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This paper presents some results of a linear stability
analysis on the formation of Taylor-Goertler Vortices in laminar wall
Jjets albng curved surfaces, The classical instability of a laminar
boundary layer along a concave curved wall which results in a system
of counter rotating streamwise oriented vortices is fairly well
documented [1]. The parameter governing the stability of such a flow
is the Goertler Number defined as Rd JE7§ where Rd is the Reynold's
Number based on a characteristic length & of the boundary layer, and
R is the radius of curvature of the wall, For such a flow to be
unstable, two conditions must be satisfied: the wall must possess
concave curvature; and the Goertler Number of the flow should exceed
some criicsl value. The instability is a direct consequence of an
unstatle distribui’cn o angular momentum throughout the boundary
layer, which resulte in «n imbalance between the centrifugal and
pressure forces. The wall jet however, may diéplay this centrifugal

instability on convex as well as concave curved walls due to the nature

of the longitudinal component of it's mean velocity profile.

Following convention, we define the regioﬁ between the wall
and the maximum in the veloclty profiie‘as the inner flow, While the
region beyond is designated the outer flow [fig. (1)]. When the flow
is along a concave surface, the inner flow is unstable and we designate
this as the Type I instability. Flow along a convex surfaée results
. in an instability of the outer flow and this we name the Type II

instability.



Theory

Following Smith (2], a linear perturbation analysis yields

the following set of four coupled 1inear total differential equations:
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where u, v, w, are the dimensionless fluctuations of velocity with
respect to T in the x, ¥, 2 directions respectively and C is the
dimensionless pressure‘fluctuation. ﬁ is the dimensionless vertical
(y) coordinate. U, and Vb are the dimensionless streamwise and
vertical ve1001t1es respectively, of the primary flow. A, Band X

are the dimensionless wavenumber, ampllflcatlon parameter and



curvature respectively, concave curvature being denoted by a positive K.
The scaling length and velocity used are those proposed by Glauert (3]
in a Similarity analysis of the laminar wall jet. Consequently, this
permits direct use of his similarity solutions for the mean velocities
Uo and Vo in the stability calculations. The Reynold's number then
becomes ( g%;f )14 where Ug is a velocity related to the outer momentum

flux, v the kinematic viscosity and x the distance downstream from a

virtual origin. The boundary conditions applicable are

M+, u, v, W, **®

Additio.ally, the continuity equation (4) for the fluctuations yields

the auxiliary boundzry zondiiicn

1 =0, S =0

The equations are homogenous with homogeneous boundary conditions and
therefore constitute an eigenvalue problem. The informetion sought

1s the variation of XK with A, all other parameters remaining fixed.

A multiple shooting methdd using a Hamming Predictor-Corrector inte-
gration forrmla was used in £he numerical solution procedure. In
order to restrict the renge of integration to a finite interval,
asymrtotic solutions valid in the far field region were.derived and
matched to the numerical 1ntegratlon at T = 10, ' Details of the method

are described in Conte [4] and in Kahaw1ta [5]



Results

The results are presented in terms of the Goertler Number
defined here as Ra.J§:' They were found to be independent of Reymold's
Number, a result also found by Smith [2]. The neutral stability
curves (B = 0) for the Type I and Type II instabilities are shown in
fig. (2). The critical values of Goertler Number and wavenumber for
the Type I instebility are considerably lower than those of Type IT.
This is most probably due to the action of the vertical velocityA
component of the primary flow in limiting the size of the Type II

disturbances.

Previous work [6] has demonstrated the importance of the
vertical velocity component of the primary flow in stability calcu.a-
tions. In the Type I instability, the unsteble Inner flow is beunded
below by the wall and above by gtable fluid. However, throughout the
unst;ble layer, the vertical velocity coﬁponent of the primary flow
is directed outwards, thus encouraging free-stream penetration even
though it changes sign later on in the outer flow, The Type II
fluctuations which originate in the outer region, are restricted
above by the vertical veiocity component of the primary flow directed
inwards, and below by,again the vertical velocity component directed
upwards and the solid wall. An examination of the eigenfunctions in -
fig. (3) demonstrates this restricted extent of penetration by the

Type II fluctuations.



Concluding Remarks

The work reported herein could also find application in tur-

bulent wall jets. Tani [7] has denonstrated the utility of stability

calculations of Taylor-Goertler vortices applied to turbuhent boundary

layers.

References

1)

2)

3)

4)

5)

6)

7)

Goertler, H., "Uber eine dreidimensionale Instebilitat leminarer
Grenzschichten on Konkaven Wanden", Nachr, Akad. Wiss.
Goetlingen Math-Physik Kl. IIa, Math-Physik-Chem., Abt. 2,
1-26, (1940). .

Smith, A. M. O., "On the Growth of Taylor-Goertler Vortices along
Highly Concave Walls", Quarterly of Applied Math., Vol, 13,
(1955), p. 223.

Gleuert, M. B,, "The Wall Jet", Journal of Fluid Mech., Vol, 1,
p. 625, (1956).

Conte, S. D., "The Numerical Solution of Linear Boundary Value
" Problems", SIAM Review, Vol. &, No. 3, p. 309, (1966).

Kahawita, R, A., "The Stability of Parallel, Quasi Parallel and
Stationary Flows", Ph,D, Thesis, Colorado State University,
(1973).

Haaland, S. E., "Contributions to Linear Stability Theory of
Nearly Parallel Flows", Ph.D. Thesis, University of Minnesota,
(1972).

Tani, I., "Production of Longitudinal Vortices in the Boundary
Layer along a Concave Wall", Journ., of Geophysical Research,
Vol. 67, No. 8, (1962).



°n

. 20

€0

0

1l43NVI9 WOH4 13F 11VM d0
$371404d ALIHVIIWIS | '9ld

pY °A

o’'I-

ol

PY °A



SIAMND ALITISVLS TVYLA3IN 2 "9Old

or

.< .
s0 . I'0 S0°0 100 S00'0
|
o T 2dAl
_— G
)
/ ]
\A\I\ ap— l"’/
z N
/A
~—
S
~
,‘
// j
[ N
N
I 3dAl D
N
SN
Y

vQN

Jog



TYPE I

FIG. 3 EIGENFUNCTIONS

TYPE 1L

AT CRITICAL CONDITIONS



