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The Influence of Heating on the
Stability of Laminar Boundary
Layers Along Concave Curved

This paper considers the effect of heating on Taylor-Gértler vortices in laminar boundary
layers. The effect of higher-order terms and the normal velocity component of the primary
flow in the stability calculations has been demonstrated. The findings indicate that terms
involving the higher-order effects of curvature as well as the normal component of the pri-
mary flow become increasingly important at small wave numbers. The effect of heating
is to stabilize the flow to disturbances of long lateral wavelength but has a destabilizing
effect on short wavelength disturbances.

This paper considers the buoyancy effects of wall heating on the
formation of Taylor-Gortler vortices along concave walls. Previous
work has concentrated almost exclusively on the stability problem
under isothermal conditions.

Three-dimensional instabilities on concave curved walls was first
studied under isothermal conditions by Gértler [1].! Earlier, Taylor
[2] had noted the same variety of instability in Couette flow between
rotating concentric cylinders. For the boundary-layer case, Gortler
established the fact that this type of instability could occur only on
walls with concave curvature and derived the relevant stability pa-
rameter N = Ryv'ES where Ry is the Reyno.d’s number based on
the boundary-layer thickness 6, and k is the reciprocal of the radius
of curvature of the plate. In his calculations, Gértler examined the
stability of the Blasius profile on a curved plate but ignored the
quasi-parallel nature of the flow, i.e., the velocity component of the
primary flow perpendicular to the wall was assumed to have a negli-
gible effect on the calculations.

Meksyn [3] solved Gértler’s stability equations using a different
asymptotic method of integration. Hammeérlin [4] also resolved
Gértler’s stability equations by different methods and obtained very
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accurate solutions. He first established the peculiar result that the
minimum Gértler modulus for neutral stability occurs at a lateral
wave number of zero, thus implying vortex disturbances of infinite
wavelength.

Smith [5] reconsidered the stability problem in detail, and con-
cluded that certain terms involving the velocity normal to the surface
in a growing boundary layer, as well as certain higher-order terms
approximately describing the effect of curvature on the disturbances
could not be neglected. He also argued that a spacewise representation
of the disturbances was more consistent with physical reality, rather
than the timewise representation that had been employed earlier.
Accordingly, he recalculated the neutral stability curves as well as
curves of constant spatial amplification for a growing Blasius
boundary layer. His results differed slightly from those of Gértler [1]
and more strongly from those of Himmerlin [4] in that he obtained
a finite value for the critical wave number, different from zero. His
method of solution was via the Galerkin approximation technique.

More recently, Chang and Sartory [6] have solved the hydromag-
netic Gortler stability problem using numerical integration methods.
In the absence of the magnetohydrodynamic term, their differential
equations reduce to those of Hammerlin [4] for neutral disturbances
except for the inclusion of the terms involving the vertical velocity
component of the primary flow. The results of their computations for
the Blasius boundary layer in the absence of a magnetic field indicate
that the critical Gortler number as well as the critical wave number
tends toward zero when the normal flow terms of the primary velocity
profile are included in the calculation. They therefore surmise that
at the lower wave nuibers, the effect of the higher-order curvature
terms neglected in their calculations could play an important role in
limiting the degree of instability, and size of the vortices.

The present analysis, considers the separate effects of surface
heating and homogenous suction on the stability of a boundary layer
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along a concave wall. The flow has been assumed incompressible with
constant fluid properties, the effect of heating being represented by
the appearance of an additional destabilizing buoyancy force in ac-
cordance with the Boussinesq approximation. Such situations where
gravity as well as centrifugal effects are present occur in the blades
in gas turbine engines and in certain heat exchangers. Indeed,
McCormack, et al. [7] have shown that Taylor-Géortler vortices in-
crease the rate of heat transfer through boundary layers and have
proposed exploitation of this phenomenon in the design of high effi-
ciency curved parallel plate heat exchangers. The work reported
herein, assumes that the gravity vector is instantaneously coincident
with the direction normal to the plate. Other inclinations in the ver-
tical plane may be approximately accounted for. Previous work on
Taylor-Gértler vortices has been reported by Di Prima and Dunn [8]
in the flow of a liquid along curved heated walls, by Himmerlin [9]
who considered compressible flows, and Kirchgissner [10] who
studied the stability of Couette-type flows along curved heated walls.
In the first two analyses, the effect of variable fluid properties was
studied, rather than the effect of the destabilizing buoyancy forces
caused by the temperature stratification. Thus Di Prima and Dunn
(8] as well as Himmerlin [9] concluded that heating of the lower
boundary results in increased stability, while Kirchgéssner [10] ar-
rived at the opposite result.

Theory

The coordinate system is defined in Fig. 1. The flow of a laminar
boundary layer along a concave heated wall is considered. The stan-
dard method of linear stability theory consists in a perturbation of
the Navier-Stokes equations about a mean solution, and consideration
of the resulting “zeroth” and “first-order” differential equations
obtained. Thus the instantaneous coordinate velocities, temperature,
and pressure are represented by U = U + i3, V = V + i, etc., where the
overbars signify mean and the tildas signify the fluctuating compo-
nents.

Following Smith [5], a spacewise growth of disturbances is chosen,
consistent with experimentally observed results. Accordingly the
normal modes postulated are of the form

] Fup )]
v Up o)
cos (2
W o= | wp(¥) eBx
sin az
P Pp(¥)
| 7] LTt

where x, y, z are the streamwise, vertical, and lateral coordinates,
respectively, subscript p denotes perturbation amplitudes, « is the
lateral wave number, and 8 is the amplification parameter. Substi-
tution of the normal mode representation into the partial differential
equations governing the perturbations results in the following coupled
set of ordinary differential equations where all quantities have been
made dimensionless
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Fig. 1 Orthogonal curvilinear coordinate system
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with v, g, «, and v being the bulk expansion coefficient, the gravita-
tional acceleration, the thermal diffusivity, and the kinematic vis-
cosity, respectively. U. and 6 are chosen as the free-stream velocity
and characteristic boundary-layer thickness, respectively. Except for
the additional term in equation (1b) representing the thermal
buoyancy and the extra equation (le) obtained from the energy
equation, the foregoing set of equations are basically the same as those
derived by Smith [5] for the isothermal case.
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Boundary Conditions
The lower boundary is assumed to be a rigid, isothermal conducting
plane. This necessitates the following “wall boundary conditions”

n=0, u=v=w=T=0

The continuity equation (1d) for the perturbations yields the auxiliary
boundary condition

dv
dy

Since the flow is unbounded vertically, and attention focussed only
on those disturbances decaying at large distances from the wall, we
must have that, as n — <, u, v, w, T — 0. The system of equations is
homogeneous with homogeneous boundary conditions and therefore
constitutes an eigenvalue problem. For given values of the amplifi-
cation B, the Reynold’s number Ry, the Grashof number Gr, and wave
number A, one seeks the lowest absolute value of K which will provide
a nontrivial solution. The variation of K with A traces out amplifi-
cation curves for different values of B. The calculation requires a
specified variation of Uy, Vy, and Ty (the components of the primary
flow) with 5. The computations were performed using the similarity
solutions for a laminar boundary layer on a heated flat plate for
Prandtl numbers of 0.72 and 7.0. A small number of calculations were
also performed on the asymptotic suction profile in isothermal
flow.

n=0,

Numerical Method

The numerical method used is based on a technique described by
Conte [11]. Equations [1] are rewritten as a system of nine first-order
differential equations. It is possible to derive boundary conditions
which may be applied at the outer edge of the boundary layer rather
than at infinity, thus restricting the integration to a finite interval.
This is dependent on the fact that in the free stream, the set of
equations (1) reduce to a constant coefficient type since Vo, Ty, and
Up become constants. Solutions in terms of elementary functions are
thus easily obtained for the whole free-stream region and in particular
at the boundary-layer edge taken here as n = 9. The outer solutions
obtained are detailed in [12]. Four independent starting solutions are
synthesized at the boundary-layer edge and integrated in the reverse
direction toward the wall using a modified Hamming predictor-cor-
rector fourth-order formula. At certain stages in the integration
process, the independent solution vectors tend to become increasingly
dependent. At this point, integration is temporarily interrupted and
linear independence restored by the Gram-Schmidt orthonormali-
zation process. At the wall, (n = 0), the boundary conditions will in
general be satisfied only when the correct eigenvalue has been chosen
in the computations. A modified version of the Newton iterative
method was adopted that gave rapid convergence to the desired ei-
genvalue. The primary flow in the boundary layer was accurately
represented by high-order polynomials.

Results and Discussion

The results obtained are divided into two parts: the first part deals
with the calculations for an isothermal boundary layer while the
second part considers the effect of wall heating. Stability results for
a boundary layer on a concave wall are usually reported in terms of
the Gortler number based on the momentum thickness 6 of the
boundary layer, '

U8

v

NGy = V'8/Ro
where R is the local radius of curvature of the wall. We also use the
corresponding wave number Ay = af.

Fig. 2 is a plot of the neutral stability curves for the Blasius profile
with and without the V; terms included in the calculations. The
neutral stability curve for the asymptotic suction profile including
the effect of the V term is also presented on the same diagram. Chang
and Sartory [6] found that as Ay tended toward zero, the critical
Goértler number simultaneously appeared to approach zero, when the
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Fig. 2 Comparison of neutral amplification curves

normal flow terms were included in the analysis. The present results
indicate that with the additional curvature terms of Smith [5] retained
in the analysis, the value of the Gortler number approaches a critical
value of zero as the wave number reaches a limiting value of 0.3.
Several calculations in the vicinity of a wave number of 0.29 failed to
converge to a definite positive eigenvalue, thereby indicating an ab-
sence of solutions for wave numbers below about 0.3. The discrepancy
between the present results and those of Smith is probably due to his
use of the Galerkin method in solving the equations. In this method
the solution was assumed to have the form of a polynomial times an
exponential factor which decayed far from the wall. The polynomial
coefficients were calculated in solving the problem, but the expo-
nential decay rate was assumed mainly on the basis of numerical ex-
perimentation. Chang and Sartory [6] indicate that Smith’s results
at the lower wave numbers could be incorrect by over an order of
magnitude. At wave numbers greater than about 0.4, the present
calculations are in good agreement with those of other workers. Dif-
ferences, at small wave numbers, between the present results and
those of Chang and Sartory’s may be attributed to the retention, in
the present analysis of the extra curvature terms of Smith [5]. Chang
and Sartory had in fact, anticipated that the influence of these terms
could be important at small wave numbers. The present results sup-
port this, although a limiting value of zero for the critical Gortler
number is certainly peculiar and of no apparent physical signifi-
cance.

With the exclusion of the normal flow terms, the calculations ex-
hibit a minimum in the neutral stability curve at a wave number of
approximately 0.015. The critical value of the Gortler number ob-
tained is about 0.3 in fairly good agreement with the results of Smith
[5] and of Hammerlin [4]. Once again, the discrepancy in critical wave
numbers must be attributed to the influence of the extra curvature
terms in the present calculation. Some verification of this was ob-
tained by carefully performing several computations in the vicinity
of the minimum with different step sizes and convergence criteria for
the eigenvalue. No changes in the eigenvalue were observed. The re-
sults demonstrate therefore, the increasing significance of the vertical
velocity component of the primary flow and extra curvature terms
in the computations at small wave numbers.

To better assess the effect of the normal velocity component on the
stability, a small number of computations were performed on the
asymptotic suction profile and the stability curve plotted in com-
parison. The stability of this profile has already been examined by
Kobayashi [13] assuming time-varying disturbances. The critical
stability of the flow is increased by a factor of about three. The
dominant effect of suction throughout the boundary layer is so strong
that good agreement throughout the full range of wave numbers is
obtained between the present calculations and those of Kobayashi
[13] who neglected the extra curvature terms of Smith. (An exami-
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Fig. 6 Amplification curves for the asymptotic suction profile

nation of the coefficients in the set of equations (1) clearly indicates
that the terms involving Vg, which is constant throughout the
boundary layer with asymptotic suction, will at all times dominate
the extra curvature terms.)

The role of the vertical velocity component of the primary flow is
to alter the extent of free-stream penetration of the vortices. This in
turn alters the dissipative influence of viscosity (which is restricted
to the boundary-layer region) on the perturbations. Verification of
this is provided in Fig. 3, where the vertical (v) component of the ei-
genfunctions for the Blasius profile with and without the normal
component of the primary flow, and for the asymptotic suction profile
have been plotted in comparison at a wave number of A, = 0.664. The
curves clearly indicate the altered extent of free-stream penetra-
tion.

Some calculated eigenfunctions are presented in Fig. 4. It is inter-
esting that the pressure fluctuation is the only nonzero component
at the wall and is in fact a maximum there. No boundary conditions
have been assumed for the pressure in the present calculations, al-
though it may be shown that it must decay exponentially like the other
components in the free stream. With amplification of the vortices
beyond the stage covered by linear theory, the pressure fluctuations
induce a significant redistribution of momentum within the primary
flow of the boundary layer causing it to exhibit three-dimensional
effects. The maximum of the pressure fluctuation occurring at the wall
suggests that if the wall were distensible, a drastic lowering of the
critical Gortler number may be expected. This reduction in the sta-
bility of the flow, could be speculated upon as being due to higher-
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Fig. 7 Critical curves of Gortler number versus wave number for three
Grashof numbers (quasi-parallel flow); Prandti number = 0.72

order coupling effects between the wall and the fluid layer so that at
some range of wave numbers the energy exchange between the two
could result in strong amplification of the disturbances.

The eigenfunctions for the second mode were calculated at Ay =
0.664 and are included in Fig. 4. They indicate a system of two coun-
terrotating vortices stacked one above the other, the lower vortex
being the smaller of the two. Presumably, if the Gortler number is
raised to a sufficiently high value, these additional modes could be
excited since the linearized theory permits an independent existence
between all modes and wave numbers. For an actual observation of
these higher-order fluctuations however, it is necessary that they have
a higher amplification rate than the normal modes. This type of be-
havior, although not observed in the Gortler instability, has been
experimentally observed by Whitehead [14] in the analogous case of
thermal convection.

Fig. 5 presents the amplification curves for the Blasius profile while
Fig. 6 is the corresponding plot for the asymptotic suction profile. By
eliminating the characteristic thickness 8 from the definition of the
Gortler number and the dimensionless wave number Ag(= af = 276/A
where A is the lateral wavelength) we obtain N¢,2/A,% = U.2\Y/
8x2v2R o where Ry is the radius of curvature of the plate. Following the
argument of Kobayashi [13], if U, Ro, and X remain constant with
increasing x, then N¢,2/A4® becomes a constant Cg. This may be
represented by a line of gradient 3/2 on the log-log plots of Figs. 5 and
6. Experiments by Tani [15] and McCormack, et al. {7}, in a laminar
boundary layer indicate that the wavelengths of the vortices are rel-
atively unaffected as they amplify in the streamwise direction. The
experimental results of Tani [15] taken in a laminar boundary layer
have been plotted in Fig. 5. The data points lie in the amplifying re-
gion of the curves and fall approximately along a line of gradient 3/2.
The dotted line drawn in Fig. 5 through the minima of the amplifi-
cation curves has approximately a slope of 3/2 for values of the am-
plification parameter 86R, greater than about 0.22. At lower values
of the amplification parameter, the slope becomes much steeper in-
dicating that in this region, amplification does not necessarily occur
at constant wavelength. The corresponding curve for the asymptotic
suction profile has a gradient much closer to 3/2 as Fig. 6 indicates.
Kobayashi [13] did not obtain as good an agreement with his ampli-
fication curves, probably due to his assumption of temporally am-
plifying disturbances.

We now turn to the results for the cases which include the effects
of heating. The validity of the results are restricted to those fluids
which have only a minor dependence of their viscosity and thermal
diffusivity on temperature, or alternatively, where temperature dif-
ferences are small, but not small enough that the buoyancy term from
the Boussinesq approximation may be neglected. In the results pre-
sented here, the Grashof number has been calculated using the defi-
nition of
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given be Schlichting [16] for a laminar Blasius layer. This definition
of 4 is the height at which the boundary-layer streamwise velocity
reaches 99 percent of it’s free-stream value. Although it may appear
that this use of § in the definition of the Grashof number is not strictly
relevant, 3 is in fact related to 7 the thermal boundary-layer thickness
through the Prandtl number. Based on the similarity variable
therefore, the values of the Grashof and Rayleigh numbers presented
would be reduced by a factor of 5% or 125. The other parameters are
presented using the momentum thickness as before. Calculations have
been performed for Prandtl numbers of 0.72 and 7.0, respectively.
Neutral stability curves for the lower Prandtl number are presented
in Fig. 7 at three different Grashof numbers. The figures in brackets
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are corresponding values of the Rayleigh number (= Gr X Pr). The
effect of wall heating is to reduce the stability of the flow to three-
dimensional disturbances. Within certain intervals of the wave
number, the curves enter the negative quadrant indicating that convex
curvature would be required to maintain stability. In order to make
certain that convergence to the desired eigenvalues was being ob-
tained, the eigenfunctions were inspected at several computed ei-
genvalues.

An interesting observation is that for wave numbers below about
0.3, the effect of heating results in an increased stability of the flow.
The same type of behavior is evident in Fig. 8 where neutral stability
curves for a Prandt] number of 7 are presented. This stabilizing effect
of heating may be due to a “phase shift” type interaction between the
velocity and temperature fluctuations. This means that at these lower
wave numbers, the inertial and thermal mechanisms strive to create
disturbances of different vertical magnitude. If the temperature
fluctuations are such that at certain regions in the boundary layer,
the vertical velocity fluctuation would have to do work against the
gravity vector, this would constitute a damping force, thus resulting
in increased stability.

Typical eigenfunctions for the two Prandtl numbers are presented
in Fig. 9. Those at the higher Prandtl number are seen to display
considerable distortion from their unheated values.

Conclusions

The study reported here was undertaken to provide further infor-
mation on the combined effect of body forces in laminar transition.
The results indicate that the parallel flow assumption as well as ne-
glection of higher-order curvature terms may lead to erroneous results
in the computations of Gortler instability. The effect of the vertical
velocity component of the primary flow is to stabilize the flow if di-
rected toward the wall and reduce it if directed away from the wall.
The effect of heating if assumed small enough, are to destabilize the
flow to disturbances of small wavelength but result in increased sta-
bility to those of long wavelength.

The results should provide useful information in developing non-
linear theories of boundary-layer transition involving body forces.

Gr = 750

Pr =0.72 Ag =0.664

Fig. 9 Selected eigenfunctions for curved heated Blasius profile
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Stability of Poiseuille Flow in Elastic

This paper presents a theoretical analysis of the temporal and spatial stability of
Poiseuille flow in elastic tubes to infinitesimal axisymmetric disturbances. A cylindrical
shell model which includes the effects of transverse shear and rotatory inertia is employed
for the tube wall. The characteristic equation of the system is solved numerically and two
sets of modes are obtained; one set has eigenvalues that are independent of the properties

and dimenstons of the tube wall, while the other set has eigenvalues that depend on the
tube parameters. One mode of the “tube-dependent” set is shown to have a critical Reyn-
olds number that depends on the elastic properties and dimensions of the tube and either
wave number or frequency of the disturbance.

Introduction

Previous analyses of the linear stability of Poiseuille flow in a cir-
cular tube have assumed that the tube is rigid; these studies by Gill
[1],2 Garg and Rouleau [2], and Salwen and Grosh [3], have demon-
strated conclusively that the flow is temporally and spatially stable
to infinitesimal axisymmetric and nonaxisymmetric disturbances for
all Reynolds numbers. Experimental confirmation has been obtained
by Leite [4]. That tube elasticity might be a factor in linear stability
of viscous flow was suggested by recent work of DeArmond and
Rouleau [5], which showed that certain modes of wave propagation
in a viscous compressible liquid confined in an elastic tube were
strongly dependent on the elastic properties of the tube. This effect
upon stability has since been confirmed by Midvidy and Rouleau
[6].

In this present paper the rigid tube assumption is removed, and the
ensuing analysis shows that when the tube is elastic, a critical Reyn-
olds number exists, above which the flow is temporally and spatially
unstable to infinitesimal axisymmetric disturbances.

Spatial stability is emphasized because this corresponds most
closely to physical reality [2]; in the spatial analysis an infinitesimal
disturbance is imposed at a specific location in the fluid, and its
growth or decay with increasing downstream distance provides the
criterion for stability. Temporal stability is also analyzed; in this type
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it is part of the dissertation submitted by W. Midvidy in partial fulfillment of
the requirements for the degree of Doctor of Philosophy at Carnegie-Mellon
University.
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of analysis an infinitesimal disturbance is jnitially applied everywhere
in the fluid, and its subsequent growth or decay with increasing time
determines stability.

The elastic tube is modeled as a cylindrical shell, including
transverse shear and rotatory inertia. Compressibility of the liquid
is taken into account. Values of the critical Reynolds number are
calculated for typical sets of parameters.

Basic Equations

The motion of a compressible Newtonian liquid subjected to in-
finitesimal disturbances is described by the continuity and Navier-
Stokes equations, linearized by neglecting the product of disturbances
(perturbations) with themselves or their derivatives, and by the
equation of state

(1)

where p, p are the liquid pressure and density, respectively, and c; is
the speed of sound in the liquid. These equations are made dimen-
sionless with respect to the inner radius of the tube rp, the maximum
velocity of the mean flow V and the mean density of the fluid p.

The infinitesimal arbitrary disturbances are synthesized by a
Fourier series; in view of the linearity of the governing equations it
is sufficient to examine each Fourier component separately in the
nondimensional form

#(r,z,t) = Re [¢(r, 2, £)] = Re [¢(r) exp (kz — iwt)] (2)

where ¢ is a disturbance quantity, r, 2, and ¢ are the nondimensional
radial, axial, and time coordinates, respectively, Re denotes the real
part of a complex function, ¢ is a preliminary complex solution, ¢(r)
is a complex eigenfunction, w = w, + iw; is the complex frequency, k
= k, + ik; is the complex axial propagation constant and i = v'—1. For
a spatial stability analysis, w is specified real and k is the complex
eigenvalue to be found; depending on whether k, is positive, negative,
or zero, the flow is unstable, stable, or neutrally stable, respectively.
For a temporal stability analysis, k is specified imaginary and w is the
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