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1.0 INTRODUCTION

Experimental data invariably show that
for positive values of the Richardson number all
turbulent fluctuating properties are suppressed by
the action of the buoyancy force, while for nega-
tive values of the Richardson number turbulent
fluctuating properties are accentuated. However
there is a vast difference between the behavior of
w'T', u'T', and u'w' when 3T/3z < 0 and when
3T/3z > 0. 1In the stable case the heat flux is
often very small or negligible despite finite
gradients of temperature, yet momentum transport
may still be finite. 1In the unstable case a large
heat flux is established quite rapidly, momentum
transport may be significantly smaller in propro-
tion, yet temperature gradients may be near zero.
It appears that buoyancy-generated eddies cause
relatively little momentum transport, but they are
quite effective at carrying thermal energy. In
other words, the rates of the associated turbulent
diffusivities for heat and momentum is much larger
than one, Reynolds analogy does not apply, and
the idea of a simple eddy diffusivity in a strati-
fied medium is completely wrong. Use of the dif-
fusivity concept in calculations thus would tend
to develop too rapid dissipation of inversions, and
too slow a growth of turbulence in unstable
situations.

These physical considerations suggest
that an adequate theory for the treatment of the
interaction of stratification, gravity, and a
turbulent field must include transport equations
for the second order correlations or their
equivalent. Work by Donaldson et al. (1972),
Donaldson (1973), Lewellen and Teske (1973), and
Mellor (1973) do consider the second order cor-
relation equations indluding stratification
effects. Lumley (1972) has also proposed sets of
equations closed at the third order correlations,
while Lee (1974) has developed a set of expressions
based on analogies between turbulence and Brownian
motion utilizing the Fokker-Planck equations. The
ability of such formulations to follow the effects
of stratification on turbulence are impressive.
Unfortunately one must simultaneously solve a set
of at least nine to as many as twelve partial
differential equations for even a one-dimensional
incompressible flow situation. For the equivalent
two- or three-dimensional cases the ranges required
are from ten to thirteen and from fourteen to
seventeen partial differential equations respec-
tively.

Such methods must thus be limited to
research areas for the great majority of cases.
Those situations requiring planning or engineer-
ing information generally must consider many case
permutations; thus they require a method which
retains the essential physical characteristics
but with a lower order of solution complexity.
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This report discusses the efficacy of three such
solution techniques. These will be discussed
under the titles of
a) An algebraic lengths scale model (ALM),
b) A differential length scale model
(DIM), and
c) An algebraic stress model (ASM).

The number of partial differential
required are of the order of six, seven,
for one-, two-, and three-dimensional

equations
and eight
motions.

2.0 TURBULENT MODELS

In any model developed for turbulent
closure one would like to have the method possess
width of applicability, accuracy, economy of com-
putational time, and simplicity. In the search
for these elusive features many closures for the
turbulent equations of change have been proposed
(Launder and Spalding, 1972).

Reynolds (1968) has suggested in the
1968 Stanford "Olympics" on calculational tech-
niques a morphology for classifying methods of
closure. He suggests methods which make use of
eddy viscosity or mixing length concepts will be
called "mean field methods,' (MF) whereas methods
which relate the Reynolds stress to the turbulence
and hence require calculation of some aspects of
the turbulence fields will be called "turbulent-
field methods." (MTF) Subsequent reviewers of
turbulent models have accepted this decision as a
critical distinction (Bradshaw, 1972, 1973). Mellor
and Herring (1973) suggest two subsets of the MRF
group. Those which include a turbulent kinetic
energy transport equation and some accommodation
for length scales will be ''mean turbulent energy"
closures (MTE)}; whereas a "mean Reynolds stress'
closure (MRS) implies a closed set of equations
which include equations for all nonzero components
of the Reynolds stress.

As is always the case a difficult problem
soon becomes muddled again even with respect to
categories such as the above. The recent work by
Hanjalic and Launder (1972), Rodi (1972) and the
present suggestions may lie somewhat between the
MTE and MRS classifications.

2.1 Mean Turbulent Energy Methods (MTE)

A basis for both the MTF and the MTE
calculations began with semiheuristic models of
Kolmogarov (1942) and Prandtl (1945). They suggest
the use of a turbulent kinetic energy transport
equation, a turbulent-energy related eddy viscosity,
and a prescribed length scale function or a dif-
ferential equation for length scale.

Bradshaw (1973, 1972) has been very
critical of methods which retain an explicit alge-
braic relation between stresses and the mean flow.
His criticisms are related to the ad hoc nature of
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any eddy-viscosity transport relation, the failure
to provide correct results in those cases where
there is finite transport and zero velocity gradi-
ent, and the basically regressive concept of going
to the trouble to solve additional transport equa-
tions and then reapplying a local-equilibrium
assumption to relate stress and gradient, Mellor
and Herring (1973) appear more optimistic, they try
to show how MTE models derive logically from the
MRS models and how both involve essentially the
same empirical information. Launder and Spalding
(1972) have reviewed the results of most of the
effort in this area.

2.2 Mean Reynolds Stress Methods (MRS)

As noted before, MRS closure implies a
closed set of equations which include equations for
all nonzero components of the Reynolds stress
tensor. Rotta (1951) laid the foundation for future
efforts when he proposed the pressure-velocity
correlation terms in the Reynolds stress equations
be proportional to a deviation from isotropy. This
assumption was of course an approximation and was
subject to modification by subsequent investigators.
Other terms in the Reynolds stress equations such
as the dissipation and diffusion terms have also
been modeled differently by various investigators.

In most respects the authors of MRS
models agree on general points. Primary differences
center around the use of algebraic or transport
equations for dissipation rates, and the presence
or absence of such terms as the mean strain rate
in pressure strain. There are, however, numerous
details over which they disagree with one another,
especially philosophically in approach to model
selection. Donaldson and his co-workers put much
faith in the principle of invariant modeling to
limit choices for pressure correlations, third
order correlations, etc. Other investigators
stress ad hoc empiricism and dimensional analysis.

2.3 Algebraic Stress Models: (ASM)

A very novel compromise between the
simplicity of the MTE approach and the universality
and greater range of predictability of the MRS
method, has been proposed by Launder and Ying
(1971). Transport equations for turbulent fluc-
tuational energy and eddy dissipation (or length
scale) are combined with algebraic equations for
each Reynolds stress. The additional algebraic
stress equations are derived directly from their
exact transport equation counterparts.

Following Rodi (1972}, one notes that it
is the convection and diffusion terms in the ujuj
equations which make them differential relation-
ships. If such terms are eliminated from the
transport equations for ujuj one produces a set of
algebraic relations of the form

du

uu, = f(upuq, T’i' k, €)

1
Of course the simplest way to simulate such terms
is to neglect them out of hand. This however
produces inconsistances in other than equilibrium
situations where production exactly balances dis-

sipation. Rodi postulated that
u.u
(Convection - Diffusion)of “-1? = _llii (Convection - D:I.f:‘fv.'.si.on)nf X

uug
= —r)- (Production - Diss;lpanon)of x
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or that ujuj/k varies but slowly across the flow.
(An assumption closely linked to the successful
suggestions of Bradshaw for thin shear layers.)

Launder and Ying (1971) applied an ASM
formulation to turbulent flow in a rectangular
channel. The method predicted the order of sec-
ondary notions found in channels with sharp corners
and the distribution of lateral Reynolds stresses.
Rodi (1972) produced profiles of uk'uj'/k in plane
jets and wakes where conventional two equation
models undergo both strong and weak strain.
Launder et al. (1972) in the NASA "free-shear flow
computational olympics" compared six turbulence
models and concludes MRS and ASM models produced
results of comparable quality. Finally Date (1972)
has produced shear and heat flux results for flow
in a tube containing a twisted tape by means of
ASM type approximations. One concludes therefore
that the algebraic stress models may combine the
most important features of the MRS type (the influ-
ence of complex strain fields on the stresses)
with (almost) the numerical simplicity of a MTE
model.

3.0 A TURBULENT MODEL FOR STRATIFIED FLOW

In order to close the turbulence
equation system, some of the correlations in
ui', p', and T' must be approximated in terms of
quantities that can be calculated. Model assump-
tions about turbulence are thereby introduced
which may not be entirely realistic. These assump-
tions relate the chosen higher order correlations
in ui', p', and T' to other time-averaged quan-
tities; they are expressed in differential and/or
algebraic equations which help produce a mathemat-
ically closed set.

The models developed required the
solution of partial differential equations for
total turbulent kinetic energy, k, total turbulent
temperature fluctuations, k¢, eddy dissipation, e,
and thermal eddy dissipation, et. Three separate
versions of this model are discussed--an algebraic
length scale version, a Prandtl-Kolmogarov eddy
viscosity version, and an algebraic stress and
heat flux model. For purposes of demonstration
simple time dependent one-dimensional versions of
the governing equations will be applied to a set
of free shear flow test cases for which a complete
MRS solution is available. Details of the model
building process followed here are found in Meroney
(1974). The partial differential equations and
algebraic relations solved are in a dimensionless
format (scales of upax, ATmax, and L).

Turbulent Model Equations (ALM) and (DLM)
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Fig. 2. Maxima of velocity correlations:

Case I.

closure trials. One perceives the initial decay
of turbulence, followed by the production of the
correlations as a result of the interaction of
turbulence and mean flow, and finally the decay
after the forcing function is removed.

5.2 Case II: Unstable-Stable-Unstable
Atmosphere

The mean velocity and shear are changed
somewhat but not drastically by the effect of the
temperature profile. In the thermally unstable
regions the development of turbulence is acceler-
ated. At large times the production by 3u/3z
becomes significant and a maxima in k occurs at
t = 90. There is a large influence on k, kT, and
w'T' in the regions where 3T/3z < 0 versus those
regions where 3T/3z > 0. If one insists upon an
eddy diffusivity model a large variation in tur-
bulent Prandtl number with stability is indicated.
In regions of high stability the existence of a
single length scale in the ALM method is not suf-
ficient to develop the necessary degrees of
temperature fluctuation dissipation. Thus kT is
excessively large near z = 0. (See Fig. 3}

The AIM and DIM models fail to keep
pace with the changes recorded by the ASM and MRS
relations. In addition the ALM and DIM models
inherently require w'T', u'T', and u'w' be iden-
tically zero where the respective gradients, du/dz
and 3T/9z, are zero. It appears that fajilure to
follow the time rate of change in k and other
correlations is due to the inherent assumption that
Production equals Dissipation in the AIM and DIM
formulations. This effect is most marked in the
logarithmic plot of the maxima of the turbulent
kinetic energy as shown in Fig. 4. At small times
the major production of turbulence is by thermal
instability. Near the turbulence maxima there is
finite contribution due to mean shear, 3u/d3z; but,
after t = 90, the thermal instabilities in the
outer regions dominate.

5.3 Case III: Stable-Unstable-Stable
Atmosphere

This case was utilized to specify the
magnitude of constant Cgtp. In Cases I and TV
the constants were unchanged for all models. Again
we do not detect major influence of stability upon
the production of a shear layer. There is intense
production of k, kp, and w'T' in the center of the

uw
2x107?

1 x 1072

Fig. 3a. Case II: ASM model.
Z
4.oﬁ
ts O -
. 42 ———
3.01

2.0

3.0

——t
-ix107®

ASM model.

Fig. 3b. Case II:



Turbulent Model Equations (ASM)
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4.0 TEST CALCULATIONS FOR STRATIFIED

TURBULENCE MODELS

Mellor and Herring (1973) recommend that
investigators evaluate MTE and MRS models in tandem
in order that critical limitations of the MTE
approach are identified. Bradshaw (1971) has also
proposed such tuning of a "simple" calculation
method by a "refined" calculation technique.

4.1 Simple Case of Atmospheric Shear

The method chosen for comparison with
the AIM, DIM, and ASM methods proposed herein was
the MRS technique developed by Donaldson and
Rosenbaum (1968). Their "invariant" modeling
closure was applied to a hypothetical free-shear
clear air turbulence case in Donaldson, Sullivan,
and Rosenbaum (1972). This was a simple, time-
dependent, one-dimensional example which charac-
terizes the important effects of buoyancy dominated
turbulent shear flows.

The atmospheric test case is assumed to have
an initially 4000 ft band of turbulence that is
isotropic with u'2 = v'2 = w'Z = 1 (fps)2. The
band is centered at an altitude of 20,000 ft;
however the effects of altitude upon pg, To, and
po are neglected for purposes of the example. The
atmosphere is initially at rest, i.e., at t = 0,
u = 0. A body force acts on the atmosphere to
create a mean motion. The dimensionless driving
function and initial temperature distributions
imposed are shown in Fig. 1.
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Fig. 1. Driving force function and initial
temperature conditions clear-air turbu-

lence model.

The algebraic length method of the MTE
type approach suggested here still requires an
expression to specify e and et in the governing
partial differential equations. The algebraic
relation formulated by Donaldson et al. (1972) can
be re-expressed in terms of equivalent values of
dissipation; hence for large Rep one can find

e = 5.52 k' %/z,
) 0.5
ET = 5.52 ktk /25.

where z; = 8*/L* and &6* is the breadth of the mean
shear layer at the half-maximum velocity points.

Although the MRS method compared to here
did not require specification of the series of
constants used in the ALM, DIM, and ASM models,
consideration of the algebraic length scale equa-
tion plus asymptotic forms of the governing equa-
tions in those regions where production or dissipa-
tion dominate allows one to specify the equivalent
constant values. After consideration of the
results obtained from the original constants it
was only found necessary to adjust Cg2 and CEgt2
slightly to arrive at a reasonable comparison to
the Donaldson et al. (1972) results.

Investigator C, C, Cpy Cpp Cpoy Cpop F op a_ o, 0 "A) Ay Ay Cpy Cpy Cpsy

Donaldson 0.2 0.0 0.0 0.0 5.0 5.0 5.0

0.10.11.5 1.5 1.0- 1.5 1.5 0.1
et a}. (1972) 1.5

Meroney (1974)
AlH

g

0.0 0.0 0.0 5.0 5.0 5.0

RESULTS

[V I
- Qo

Case I: Neutrally Stable Atmosphere

For each model proposed this neutral case
was used to adjust CE2 to obtain optimum time be-
havior of k when compared to the MRS results. At
very small times, t < 20, there is still very
little turbulence created by the mean action and
most turbulence is left over from the decaying
initial turbulent layer. When the forcing func-
tion, X, is removed at t = 90, the turbulent
kinetic energy is a maximum. The influence of the
value 3u/3z = 0 at z = 0 on the production of new
turbulence is evident. Finally at t = 180 one sees
the effect after decay has set in.

By plotting the maxima of k for the
various models versus time in Fig. 2 one can
perceive the degree of agreement between the
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unstable region. Again only the ASM method can
track the nonequilibrium behavior displayed by the
MRS relations. The outlying stable regions limit
the vertical dispersion of this intense turbulence.
The temperature inversion is extremely persistent
at large *z. In the time dependent plot of k,
Fig. 5, we detect the initial production of tur-
bulence by thermal instability, the modification
of this by shear generated turbulence near t = 90,
and the final phase where production of turbulence
by thermal instability just about balances dissi-
pation.
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Case III.
5.4 Case IV: Stable-Unstable Atmosphere

This example is marked by its asymetric
appearance, the persistence of the inversion region,
aT/3z > 0, and the rapid vertical diffusion of
energy into the neutral upper regions where ini-
tially 3T/3z = 0. No existing eddy diffusivity
model would be expected to perform adequately.
Figure 6 records the time rate of change of k
maxima.
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5.5 Discussion of Results

0f course one of the most interesting
aspects of these results is the duplication of
Donaldson et al. (1972) conclusion that there is a
radically different behavior of the heat flux
correlation w'T' depending on whether 3T/3z is
greater or less than zero. 1In fact, the ASM
equations (7}, (8), and (9) indicate that for small
values of 3T/3z and 3u/9z there may be transport
of heat and momentum up the gradients due to finite
values of kT or u'T'! This effect has often been
observed by experimentalists in atmospheric trans-
port. In addition if one considers only production
terms and neglects pressure scrambling and dissi-
pation terms in equations for k, kr and w'T' it is
not difficult to show that when 3T/3z < 0, there
is an exponential development of w'T'. However
when the atmosphere is stable, i.e., when 3T/3z >0,
the heat flux correlation w'T' is oscillatory
about the Brant-Vassala frequency.

One must conclude on the basis of these
results that:

1) An algebraic length scale version of
a MTE model closure is not able to replicate the
behavior of thermally stratified flow, especially
in regions where production and dissipation of
turbulence are not in equilibrium. A single dis-
sipation length scale does not appear sufficient
here to develop the expected degree of damping in
stable regions.

2) Addition of transport equations for
length scales does not suffice to solve the above
problem. Such MTE models are still inadequate.

3) Addition of algebraic relations for
stress and heat flux which incorporate the influ-
ence of stability do appear to incorporate the
physics of the phenomena to the extent that results
are similar to the MRS test case.
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