost all are limited to uniform or linear velocity gradient
approach flows (Kiya and Arie, 1972; Frenkiel, 1961).
Numerical solutions for more general profiles of inviscid
shear flow over boundary obstructions have been performed
by some authors (Taulbee and Robertson, 1972;
Bouwmeester, Meroney, and Sandborn, 1978), but they are
not exact and can suffer from numerical empericism.

An interesting exception is the solution obtained by Yih
(1959) for the inviscid shear flow of a cosine velocity profile in
a two dimensional channel flowing into a corner sink. The key
to an exact solution of the inviscid shear flow problem is to
find a flow where the vorticity is a unique function of the
streamline along which it is convected (Taulbee and
Robertson, 1972). In such a situation no singular surfaces
occur in the flow, but the solution are unlikely to represent
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exactly the corresponding flow of a real fluid even at large
Reynolds number. (As noted by Yih (1959) this is part of the
penalty for ignoring viscous forces entirely in the search for
an exact analytic solution.) Nonetheless the flow exterior to
the corner eddy is strikingly similar to those in front of actual
separation bubbles (Pande, Prakash, and Argarwal, 1980;
Good and Joubert, 1968; Robertson and Taulbee, 1969; or
Bradshaw and Galea, 1967), and the similarity justifies
further examination of such exact solutions.

Two-Dimensional Channel Flow Into a Line Sink

In this section we shall consider steady two-dimensional
flow in a long channel with half-width equal to unity ter-
minating in a wall with a symmetrically placed line sink, with
the centerline of the channel as the x-axis extending in the
negative x direction.

Let ¢ be Lagrange’s stream function, then the equation
governing steady two-dimensional inviscid flow is the Poisson
equation or

a2l// 62‘//
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where —f(¥) represents the vorticity and depends on the
stream function alone. Ideally the velocity far upstream
would be parabolic or logarithmic to represent the movement
of a laminar or turbulent flow respectively in a long channel.
Unfortunately the use of such profiles would make equation
(1) nonlinear and preclude a simple solution. Instead we shall
use a linear combination of uniform flow, a linear shear
gradient, and a cosine distribution to create various
nonuniform profiles. In terms of the centerline velocity U,
the dimensionless upstream profile is then

U/ Uy =ty + Ko(1 = ) T8 — ug — Ko /2)cos(my/2)/ . (2)
which vanishes at the walls (y= £ 1) and is maximum at the

centerline. The corresponding dimensionless stream function
far upstream is

VY=
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larger than the mean value during the entire duration of the
adverse pressure gradient which suggests that the adverse part
of the pressure gradient enhances the rate of production of
turbulent kinetic energy. A non-sinusoidal pulsation may in
fact increase the mean production rate and we plan to in-
vestigate this in the future.

6 Conclusions

Our numerical simulation of pulsed turbulent pipe flow
indicates a negligible change in momentum transport despite
the fact that a large pulsation amplitude was used and the
frequency was in the frozen viscosity regime. This result
would appear to cast doubt on Lemlich’s {3] speculation that
heat transfer rates can be significantly enhanced by pulsing at
high frequencies. On the other hand, we found that the en-
semble averaged fluctuation intensities and turbulence
production rate showed strong phase dependence. One of the
more striking results was that the production rate was largest
during the part of the pulsation cycle when an adverse
pressure gradient existed.
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Fig.1 Upstream velocity profiles, uniform plus cosine profiles

0= UrUpdy

=uoy+ Koy —y/2)
+(1 —uy—K,y/2)sin(my/2) 3)

such that at the walls (y= +1) the values are +1. The vor-
ticity function is then linear and equal to

JW)=—Ky—(7/2)2(1 —uy — Ky/2)sin(wy/2) 4)
Note that for consistency u, + K;,/2 <1 is required.
The boundary conditions on equation (1) are
(i)Y =equation (3) as x— — oo, 5)

(ii) y==+1 for y==x1,and
(i) y==1 for y=0and x=0.
Solution of equations (1) to (5) by the method of separation
of variables yields

v=uey + Ko —y*/2)+ (1 —ug — Ko/ 2)sin(xy/2) (6)

+ E C1,sin(nwy) exp (nwx)

n=1

+ Y 2, sin(my)exp((n? — 1/4)" 7x)
n=1
which satisfies boundary condition (i) and (ii), and the values

of Cl1, and C2, are determined by Fourier expansion to
satisfy boundary condition (iii) such that

Cl, = Quy + Ky)/ (nm) + 2K (cos(nn) — 1)/(nw)’ (@)

and
C2, =2(1 —uy — Ky/2)(1 + cos(nm)/(4n* - 1))/ (nx).

Equations (6) and (7) are the solution. The series solution
has been evaluated out to sufficient terms such that the stream
function is known to five significant places for different
values of u, and K. Figure 2(a) and 2(b) are typical derived
flow patterns for the half channel.

The stream function is specified to vary between —1to +1

Sink location
Channel flow into a sink, ug =0.0, —ug =2.47

. 2(a)
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Fig. 2(b) Channel flow into asinkug =0.25, —up =1.85

Table 1 Influence of flow variables on separation and
reattachment

Uo Ko - wo H X Yr
1.00 0 0 1.000 0 0

0 2.00 2.00 0.333 — 0.40
0 0 2.47 0.376 — oo 0.40
0.25 0 1.85 0.483 -0.51 0.33
0.50 0 1.24 0.619 -0.23 0.20
0.75 0 0.62 0.784 —0.06 0.04
0.25 1.50 1.50 0.425 -0.42 0.28
0.50 1.00 1.00 0.555 —-0.18 0.13
0.75 0.50 0.50 0.735 -0.04 0.03
0.38 1.24 1.24 0.490 -0.32 0.20

across the channel, but the flow may be distributed in a
variety of profiles. Figure 1 suggests a possible set of profiles
resulting from combinations of uniform and cosine functions.
Alternatively, uniform and ramp functions were used. The
dashed lines are parabolic and 1/7th power law profiles
typical of laminar and turbulent channel flow distributions.
Each profile is characterized by the magnitude of the slip at
the wall, u,, and the wall vorticity, w,. In addition one can
characterize the velocity distribution by a displacement
thickness, 6*, and a momentum thickness, 6, which may be
combined into a shape factor ratio, H = 0/6*, where

1
8= SO (Umax - U)dy/ Umax, and (8)

1
0= || UlUpey ~ D)ty U

Nomenclature
Cl1, = Fourier coefficient in in-
finite series K, = gradient of linear shear x, = distance of separation point
C2, = Fourier coefficient in in- profile from corner
finite series n = summation index in infinite y, = distance to reattachment
f(Y) = vorticity function series point from corner
h = height of corner of con- U = velocity Yy = stream function
traction Upaw = velocityaty=0 8* = displacement thickness
h’ = half width of contraction uy, = slip velocity 6 = momentum thickness
H = shape factor x,y = Cartessian coordinates wy = vorticity at wall, y=1
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Fig.3 Variation of separation distance and reattachment distance with profile parameters

Table 1 summarizes cases examined in this paper. Two
flows are considered which maintain the same wall vorticity
but different values of slip. Similarly one sees equal values of
slip but different wall vorticity.

The size of the corner eddy is its most significant charac-
teristic; hence, the distance to separation from the corner, x,
and the location of the reattachment point, y,, are also
tabulated above. The variation of these variables with shape
factor, slip velocity, and wall vorticity are plotted in Fig. 3.

As slip velocity approaches one, shape factor approaches
one, or as vorticity decreases the corner eddy disappears. The
rate of diminishing is not exactly the same for the various
combinations of uniform, ramp and cosine flow, but they are
very similar. As slip velocity decreases, shape factor
decreases, and wall vorticity increases the reattachment point
moves toward a value y=0.6 (v,=0.4), but the separation
point moves to — 0. In the inviscid approach it appears a
finite value of slip velocity is necessary to develop a finite
separation point, x,. Taulbee and Robertson (1972) also
emphasized that the point of separation must be closely
associated with the assumption about u,. Indeed they con-
clude the entire inviscid flow field is sensitive to the choice of
Ug.

Two-Dimensional Channel Flow Into a Contraction

In this section we will examine the effect of enlarging the
hypothetical line sink into a finite width contraction. The new
channel half width, #’, may vary from 0.0 to 1.0. The channel
contraction will confine the streamline pattern and result in
larger exit velocities. When the contraction is abrupt the
velocity profile will flatten and the flow will tend to separate
at the corner. Since we will prespecify the exit profile the
details of the post contraction eddy may not be realistic;
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nonetheless, the upstream corner eddy and flow field should
be similar to measurements.

An exact solution can be obtained for two realistic exit
profiles. The exit profile may be specified uniform such that
U, _o/Una) = —w =1/h". Alternatively the exit profile can be
a partial cosine shape with slip at the outer wall, i.e.,
U, o/Wpax)v— - =7/2 cos(my/2)/sin(zh’/2). Neither of
these profiles require that vertical velocities in the x=0 plane
be zero (see Fig. 4).

Solutions for the contracted channel case can also be
produced for an infinite combination of uniform, ramp, and
cosine function upstream profiles. Since the sink solutions did
not produce any unique perturbation resulting from the use of
the ramp (linear shear flow) term the following solutions are
limited to combinations of uniform and cosine profiles. As in
the previous section the governing equations are (1) through
(4), but with K|, set to zero. The new boundary conditions for
the uniform outlet flow case are

Wy =
@iy
(ii)yy = y/h’ for—h’'<y<h’,or

equation (3) as x— — &)

I

+1 fory=+1,and

= +1forh=sy=<l,or
= —1for —l<sy<-h'.
The final solution for the stream function is then

Vv=uey + (1—ugy)sin(wy/2) (10)

+ E C1,sin(nwy)exp(nmx)

n=1

+ E 2, sin(nwy)exp((n® — )" mx),
n=1
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Fig.4 Typical upstream and exit profiles for channel contractions, h’ = 2/#
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Fig. 5 Channel flow into a contraction, ug = 0.0, H =0.376, — ug =2.47,h’ =2/x, uniform
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Fig. 6 Channel flow into a contraction, u=0.0, H=0.376, —ug =247, h’ = 2/#, cosine
flow outlet
where The final solution for stream function is the same as
Cl, = 2ugysin(nwh’)/(n*w*h’), and (11)  equation (9), but the Fourier coefficients are
C2, = 2(1 —ug)(sin(nwh’)/(nwh’) C1, =2uy/(nm)(cos(nmh’) — 4n?* cos (nwh’)/(4n? —1) (13)
+ cos(nw)/(4n* — 1))/ (nm). +2 sin (nwh ') cos (wh’/2)/(4n* —1)/sin(wh’/2),and
Similarly the new third boundary condition for the partial  C2,=2(1 —ug)/(nw)(cos(nmh’) +cos(nw)/(4n* — 1)
cosine velocity profile outlet case is —4nZcos(nmh’)/(4n? - 1)
(i) ¥ =sin(my/2)/sin(wh’/2), for —h’ <y<h’,or (12) 4 2n sin(uwh’) cos (wh’/2)/(4n® —1)/sin(th’/2)).

=+1forh’<y=<l,or Equations (10} and (11) and equations (10) and (13) are the

=—1for —l<y=<—h'. solutions for channel flow into a contraction with uniform
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Table2 Influence of contraction on separation and reattachment

g Outlet —wp H h xs/h y//h
Profile

0 unif. 2.47 0.376 1.000 - 0.40
0 unif. 2.47 0.376 0.500 — 0.59
0 unif. 2.47 0.376 0.363 — o 0.58
0 unif. 2.47 0.376 0.200 — o0 0.42
0.10 unif. 2.22 0.417 0.363 —-1.21 0.52
0.25 unif. 1.85 0.485 0.363 —1.61 0.39
0.50 unif. 1.24 0.619 0.363 -0.25 0.15
0.75 unif. 0.62 0.784 0.363 ~0 ~0
1.00 unif. 0.00 1.000 0.363 0.00 0.00
0 cosine 2.47 0.376 1.000 — o 0.40
0 cosine 2.47 0.376 0.500 — o0 0.61
0 cosine 2.47 0.376 0.363 - 0.64
0 cosine 2.47 0.376 0.200 — o 0.66
0.15 cosine 2.10 0.439 0.500 -1.17 0.52
0.15 cosine 2.10 0.439 0.363 —1.15 0.53
0.15 cosine 2.10 0.439 0.200 —1.06 0.57
0.15 cosine 2.10 0.439 0.100 -0.98 0.51
0.25 cosine 1.85 0.485 1.000 —1.51 0.33
0.25 cosine 1.85 0.485 0.500 -0.74 0.44
0.25 cosine 1.85 0.485 0.363 -0.73 0.46
0.25 cosine 1.85 0.485 0.200 -0.62 0.40

1.0r 7 r W r -} -25

yR/h
Xg/h —==——=
0.8+ -1 - — o —4-20
0.6F
Y /b
0.4+
0.2+
0

0 05 . 05

-k

Fig.7 Variation of separation distance and reattachment distance with profile parameters, h’ = 2/#

and partial cosine output profiles respectively. The series
solution has been evaluated out to sufficient terms such that
the stream function is known to at least five significant places
for different values of u,. Figures 5 and 6 display derived flow
patterns for the half channel. As before the stream function is
specified to vary between —1 to +1 across the channel, but
the flow may be distributed in a variety of profiles. Table 2
summarizes cases examined in this paper. Of interest is the
relative location of the separation and reattachment points
relative to the step height, A.

The size of the corner eddy and its variation with shape
factor, slip velocity, and wall vorticity are plotted in Fig. 7 for
a fixed size contraction. As slip velocity approaches one,
shape factor approaches one, or vorticity decreases the corner
eddy disappears. As slip velocity decreases, shape factor
decreases, and wall vorticity increases the reattachment point
moves toward a value of y,/h near 0.6, but the separation
point moves to — o,

Alternatively one can examine the variation of eddy size for

216/ Vol. 107, JUNE 1985

fixed approach profile as the size of the contraction changes
profiles. As the value of h’ increases (or h decreases) it
requires a larger number of terms from the series to produce a
stable result. In general, the corner eddy occupies a larger
proportion of the corner as the step increases.

It would be most interesting to compare the results
developed here to experimental measurements Or other
analyses. Unfortunately most previous measurements up-
stream from a forward facing step are for relatively thin
boundary layers developing independently from a con-
straining opposite wall (Bradshaw and Galea, 1967; Good and
Joubert, 1968, Robertson and Taulbee, 1969; Pande et al.,
1980). Some authors discuss measurements for large steps in
channels but discuss downstream behavior only (Foss, 1962;
Emery and Mohsen, 1968).

As noted by most authors, maximum pressures in the
corner occur at the reattaching streamline. The separation
bubble usually extends about one step height upstream and
extends up about 60 percent on the upstream face of the

Transactions of the ASME
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contraction. Surface presssures upstream of the contraction
on the channel wall begin to increase about 10 step heights
upstream of the plate and become maximum on the corner.
The pressure distribution displays a double maximum — one at
separation, a decrease to reflect corner eddy velocities, and a
second maximum on the wall (Bradshaw and Galea, 1967;
Good and Joubert, 1968; Taulbee and Robertson, 1972).
Sizeable back flow velocities were noted in the corner eddy
during the present calculations. Foss (1962) mentioned a
similar phenomenon during his channel flow measurements,
but for the unconfined step most authors found eddy
velocities were one-third or less in magnitude than the main
stream velocities. Thus, whereas Taulbee and Robertson
(1972) and Good and Joubert (1968) observed only about ten
percent variation in the upstream face pressure coefficients

Journal of Fluids Engineering

over the bottom sixty percent of the corner, the more confined
corners exhibited large pressure deviations as the contraction
size varied. Good and Joubert (1968) noted that the pressure
distribution flattened as the step height decreased, and the
same behavior is seen in the exact channel flow contraction
calculations (See Figure 9).

Taulbee and Robertson (1972) also observed that for thin
boundary layers approaching tall steps choice of the wall
vorticity and slip velocity did not seem crucial when predicting
experimental measurements by numerical inviscid shear
calculations, but that a large near wall vorticity seemed
necessary to produce a corner eddy when the boundary layer
to step height ratio became large. During the exact
calculations considered here the corner eddy generally
disappeared as the wall vorticity decreased.

Conclusions

This paper is concerned with deducing features of the
corner eddy which forms in two-dimensional channel flow
contractions from exact solutions of inviscid shear flow
models for the flow motions. Corner eddy shapes are
calculated for a line sink and various channel contractions
when the upstream flow varied from uniform to a cosine
shape. The separation distance from the corner is a direct
function of the assumed slip velocity. The reattachment point
occurred at 0.4 to 0.6 of the distance from the corner to the
edge of the contraction.
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