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Abstract—Utilizing a simpie time dependent one dimensional example as a test case this paper discusses a
solution which represents the important characteristics of a bouyancy dominated shear flow by solving four
partial differential equations in addition to the mean equations of motion. This suggested model solves
equations for total turbulent kinetic energy, k, total turbulent temperature fluctuations, k., eddy dissipation, €,
and thermal eddy dissipation, . Three separate versions of this model are discussed—an algebraic length
scale version, a Prandtl-Kolmogorov eddy viscosity version, and an algebraic stress and heat flux model. The
final version (requiring six partial differential equations) manages to replicate results for a much more
complicated version (requiring ten partial differential equations). The advantages for two and three

dimensional problems are even greater.

NOMENCLATURE
A Az A
Cp, Cu
Ce1, Cs2  constants, see Table 13
CEI 1y CE!Z) F
Cr 1 sz, Ces
g gravitational constant
I mixing length or length scale
k turbulent Kinetic energy (uu?)/2
k. turbulent temperature fluctuations (THR
p pressure
Pr Prandt] number (v/a)
Re Reynolds number (UmaxL/v)
Ri Richardson number (g/THAT maxL /(tmax)’]
t time
T temperature
u,v,w velocity components
x,y,z coordinate directions
body force
ar eddy diffusivity
¢ eddy dissipation of turbulent kinetic energy
e eddy dissipation of turbulent temperature fluctuations
A, A length scales: Donaldson
vr eddy viscosity
p density
Ox, Ok 0o 0w, effective Prandtl number for k, ki, €, &
¢ gravitational potential

Subscripts
i,j,k direction indices

Superscripts
" fluctuating quantity

1. INTRODUCTION

Experimental data invariably show that for positive values of the Richardson number all
turbulent fluctuating properties are suppressed by the action of the buoyancy force, while for
negative values of the Richardson number turbulent fluctuating properties are accentuated[1].
However there is a vast difference between the behavior of w'T’, u'T' and u’w’ when 4T /3z <0
and when 8T /az > 0.7 In the stable case the heat flux is often very small or negligible despite
finite gradients of temperature, yet momentum transport may still be finite. In the unstable case a
large heat flux is established quite rapidly, momentum transport may be significantly smaller in

+In the atmosphere T must be interpreted as potential temperature.
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94 ROBERT N. MERONEY

proportion, yet temperature gradients may be near zero. It appears that buoyancy-generated
eddies cause relatively little momentum transport, but they are quite effective at carrying thermal
energy. In other words, the rates of the associated turbulent diffusivities for heat and momentum
are much larger than one, Reynolds analogy does not apply, and the idea of a gradient transport
hypothesis in a stratified medium is completely wrong. Use of the diffusivity concept in
calculations thus would tend to develop too rapid dissipation of inversions, and too slow a growth
of turbulence in unstable situations.

These physical considerations suggest that an adequate theory for the treatment of the
interaction of stratification, gravity, and a turbulent field must include transport equations for the
second order correlations or their equivalent. Work by Donaldson et al.[2,3], Lewellen and
Teske[4] and Mellor[5] do consider the second order correlation equations including
stratification effects. Lumley[6] has also proposed sets of equations closed at the third order
correlations, while Lee([7] has developed a set of expressions based on analogies between
turbulence and Brownian motion utilizing the Fokker-Planck equations.t The ability of such
formulations to follow the effects of stratification on turbulence are impressive. Unfortunately
one must simultaneously solve a set of at least nine to as many as twelve partial differential
equations for even a one-dimensional incompressible flow situation. For the equivalent two- or
three-dimensional cases the ranges required are from ten to thirteen and from fourteen to
seventeen partial differential equations respectively.

Such methods must thus be limited to research areas for the great majority of cases. Those
situations requiring planning or engineering information generally must consider many case
permutations; thus they require a method which retains the essential physical characteristics but
with a lower order of solution complexity. This report discusses the efficacy of three such
solution techniques. These will be discussed under the titles of

(a) An algebraic lengths scale model (ALM),

(b) A differential length scale model (DLM), and

(c) An algebraic stress model (ASM).

The number of partial differential equations required are of the order of six, seven and eight
for one-, two- and three-dimensional motions.

Similar thoughts toward model simplification have been expressed by Deardorff,
Donaldson[3] and Mellor and Yamada[9]. Donaldson speaks of a “super-equilibrium’ situation
where all advective terms are neglected and gradient transport assumptions are introduced for all
second order turbulence correlations. The approach did not define length scales or permit
transient phenomenon. Mellor and Yamada follow a parallel approach to that found herein except
that the authors chose not to solve a transport equation for dissipation.

2. TURBULENT MODELS

In any model developed for turbulent closure one would like to have the method possess
width of applicability, accuracy, economy of computational time, and simplicity. In the search for
these elusive features many closures for the turbulent equations of change have been
proposed{10].

Reynolds[11] has suggested a morphology for classifying methods of closure. He proposes
methods which make use of eddy viscosity or mixing length concepts which will be called “mean
field methods”, (MF) whereas methods which relate the Reynolds stress to the turbulence and
hence require calculation of some aspects of the turbulence fields will be called “turbulent-field
methods” (MTF). Subsequent reviewers of turbulent models have accepted this as a critical
distinction Bradshaw[12, 13]. Mellor and Herring[14] suggest two subsets of the MTF group.
Those which include a turbulent kinetic energy transport equation and some accommodation for
length scales are termed “‘mean turbulent energy” closures (MTE); whereas a “mean Reynolds
stress” closure (MRS) implies a closed set of equations which include equations for all nonzero
components of the Reynolds stress.

As is always the case a difficult problem soon becomes muddled again even with respect to

tHossain and Rodi[8) compiled an exhaustive review of the governing equations for turbulent buoyant fiow. Their report
provides a comprehensive foundation for future attempts to numerically examine the influence of buoyancy on turbulence.
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categories such as the above. The recent work by Hanjalic and Launder[15], Rodi[16], Mellor
and Yamada[9] and the present suggestions may lie somewhat between the MTE and MRS
classifications. |

2.1 Mean turbulent energy methods (MTE)

A basis for the MTE calculations began with semiheuristic models of Prandti{17]. They
suggest the use of a turbulent kinetic energy transport equation, a turbulent-energy related eddy
viscosity, and a prescribed length scale function or a differential equation for length scale.

Bradshaw[12, 13] has been very critical of methods which retain an explicit algebraic relation
between stresses and the mean flow. His criticisms are related to the ad hoc nature of any
eddy-viscosity transport relation, the failure to provide correct results in those cases where there
is finite transport and zero velocity gradient, and the basically regressive concept of going to the
trouble to solve additional transport equations and then reapplying a local-equilibrium
assumption to relate stress and gradient. Mellor and Herring[14] appear more optimistic, they try
to show how MTE models derive logically from the MRS models and how both involve
essentially the same empirical information. Launder and Spalding[10] have reviewed the results
of most of the effort in this area.

2.2 Mean Reynolds stress methods (MRS)

As noted before, MRS closure implies a closed set of equations which include equations for
all nonzero components of the Reynolds stress tensor. Rotta{17] laid the foundation for future
efforts when he proposed the pressure-velocity correlation terms in the Reynolds stress
equations be proportional to a deviation from isotropy. This assumption was of course an
approximation and was subject to modification by subsequent investigators. Other terms in the
Reynolds stress equations such as the dissipation and diffusion terms have also been modeled
differently by various investigators.

Only a few MRS calculations have been made for comparison with experiment. To date
Donaldson et al.[2, 3, 7] have compared results with flat plate boundary layer flows, free turbulent
shear flows, transport in the atmospheric shear layer, and in vortex motions. Daly and
Harlow[19], using a dissipation length scale transport equation, have made MRS calculations for
a channel flow. Mellor and Herring[14] compared MRS results utilizing an algebraic length scale
expression with zero and adverse pressure gradient boundary layer experiments. Comparison of
numerical and experimental results suggest the models selected were of the right order. Since
there were in each case a number of disposable empirical constants a certain adjustment occurred
to optimize comparison.

In most respects the authors of MRS models agree on general points. Primary differences
center around the use of algebraic or transport equations for dissipation rates, and the presence
or absence of such terms as the mean strain rate in pressure strain. There are, however, numerous
details over which they disagree with one another, especially philosophically in approach to
model selection. Donaldson and his co-workers put much faith in the principle of invariant
modeling to limit choices for pressure correlations, third order correlations, etc. Other
investigators stress ad hoc empiricism and dimensional analysis.

2.3 Algebraic stress models (ASM)

A very novel compromise between the simplicity of the MTE approach and the universality
and greater range of predictability of the MRS method, has been proposed by Launder and
Ying[20]. Transport equations for turbulent fluctuational energy and eddy dissipation (or length
scale) are combined with algebraic equations for each Reynolds stress. The additional algebraic
stress equations are derived directly from their exact transport equation counterparts.

Following Rodi[16], one notes that it is the convection and diffusion terms in the wiy
equations which make them differential relationships. If such terms are eliminated from the
transport equations for ua; one produces a set of algebraic relations of the form

—
= f(u,,uq, K, e). (1)
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Of course the simplest way to simulate such terms is to neglect them out of hand. This however
produces inconsistances in other than equilibrium situations where production exactly balances
dissipation. Rodi postulated that

(Convection - Diffusion)or ., =—— (Convection — Diffusion)o «

i
~|E

= E'E'ﬁ (Production — Dissipation ) « @

or that uu/k varies but slowly across the flow. (An assumption closely linked to the successful
suggestions of Bradshaw for thin shear layers.)

Launder and Ying[20] applied an ASM formulation to turbulent flow in a rectangular channel,
The method predicted the order of secondary notions found in channels with sharp corners and
the distribution of lateral Reynolds stresses. Rodi[16] produced profiles of uu’/k in plane jets
and wakes which undergo both strong and weak strain, where conventional two equation models
are inadequate. Launder et al.[21] in the NASA “‘free-shear flow computational olympics”
compared six turbulence models and concludes MRS and ASM models produced results of
comparable quality. Finally Date[22] has produced shear and heat flux results for flow in a tube
containing a twisted tape by means of ASM type approximations. One concludes therefore that
the algebraic stress models may combine the most important features of the MRS type (the
influence of complex strain fields on the stresses) with (almost) the numerical simplicity of a MTE
model.

3. ATURBULENT MODEL FOR STRATIFIED FLOW

In order to close the turbulence equation system, some of the correlations in u}, p’ and T
must be approximated in terms of quantities that can be calculated. Model assumptions about
turbulence are thereby introduced which may not be entirely realistic. These assumptions relate
the chosen higher order correlations in u}, p’ and T’ to other time-averaged quantities; they are
expressed in differential and/or algebraic equations which help produce a mathematically closed
set.

Turbulence models have been proposed which differ greatly in physical justification,
complexity and universality of application. At the level of MTE and MRS approximations,
however, most models display a common thread of accepted assumptions with difference often
due to philosophical taste. Since it is the intent here to primarily examine the additional effects of
stratification the decision was made to follow the practice for all other terms of the team of
researchers in the Department of Mechanical Engineering, Imperial College, London (i.e.
Spalding, Launder, Patankar, Rodi). These investigators have tested their assumptions over a
very wide set of boundary layer, free shear, and pipe or duct flow case studies; thus there is some
confidence the resulting expressions have a desirable universality.

The models developed required the solution of partial differential equations for total turbulent
kinetic energy, k, total turbulent temperature fluctuations, k., eddy dissipation, €, and thermal
eddy dissipation, €. Three separate versions of this model are discussed—an algebraic length
scale version, a Prandtl-Kolmogorov eddy viscosity version, and an algebraic stress and heat flux
model. For purposes of demonstration simple time dependent one-dimensional versions of the
governing equations will be applied to a set of free shear flow test cases for which a complete
MRS solution is available. Details of the model buiiding process followed here are found in
Meroney(23]. The partial differential equations and algebraic relations solved are in a
dimensionless format (scales of u.m.. and L) (Table 1).

3.1 Modeling of the equations for k, ki, ¢,

Kolmogorov and Prandtl introduced an assumption relating shear stress to local velocity
gradients through an eddy viscosity based on local effects of turbulence. vr x Vkl. This
assumption has been found satisfactory for cases where stress and velocity gradients have the
same sign in flow fields near local equilibrium (i.e. production of Kinetic turbulent
energy = dissipation). A number of alternative length scale relations have been studied; that
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Table 1. One-dimensional equations of change

ou_ 1 8%u
u__ 74 9 + 3
3t Re 9z* ( Wi+ X(e) 3
—,____d
Diffusion
aT 1 *T 9§ —=
L B L AT L 4
t RePr dz* az(w ) “
— e
Diffusion
k 1%k 9 —— —— —du T
ok_ 1 o7k 0 S aw ek i T
%~ Re 32 az(kw+p w') uwaz e+riw'T (&)
[N— . R e sl e
Diffusion Prod. Diss. Strat.
ok _ 1 %k 8 & —=dT
3t " RePr 9z° Bz(k w)=wT az © ®
[ ——
Diffusion Prod. Diss.
de_ 1t 3 (o L TpTow) 2 [ou (G oW g aw
at Redz* 4z (E v +Re iz az) Re [az <az az >+Jzz(w az>] @
Diffusion Production
2 [fou'\ow' (av’>zaw’ (37)3] 2[(6%’)’ (azw’)z (azu')Z] 2 (au 6w)
=)=+ =) —+ -= + — ] {+=
Re [(az) 0z 9z / oz oz Re |\ 3z° ) "\ Re Ri dz 9z
Production Destruction Strat.
de_ | 0% d——= 2[aufdT'\* oT(aT\(au'\ &°T( aT\]1 2 [aw (aT\] 2 (3T}
Se T e Py o QAN T T (au) ST 9T] L faw! (9T)) ®
at  RePr 3z* 4z Prlaz\ sz az\dz J\dz ] 9z? 74 Pri{oz \az RePr \ 477
Diffusion Production Production Destruction
au’ 1 0%u —_— = ~3du (au> 2 (014 )(M)
=R 07 "3 + +
"o Re az (” werup ) W 3z -P 9z) Re 0z RiGw'T) ©)
~ > - Nentemne - %’—/
Diffusion Prod. Press- Dissipation strat.
Strain
w'T _ 1 T‘___ —r —59T 9T _ 2 (alg ") R
at RePr az2 (w T+pT) v a9z P 3z RePr\édz oz +2Rik, 10
~ - D Sy R e S R
Diffusion Prod. Press- Dissipation  Strat.
Strain
u'T 1 *u'T — - 2 (ou'oT
ot —RePr 8z* (W “ T) ' w) —(w T)—_RePr (E???) (n
Diffusion Production Dissipation
P s —— NN T
e T (w w +2pw)+2p( >'E<Tz> LRI T 12
. . N . e ———
Diffusion Press-  Dissipation Strat.
Strain
where .
A e (B @) )]
k—2(u +v'?4+w'?) and e.-Re 32 + 32 + 7
(I =_1_(a_7)’
) & =RePr \az




98 ROBERT N. MERONEY

chosen here | = k**/e was originally proposed by Harlow and Nakayama in 1967. The final
expression is then

vr = Cpk?le. (13)

A series of parallel arguments applied to the vertical heat flux equation will yield an expression
for eddy diffusivity

ar = CHkkT/ €T, (14)

The eddy viscosity-diffusivity approximations above permit closure of diffusion and
production terms in the transport equations of Table 1 for the ALD, DLM and ASM methods.
The only additional terms deserving further comment are the stratification effects on eddy
dissipation.

Lumley [6] fails to retain any effect of stratification upon ¢ ; however if one pursues the exact
relationships as suggested by Daly and Harlow[19] the term as shown in Table 1 appears. Order
of magnitude arguments would suggest its inclusion is critical in order to track the effects of
stratification on k. Daly and Harlow{19] suggest that the stratification term might be modeled as

2Ri (Z—i’) x RiFf(g)g;T (15)

where £ = S(2k)"*/v is a turbulence Reynolds number and f(¢) ~0(1). To remain consistent with
the earlier choices made for the transport of k it is proposed to use

2R;(L—l"£—> +FRiw' T’ (f) (16)

When this is evaluated for the DLM case one finds

- )(E)

which resembles the Daly-Harlow suggestion. Final relationships for the ALM and DLM
closures are found in Table 2.

3.2 The algebraic stress and heat flux relations

As indicated before closure for the ASM model requires algebraic expressions for u'w’, u' T’
and w'T'. These new expressions are dependent upon an accurate representation of the

Table 2. Turbulent model equations (ALM) and (DLM)
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production-dissipation terms in their respective exact relationships. Stress-equation models have
been recommended by Rotta[17], Donaldson{18}, Daly and Harlow[19], Rodi[16] and Launder et
al.[211.

Following the experience of Rodi[16] the production (P), dissipation (D), pressure strain (PS)
and stratification effects (S) are identified and modeled. Since the diffusion terms are eliminated
through the arguments presented previously they are not considered here.

The Reynolds stress equations. For high Reynolds number situations

2
D(j = 568:‘}. (24)
Production terms are exact as
o aul —al! aui
Py =—u; uk_k i "axk (25)
— l Y auk
P—2 i uku,——axl.

Pressure strain terms can as yet not be measured in laboratory flows. Unfortunately they are also
of great importance since they are roughly equal and opposite to the production terms in the
shear-stress equation; and in the normal-stress equations they redistribute energy to various
direction components. Pressure-strain consists of two parts: one due to the interaction of the
various fluctuating velocities, and the second originates from the interaction of mean and
fluctuating flow. Rotta[17] proposed to take the first part proportional to the anisotropy of
turbulence. Naot et al.[25] and Reynolds[26] proposed the second part should be proportional
to the anisotropy of the production of turbulence, thus

PSy =—CP,£<E-&,%I¢)—A1(P,,- —6,,%P>. 26)

Stratification effects are directly expressed as

Su R:("d’ T+ gd’ ) @n

where ¢ is the gravitational potential.
When these terms are substituted into the exact relationships the following expressions are

~ obtained:

—3 oU

(Conv - Diff)w = —-(1-A)w ——Cplku w' +Riu' T’ (28)
(Conv—Dlﬁ')wz——gAl Q-%-Z(Cp, De Cplkw’2+2R1w T'. 29

As noted previously the above expressions have been prepared to substitute into the
expression below

(Conv — Diff)or am, = l—‘;(—u’(Conv — Diff)os «

=£E£,(P —€+ 8ot
=(P +PS — €+ S)ot um (30)

The appropriate substitution for the k terms are found on the right side of eqn (35) (Table 3).
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When (28) is introduced into (30):
1-A — dU e
~-(1-A)w 2z tRw'T

Ioay?

uw

T . 31
CPlk k ( u'W'E—‘E +RiW'T’>

Similarly if (26) is introduced into (27):

L %(A:(—H'W')a—:+ €(Cpy— 1)+ 3Riw'T’)
w12= ) (32)

€ 1 ——aou_ —
CPIk ( u'w > € + Riw T)

Elimination of w2 in eqn (31) by means of _eqn (32) yields eqn (39) (Table 3).
The heat ﬁux equations. In the u'T’ and w' T relations at high Reynolds numbers it is again
appropriate to suggest that the dissipation items are

Dzr =0. 42)

The production and stratification terms may be treated exactly, i.e.

— 0T —= o
T Ui uka " uT % (43)
Som =+ 2Ri[§£ k‘r]. (44)

The pressure scrambling terms may be postulated by analogy to the Reynolds stress result:
€ —
PS5 = —szorsz(uliTI)—A2 or 3Pz (45)

One might argue that the first term should be —Cp o s(€: /k:)@T') in order that the final
relation reduce to the Prandtl-Kolmogorov formulation in equilibrium flows. Unfortunately such
a choice eliminates the production of w'T" in unstable regions where kr has been set zero as an
initial condition. The modeled relations do not contain the physics of thermal instability within
themselves.

If one now postulates that

(Conv = Diff)or a7 = ‘T(Conv Diff)o «

'—k-(P +PS - D+ 8)ot iz (46)

and substitutes eqn (42), (43), (44) and (45) into eqn (46) there results new expressions:

ﬁaT

_(1— 2)W az +2lel
wlT' — 4
€ 1 —— ou J— 47
szk k( u'w E—e +R1W'T')
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c E N (48)
P’k k(— w:’;—ﬁ-Rth)
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Table 3. Turbulent model equations (ASM)
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Elimination of w'> in eqn (47) with eqn (32) yields: eqn (40) (Table 3).
Equations (39)-(41) are the final result of the exercise to produce ASM relations.

4 TEST CALCULATIONS FOR STRATIFIED TURBULENCE MODELS

Mellor and Herring[14] recommend that investigators evaluate MTE and MRS models in
tandem in order that critical limitations of the MTE approach are identified. Bradshaw {24] has
also proposed such tuning of a *‘simple” calculation method by a “refined” calculation technique.

4.1 Simple case of atmospheric shear

The method chosen for comparison with the ALM, DLM, and ASM method proposed herein
was the MRS technique developed by Donaldson and Rosenbaum[18]. Their ‘“‘invariant”
modeling closure was applied to a hypothetical free-shear clear air turbulence case in Donaldson
et al.[2]. This was a simple, time-dependent, one-dimensional example which characterizes the
important effects of buoyancy dominated turbulent shear flows.

The atmospheric test case is assumed to have an initially 4000 ft band at turbulence that is
isotropic with > =v"> = w’> = 1 (fps)”. The band is centered at an altitude of 20,000 ft; however
the effects of altitude upon po, To and po are neglected for purposes of the example. The
atmosphere is initially at rest,i.e. att =0, u =0. A body force acts on the atmosphere to create a

Table 4.

InVeStigatOr Co CH Ce Cea Cen Carz F o 0 Ou 0O A A As Cer Cea Ces

Donaldson 01 01 15 1.5 10- 15 15 0.1 0.2 00 00 00 50 50 5.0

et al.[2] 1.5
Meroney[23]

ALM 0.1 0.1 0.1 0.2
DLM 0.1 01 1.5 1.59 1.5 1.59 t.5 0.1 0.1 02 02

ASM 01 01 L5 1S5 1.5 15 15 01 01 02 02 00 00 00 50 50 50
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mean motion. The dimensionless driving function and initial temperature distributions imposed
are shown in Fig. 1.

The algebraic length method of the MTE type approach suggested here still requires an
expression to specify € and e in the governing partial differential equations. The algebraic
relation formulated by Donaldson et al.[2] can be re-expressed in terms of equivalent values of
dissipation; hence for large Re, one can find

€ =5.52k"%|z5 49
€T = 5.52k¢ko's/Z.s. (50)
z
z
[ 2.0
1.0 1.0+
L m I pavs
0 + + + o % -ofs 035 T
Kenax
-1.0 / -1.0t
L 2 -2.0

- gl 2
X = (1~2%) Cose I : T=0.4252 (2-2)

Cose Il : T=-0.425z (2—2)z
2.2
Case IW : T= (1-z%)

Fig. 1. Driving force function and initial temperature conditions clear-air turbulence model.
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Fig. 2. Maxima of velocity correlations: Case L.
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where z; = 8*/L* and 8* is the breadth of the mean shear layer at the half-maximum velocity
points.

Although the MRS method compared to here did not require specification of the series of
constants used in the ALM, DLM, and ASM models, consideration of the algebraic length scale
equation plus asymptotic forms of the governing equations in those regions where production or
dissipation dominate allows one to specify the equivalent constant values. After consideration of
the results obtained from the original constants it was only found necessary to adjust Cg: and
Ck:» slightly to arrive at a reasonable comparison to the Donaldson et al.[2] results.

5. RESULTS

5.1 Case I: neutrally stable atmosphere

For each model proposed this neutral case was used to adjust Ce: to obtain optimum time
behavior of k when compared to the MRS results. At very small times, ¢t <20, there is still very
little turbulence created by the mean action and most turbulence is left over from the decaying
initial turbulent layer. When the forcing function, X, is removed at ¢t = 90, the turbulent kinetic
energy is a maximum. The influence of the value du/dz =0 at z =0 on the production of new
turbulence is evident. Finally at t = 180 one sees the effect after decay has set in.

2x1073

I x 1072

Fig. 3. (a)Case [1: ASM model.
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By plotting the maxima of k for the various models versus time in Fig. 2 one can perceive the
degree of agreement between the closure trials. One perceives the initial decay of turbulence,
followed by the production of the correlations as a result of the interaction of turbulence and
mean flow, and finally the decay after the forcing function is removed.

5.2 Case II: unstable-stable-unstable atmosphere

The mean velocity and shear are changed somewhat but not drastically by the effect of the
temperature profile. In the thermally unstable regions the development of turbulence is
accelerated. At large times the production by du/dz becomes significant and a maxima in k
occurs at t = 90. There is a large influence on k, k- and w'T in the regions where T /dz <0 vs
those regions where 9T/az > 0. If one insists upon an eddy diffusivity model a large variation in
turbulent Prandtl number with stability is indicated. In regions of high stability the existence of a
single length scale in the ALM method is not sufficient to develop the necessary degrees of
temperature fluctuation dissipation. Thus kr is excessively large near z = 0.

The ALM and DLM models fail to keep pace with the changes recorded by the ASM and
MRS relations. In addition the ALM and DLM models inherently require w'T’, u’' T’ and u'w’ be
identically zero where the respective gradients, du/dz and 9T /dz, are zero. It appears that failure
to follow the time rate of change in k and other correlations is due to the inherent assumption that
Production equals Dissipation in the ALM and DLM formulations. This effect is most marked in

2.0

1.0

-401

Fig.3. (b)Case II: ASM model.
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the logarithmic plot of the maxima of the turbulent kinetic energy as shown in Fig. 4. At small
times the major production of turbulence is by thermal instability. Near the turbulence maxima
there is finite contribution due to mean shear, du/dz; but, after t = 90, the thermal instabilities in
the outer regions dominate.

5.3 Case III: stable--unstable-stable atmosphere

This case was utilized to specify the magnitude of constant Cg,.. In Cases II and IV the
constants were unchanged for all models. Again we do not detect major influence of stability
upon the production of k, k- and w'T" in the center of the unstable region. Again only the ASM
method can track the nonequilibrium behavior displayed by the MRS relations. The outlying
stable regions limit the vertical dispersion of this intense turbulence. The temperature inversion is
extremely persistent at large +z. In the time dependent plot of k (Fig. 5), we detect the initial
production of turbulence by thermal instability, the modification of this by shear generated
turbulence near ¢t = 90, and the final phase where production of turbulence by thermal instability
just about balances dissipation.

5.4 Case IV: stable--unstable atmosphere

This example is marked by its asymmetric appearance, the persistence of the inversion region,
8T [3z >0, and the rapid vertical diffusion of energy into the neutral upper regions where initially
dT—az = 0. No existing eddy diffusivity model would be expected to perform adequately. Figure
6 records the time rate of change of k maxima.

5.5 Discussion of results

Of course one of the most interesting aspects of these results is the duplication of Donaldson
et al.[2] conclusion that there is a radically different behavior of the heat flux correlation w'T"
depending on whether 3T/0z is greater or less than zero. In fact, the ASM eqns (39)-(41) indicate
that for small values of 4T /dz and 6u/dz there may be transport of heat and momentum up the
gradients due to finite values of kr or u’ T". This effect has often been observed by experimentalists
in atmospheric transport. In addition if one considers only production terms and neglects pressure
scrambling and dissipation terms in equations for k, kr and w'T" it is not difficult to show that when
dT[3z <0, there is an exponential development of w' T'. However when the atmosphere is stable,
i.e. when dT/dz >0, the heat flux correlation w'T’ is oscillatory about the Braunt-Viisila
frequency.
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One must conclude on the basis of these results that:

(1) An algebraic length scale version of a MTE model closure is not able to replicate the
behavior of thermally stratified flow, especially in regions where production and dissipation of
turbulence are not in equilibrium. A single dissipation length scale does not appear sufficient here

to develop the expected degree of damping in stable regions.

(2) Addition of transport equations for length scales does not suffice to solve the above

problem. Such MTE models are still inadequate.
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(3) Addition of algebra relations for stress and heat flux which incorporate the influence of

stability do appear to incorporate the physics of the phenomena to the extent that results are
similar to the MRS test case. Thus the ASM model simplifies computation without undue penalty
to results.
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