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A Semi-Empirical Transition Criterion for

Laminar Wall Boundary Layers

J. C. ANYIWO

ABSTRACT

A semi-empirical formulation which provides a
general and sufficiently satisfactory method for
estimating the incipience of laminar-to-turbulent
transition of a variety of wall boundary layer flows
is presented. It is shown that a laminar flow be-
comes unstable to disturbances, ILg, when Sn >N ¢(I.),
and trips to a turbulent flow when Sn >N ¥(I.),where
Sn is a Stability number, the ratio of the driving
force on the fluid to the fluid resistance to
motion; N is a numerical constant whose value
depends on whether the flow boundaries are rigid-
rigid, rigid-free or free-free; and ¢(Ie) and Y(I)
are the effects of the disturbances, Is, which can
be modeled semi-empirically in terms of the free
stream turbulence intensity.

NOMENCLATURE

Ax; Ay Transpiration Number (UlA/v)(vo/Ul);
(voh/v)2

C, (C*) Wall Curvature Parameter, A/rg, (6*/ro)

cp Specific Heat at Constant Pressure

G Goértler Number, Re(S*(CS*/]:O)I/2

g Gravitational Constant

H Velocity Profile Shape Factor, &%/6

I Local Total Disturbance Intensity

i, j, k Indices

k* Coefficient of Thermal Conductivity

L Characteristic Length Scale

Pr Prandtl Number, ucp/k*

q t X 103/ (1+v*)

o ) Wall Radius of Curvature

Ra Rayleigh Number, gL3cp(T0—Tl)/(vk*Tl)

Ray Apparent Rayleigh Number Due to
Compressibility

Re Reynolds Number, UjL/V

Sn Section Stability Number

t 102.34tanh(10/H - 4)

T1, Ty Free Stream Temperature, Wall Temperature

Ta Taylor Number (2ReEL/ro)

Ui, u Free Stream Velocity, Local Flow Velocity
in x~direction

v Local Flow Velocity in the y-direction

Vo Wall Transpiration Velocity (Positive for
Injection)

vk vo/U1

X, ¥, 2 Coordinates

A Modified Boundary Layer Thickness

R. N. MERONEY

§ Boundary Layer Physical Thickness,

Yu = 0.995U7
§* Boundary Layer Displacement Thickness
S Boundary Layer Momentum Thickness
n Dimensionless Height from Wall, y/A
v Kinematic Viscosity

Functions as Defined in Text

(Jei Value at Point of Neutral Stability
() Fluctuating Quantity
(o Initial Value, or Value at the Wall
(et Value at Point of Incipient Transition
'S Non-Dimensional Quantity
(Jx In the x-direction
)y In the y-direction

INTRODUCTION

In reference illl it was noted that conceptual
fluid particles in a fluid execute motions determined
by the constraining force field on the fluid, the
force of primary importance in determining the
stability of the flow being that resistive force
associated with the bonding of the fluid particles.
This resistive force was related to a proposed dynamic
fluid property of cohesiveness; clearly, this concept
of cohesiveness is fundamental to the generally
accepted concept of viscosity in fluid flow, and
derives from a much broader philosophical theory of
universal continuity. It was further suggested that
there must be a critical minimum fluid cohesiveness
(corresponding to a critical force field) necessary
to maintain a laminar flow. TIf the fluid cohesive-
ness falls below this critical value, flow perturba-
tions may amplify; that is, the flow becomes unstable.
As the constraint of the fluid cohesive property is
further overwhelmed, the motions of the fluid
particles become progressively more random; the onset
of turbulence, which serves to arrest the tendency
for the fluid cohesiveness to completely disappear.
The intense fluctuational motions of the fluid
particles create a new force field, the so-called
Reynolds shear forces, proportional to the intensity
of the fluctuations. This new force field is
resistive and builds up the fluid cohesiveness, thus

1 Underlined numbers in parentheses designate
references at end of paper.



Cohesiveness

restoring the flow system to a more stable con-
figuration. Many natural systems behave in this
manner; when they become dynamiczlly unstable in one
configuration, they tend to a new and more stable
configuration. The influence of the fluid cohesive-
ness on flow instability and transition is conceptu-
alized iIn the schematic drawing, Figure (1).
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B : Point of Incipient Laminar/ Turbulent Transition
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D Critical Cohesiveness for Production of Turbulence Spots.

Relaminarization Route
Fig. 1 Conceptual Influence of Fluid Cohesiveness
on Flow Stability

Furthermore, reference (1) suggested that a laminar
flow force field may be described by a Stability
number, Sn, and the position variable, n; and that
laminar instability in a wall boundary layer becomes
incipient at the flow position for which Sn =

Snei = 103¢(Ie), where I, was defined as the
equivalent free stream disturbance intensity which
alone would produce the same effect on a flow as a
combination of the actual free stream and wall
disturbances. Reference (2) suggested the following
empirical formulation for the equivalent free stream
disturbance intensity: Ip = I7 + (30I7 + 0.006)exp
{-(2 + 0.5 x 10411)}. The function ¢(I.) is
discussed later. The Stability number is essentially
the ratio of the total driving force on the fluid
(such as thermal, magnetic, centrifugal, inertial,
etc.) to the total fluid resistance to motion (which
is basically viscous). The formulation for the
Stability number for a two-dimensional curved wall
boundary layer with heat and mass transfer at the
wall was given as:

2 3

Sn = {Sng + alSny}2
where:

Snx = {Rep(1+v*) + Ray}; Sny = {Ray + Ay + Ta};

(1)

A=5*/t;t= =

102.34tanh(lO/H - 4); a] =

6 *

11 X 10°/(1 + Rep)
and RéA is the critical Reynolds number for flow
instability or flow transition for the inertially
driven flat plate flow. The length scale used inall
the engineering numbers is 4, as defined above. Sny
is essentially the ratio of the driving forces in
the x-direction to the fluid viscous forces in the
same direction; Sny is the equivalent ratio in the
y-direction. Thus, Sny and Sn, can be additively
expanded to include any other forces such as
electrical and magnetic forces which have not been

included in the present considerations. It will be
shown later, for instance, that for compressible
flows, Sny = {Ray + Ay + Ta + Ray}, where Ray is an
apparent Rayleigz number due to the impressed thermal
boundary layer. Except in the case of vertical or
steeply-inclined wall convective flows, the Rayleigh
number, Ray, in the x-direction is usually negligibly
small; for generality, however, Ray will be appropri-
ately retained in equation (1) and subsequent
equations.

This paper attempts to obtain a formulation for
the prediction of the incipience of laminar-to-
turbulent transition in wall boundary layers, a
problem of great practical interest. The approach
adopted is an extension of concepts and results
discussed in references (1) and (2) and summarized
above and in the Appendix. A definite and general
mathematical formulation of a transition criterion
for laminar wall boundary layers which yields very
encouraging predictions is obtained.

THE TRANSITION CRITERION

On the basis of the general discussion, above, it
appears that flow transition from a laminar to a
turbulent regime would be incipient when the
magnitude of the total disturbance kinetic energy,

K, attains a critical value, K.t; this is considerably
supported by experimental results, such as of

Elder (3), Klebanoff, et al (4), Kovasnay, et al (5),
and Tani and Komoda (6), which indicate that
turbulence spots first begin to form at a distance
from the wall corresponding to about y/§ = 0.3, if
the local turbulence intensity, u* >18 + 2.5%, where
u* is the r.m.s. fluctuational velocity, non-
dimensionalized with Uj.

In reference (2), the essence of which is
summarized in the Appendix, an approximate solutiom
for the maximum amplification factor in an unstable
laminar boundary layer was obtained as:

(K(x) /Ko) = exp®)/1 + wlo(I) (1 - w) exp(8)}
(2)

where: .

g 0.003(Sn - Sn.¢); ¥(I.) = (0.002tanh(1201,);

K = Total disturbance kinetic energy, (K/Ui);
w = Snci/Sn; and K, is the value of the disturbance
kinetic energy that initially enters the boundary
layer. io was assumed in reference (2) to be given
generally by io = (I,) ¢p(M). In flow situationms
where disturbances exist in the subcritical region
even up to the point of neutral stability, K, =Kci,
the value at the point of neutral stability. 1In
supercritical cases, where any previous disturbance
is completely damped prior to neutral stability and
no further disturbances arise until downstream of
the critical point, K, corresponds to the value of
the input disturbance kinetic energy.

At incipient tramsition in the critical rggion
of the boundary layer, (K(x)/K,) becomes (Kot /X5) s
which is readily seen to be directly proportional to
1/tanh(120I.); thus equation (2) can be rewritten as:

Ece + 20 {1 - 0.000675,,} = -2n { tanh(120I.)}
(3)
The term &n {1 - 0.00067£} approximates to,(-0.00067¢),
so that equation (3) reduces to the following
transition criterion:

(4)

Substituting for

Sn = SnCi

ot - A*ln {tanh(lZOIe)}

where A* is a numerical constant.



Sngy (which, from reference (1) is equal to N¢(Ie))
one obtains equation (4) in the form:

Snee = N{¢(I,) - B2n{tanh(120I.)}} = N¥(I,) (5)

where: ¥(Ie) = ¢(I.) - Bln{tanh(lZOIe)}, and B is
the numerical constant A*/N, which is estimated to
be of magnitude 2.6, by comparison with experimental
data, if ¢(Ig) = 1.2exp(~5I,); Figure (2) shows the
curve fit.
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Fig. 2 Effect of Free Stream Turbulence Intensity

on Incipient Transition Reynolds Number

Equation (5) is valid for all Ies and indicates that
the influence of I, on incipient transition reduces
to ¢(Ie), if I, >0.03; in other words, if I, >0.03,
the regions of instability and transition are
practically coincident. This has been observed
experimentally, also. In summary, it is suggested
that laminar-to-turbulent wall boundary layer
transition is incipient when:

Sn >N¥(I,) (6)

where: ¥(I.) = 1.2exp(-5I.) ~2.6&n{tanh(1201.)}, and
N = 103 for wall boundary layers. The transition
criterion, (6), is semi-empirical, being a direct
result of the approximate analytical solution,
summarized in the Appendix, for the maximum growth
characteristics of total disturbance kinetic energy;
the empiricism in (6) stems from the formulations
for I, and ¢(Ip).

APPLICATIONS OF THE STABILITY AND TRANSITION
CRITERIA

The stability criterion was given in reference
(1) as Sn.; ¥ N¢(Ig), and the transition criterion
has been suggested above to be Sn.t = N¥(I,), where
N = 103 for wall boundary layers and ¢,¥ are as
previously defined. Substituting for the Stability
number in each of the above criteria one obtains
that:

(a) at incipient laminar flow instability:

sng + (ap)ciSny, = 1082 )

(b) and at incipient laminar-to-turbulent

flow transition:
snZ + (ag),Sny = 1062 (8)

where the terms are as previously defined. It is
easily seen that (aj)qi = 11 X 106/(1 + 103¢) and
(a1) ¢y = 11 X 106/(1 + 103Y).

From equations (7) and (8) the critical value
of any appropriate engineering number for the stabil-
ity or transition of a given laminar wall boundary
layer flow can be readily computed. An engineering
number which is usually of great interest in flow
considerations is the critical Reynolds number, Regx,
based on some appropriate length scale (the boundary
layer displacement thickness, in this case). By
direct substitution for Sny, Sny and a] in equations
(7) and (8), it can be shown that the critical
Reynolds number, Regx, for incipient laminar flow
instability or for incipient laminar-to-turbulent
flow transition satisfies the following quadratic
equation:

a1 Ref, + a Regx+ay = 0 (9
where:

a1 = 1+ 11 X 106{2(8*%/r )/t + v*2}/{(1 + v*)?

(1 + 103e)}

oy = 2tRaX/(1 + v#)

a3 = tZRaZ/(1 + v¥)2 + 11q%Ra, /(1 + 10%¢) - q22

q =t X 103/(1 + v¥)

t = 102.34tanh(10/H - 4); and

€ = ¢, for instability, € = ¥, for transition.

Equation (9) has two real or imaginary solutions; the
smaller positive solution is, of course, the one of
interest. Imaginary solutions will:-be seen to have
significant implications. To estimate the critical
Reynolds number for laminar flow instability one
merely substitutes Regx . for Regx in equation (9),
with € = ¢(I.) in a4 (37=1, 2, 3); for incipient
transition, Regx = Regk., and € = W(Ie) in oy G =

1, 2, 3). The well known solution of equation (9)
1s:

Regx = {-0p + (o} -4u1a3)%}/2a1 (10)

In order to estimate the critical Reynolds number for
laminar flow instability or for laminar-to~turbulent
flow transition one thus requires some or all of the
following input, described continuously (or
discretely) in the appropriate coordinate direction:

(a2) the flow boundary geometry (that is,wall
curvature, etc.),
(b) the flow parameters: displacement thickness,
8%; velocity profile shape factor, H:
Prandtl number, Pr, or temperature profile
shape factor,
(c) the free stream disturbance intensity, I,
and
(d) the mass and/or heat transfer at the wall
(that is, v* = v /Uy, and (To-T1}/Ty).
These input data are usually ideally provided by
conventional computational schemes for laminar wall
boundary layers. The predictions given by the above
criteria in some frequently encountered wall boundary



layers will now be considered.

Curved Wall Flows

By inspecting the coefficient, 1, in equation
(9), which is the only term that contains the
direct influence of the wall curvature, (8*/r,), it
becomes clear that if the absolute value of (8*/rg),
is significantly less than {(1 + 103¢)/22}t X 10-6,
the wall curvature has no effect on the flow in-
stability or transition. In other words, a curved
wall flow is practically a flat plate flow, if:
[s*/ro| << {(1 + 103e)/22}t X 10-6. Figure (3)
shows a plot of equation (10) for various wall
curvatures compared against some experimental flow
transition data.
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Fig. 3 Effect of Streamwise Wall Curvature
on Flow Transition

For convex curvature (8*/ry) is negative and if the
effect of wall curvature is appreciable, 01 would
be negative, resulting in imaginary solutions to
equation (9). If one interprets the incipience of
imaginary solutions in this case to imply the
incipience of laminar flow separation with turbulent
reattachment, then the critical Reynolds number for
flow instability or transition in a convex wall
flow with appreciable wall curvature would be
practically the same as in flat plate flows.

Equations (7) and (8) can be appropriately
rewritten to emphasize the critical Gortler or the
Taylor number, as may be desired.

Flow with Mass Transfer at the Wall

By inspection of the coefficients aj, @y, and
o3 of equation (9), it can readily be inferred that
the effect of wall transpiration (suction or
injection) must be very similar to that of pressure
gradient on a boundary layer flow; it modifies the
mean velocity profile shape factor, H. Suction,
like negative pressure gradient, decreases the shape
factor, which is stabilizing, whereas injection,
like positive pressure gradient, increases the shape
factor, which is destabilizing. For two values of
free stream turbulence intensity, Figure (4) shows
the resulting effect of transpiration on transition
Reynolds number, while Figure (5) shows the
influence of pressure gradient. The curves have
identical form.

108

T

0%

YT

104

T

Res.C1

103

T

T

10?

10! I I )
-08 -04 00 0.4 08 12
%

- Injection £ = [’ﬁ]\/z‘ Suction ———s—
v

Fig. 4 Effect of Wall Transpiration on Flow

Transition
108
)05 —
Favorable Pressure
10* | Grodient
k)
o 3
@
x L
3
10 3 Adverse Pressure
o Gradient
102
10! { | 1 I L i 1
2.0 24 2.8 32 36 40

H

Fig. 5 Effect of Pressure Gradient on Flow Transition



Flow with Heat Transfer at the Wall

The critical Reynolds numbers for flows with
heat transfer at the wall can be calculated from
equation (10). However, it is rather obvious from
inspection of the coefficients of equation (9) that
the influence of Reynolds number on thermal
instability and transition is of secondary import-
ance, unless the free stream disturbance intensity
is large. The appropriate engineering number of
interest for this class of flows is the Rayleigh
number whose critical values for instability and
transition are given from equations (7) and (8),
respectively, as follows:

Ra = {¢2 X 10%4-8 - hReZ, }{t/HPrl/3)}3
& (thermal) 5

(11)
(instability)
= 2 4. 2
Ras(thermal) = 10 X {yZ x 104-3 - hReG*}
{t/(uprl/3)}3 a2
(transition)

where h = 0.02/t2. The conventional assumption that
8(thermal) = {1/(1.026Pr1/3)} &(momentum) has been
made in order to obtain equations (11) and (12).
The factor, (H Pr1/3), which appears in the above
equations is interpreted as the temperature profile
shape factor; thus, as anticipated, the temperature
and velocity profiles are identical, if the Prandtl
number is unity. For the case of no mean flow,

(H Prl/3) can either be calculated directly or
simulated by assuming a hypothetical Blasius
velocity profile (H = 2.59) with a suitably chosen
Prandtl number to yield the desired temperature
profile. Equations (11) and (12) indicate that

for natural convective flows, if H is arbitrarily
assumed to be 2.59 and Pr = 2 the critical Rayleigh
number for cellular instability (with I; = 0.001)
1s about 278, and for incipient transition to
turbulence is about 2.7 X 103.

Compressible Flows

Although the above stability and transition
criteria were obtained from the analyses of
incompressible flows, they could be applied directly
to compressible flows, if one recognizes that the
major effect of compressibility is to establish a
thermal boundary layer within the momentum layer.
Therefore, for compressible flows an apparent
Rayleigh number effect must be considered
simultaneously with the Reynolds number and other
effects. The apparent Rayleigh number due to
compressibility, written to emphasize the Mach
number rather than the thermal effect, is given
as: Ray = -Prl.5M2 (y-1) (gA3/v2)/2. It can
readily be shown that (gA3/v2) is a function of only
the mean velocity profile shape factor, H, and can
be approximated by: 2/t2. Thus, the critical
Reynolds numbers for laminar instability and laminar-
to-turbulent transition in a compressible wall
boundary layer are given respectively as:

ReG*ci = {¢2(Ie) - 0.027 (Ray + Ray + Ta +
AY)}%q (13)
Regy , = {¥2(I,) - 0.00194 (Ray + Ray + Ta +

Ay) Piq (14)

In hypersonic flows (M>4), dissociation of the
fluid may occur, so that for validity of equations
(13) and (14), the Mach number influence on the
functions ¢ (Iy), W(Ie), and on the shape factor, H,
and the kinematic viscosity, v, must be known. The
experimental results of Van Driest and Boison (8)
show that the influence of the free stream turbulence
intensity decreases as the Mach number increases;
that is, $(Ig) and Y(Ig) tend to unity as M gets
large. The dependence of the shape factor, H, on
Mach number for laminar flows is discussed by
Wilson (9); the value of H lies parabolically
between 2.6 and 5 in the Mach number range, O<M<4,
and increases more rapidly as M increases. Thus,
equations (13) and (14) would indicate decreasing
critical Reynolds number up to a value of M of
about 4, and increasing critical Reynolds number
independent of the mean velocity profile shape
factor for M>4. This trend agrees with experimental
observations.

CONCLUDING REMARKS

The results of this work and of references (1)
and (2) are both quantitatively and qualitatively
satisfactory, and inspire some confidence in the
advocated physical model for laminar flow instability
and transition. The suggestion in reference (1)
that the force field of a laminar flow is adequately
described by the Stability number, Sn, and the local
spatial position,n, appears to be very much in order.
With slight modifications, these results can very
easily be incorporated in existing computer codes
for flow calculations to provide continuous computa-
tion of general flows from laminar through transition-
al to turbulent regimes.
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APPENDIX

Maximum Amplification of Disturbances in Laminar
Wall Boundary Layers

The invariant modeling technique of
Donaldson (l0) can be used to obtain equations for
the disturbance kinetic energies in a boundary
layer, in a closed form. An equation for the total
disturbance kinetic energy is then obtained by
summing these equations for the x, y, z - component.
Neglecting the vertical variation of kinematic
viscosity, the total perturbation kinetic energy
equation for time-independent incompressible flow
simplifies to the following:

wdK/3x + vOK/3y = v 32k/3y2 - 2VK/yZ + 203u/3y

(15)

where:

K =<u'? +<v'2 + <w'2> and 0 = <-u'v'">
Making the transformations: y = An; K = K. 4Q
(where Kqoi is the value of K at the point of
neutral stability); o = U% o; and v = Ujv, the
dimensionless form of equation (15) becomes:

Q" + a1Q" + apQ = a3, + 3, (16)
where:

Q, = 3Y/3 (x/4), and

ay = (' j/Kgy - VU{B/V)

ar = (K”Ci/K'Ci - 2/n2 - GK'CiUIA/(VKCi))

a3 = GUlA/\)
ag = -2(U1A/v)G(3u/3n) /Ry

From the results of J. T. Stuart (11) it is
apparent that a disturbance distorts the mean
velocity profile, u/U; = ¢1(n,Sn) by introducing
a perturbation term, (boSn), so that the mean
veloeity profile of a disturbed laminar flow is
u/U1 = ¢1(n,Sn) + boSn.

Since in a laminar wall boundary layer, the
transverse and streamwise mean velocities are
related as follows: v/u = ¢3 (n) Re -%, one may
generally represent the transverse mean velocity
as follows: v = ¢3(n) {¢7/Sn + b3}.

Without loss of generality one could assume
that the total disturbance kinetic energy at the
point of neutral stability has a distribution
across the boundary layer given by the curve,

Rei = 8(Ia)92(n), where Iy is the intensity of the
free stream and wall disturbances, and Kei =
Kci/Ui; and that the cross-correlation ¢ is
related to the total disturbance kinetic energy as
follows: § = ¢7(MK + ¢g(MEK" + ¢g(MK" + ....

Applying the above relations and making an
order of magnitude analysis based on experimentally
observed magnitudes of the different variables of
equation (16) in laminar and transitional wall
boundary layers one obtains the following simplified
equation:

Q" + FpQ'2 + F1Q' + Fy = 0 (n

where:
Q = Q(n,5n,I,.), and

Fo = =61(nQy
Fy = -bGo(n) & (1e)5nQ
Fp = bG3(Me (Ip)Sn

Equation (17) is the classical polynomial class
of non-linear differential equations of the second
order which describes systems in which '"predatory
energy" is taken interactively from a basic "prey-
supply". Similar equations had been obtained by
Volterra (12), for the problem of prey and predator
and also by Lord Rayleigh (13), in his consideration
on sound motion.

A Special Solution of the Disturbance Equation

Under the transformation: Q'(n,Smn,Ig) = 1/U(Q),
equation (17) reduces to the Abel's equation of the
first type:

U'(Q) = Fou3(Q) = F,u2(Q) + Fau(Q) (18)
Equation (18) is readily solved by the method

discussed in Kamke (14); the solution obtained is
the equation:

Q' = E asql (19)

1=1

where:a] = G4(n)Qyx/Q, 02 = ~bGs(n) ¢ (Io)SnQy/Q, and

subsequent terms are of magnitude always much smaller
than a1Q and 0pQ?. Interestingly, J. T. Stuart (11,
obtained by a different method an equation which is



very similar to equation (19), for the stream-
wise component of disturbance. Since (UlA/v) « Sn,
it is readily shown that (x/A) = Sn. Thus, if
(x/A) is measured from the point of incipient flow
instability, (x/A) = (Sn-Snqi). Representing (x/4)
by £ (£ Sn(1-w)), where w = Sn¢i/Sn, equation (19)
can be rewritten as:

(3Q/38) {1 - m(&+c)Q} = Gg(n) (3Q/3n)  (20)
where:m = b®(Ig), and ¢ = Sncji.
solution of equation (20) is:

An approximate

Q = exp(ad) / {1+ B exp(a)} (21)

such that: A =hf ; B = m£G7(n).

Usually one is interested in the maximum
amplification characteristics in the unstable
laminar flow, that is, in the amplification
characteristics at the critical layer. The
critical layer of a laminar wall boundary layer
is for most practical purposes a constant N-layer.
For the critical layer, therefore, G7(n) is a
constant. At the critical layer, also, Q = Q(max).

Close to the point of neutral stability,

(that is, £ - 0), Q(max) =~ exp(A), and from

experimental results such as those of Schubauer

and Skramstad (15), one readily estimates that

h = 0.003. Furthermore, using the invariant

models of Donaldson (10), the amplification

factors at transition can be calculated in the

manner discussed in reference (16), for different

values of free stream disturbance intensity, Ie.

The results, Figure (6), indicate that approximate-

ly: mG7(n) = (0.002/Sncj)tanh{120I.}. Thus, a

special solution of the disturbance equation at

the critical layer is:
Q(max) = (K/K.idmax = exp(Y)/{1 + Bexp(V)}

(22)
where:

Y = 0.003Sn(1-w), and B = 0.002tanh(120I.)
{(1-w)/w}
Curves of equation (22) shown in Figure (7)

for different values of I, are qualitatively and
quantitatively realistic.
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