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A Force Field Theory:
Part 1. Laminar Flow Instability

Josnua C. ANYIWO*
Colorado State University, Fort Collins, Colo.

A force field theory is stated, namely, that: “The dynamic characteristics of a body in motion are completely
determined by the forces (external and internal) acting on the body, either instantaneously or over a period in time
or space.” This theory facilitates the definition of a generalized Stability Number in terms of the Engineering
Numbers that characteristically describe flows. It is shown that, as defined in this paper, the Stability Number
and the position parameter are the necessary and sufficient parameters for describing the dynamic characteristics
of flows, in general. Any flow becomes unstable to applied disturbances if the local Stability Number is greater
than N¢(I,), where N is a numerical constant and ¢(/,) is a function of the wall and freestream disturbance
intensity. The value of N depends on whether the boundaries of the flow are rigid-rigid, rigid-free or free-free.
N = 103 for rigid-free boundaries. The great simplicity and accuracy of this method makes it by far the most
practicable for estimating flow instability.
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G = Gortler number, Re,(0/r,)''?
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Introduction

OST analytical studies of fluid flow confine themselves to
finding exact or approximate solutions to simplified forms
of the Navier-Stokes equations. This approach has so far been
very difficult and, in terms of practical useable results, very in-
efficient. Without doubt, the analytical solution of the governing
equations of general fluid flow is very desirable. However, in the
light of the inadequacy of current mathematical tools for tackling
this problem, one must begin to think of more tractable
alternatives which yield satisfactory and useable results. This
paper pursues such an alternative, using the force field theory.
The basic Navier-Stokes equations were derived from
Newton’s fundamental principle relating the external force on,
and the acceleration of, a body in motion. This fundamental
principle implies the force field theory namely that: “The
dynamic characteristics of a body in motion are completely
determined by the forces (external and internal) acting on the
body, either instantaneously or over a period in time or space.”
Thus, if one can describe the instantaneous or average force
field prevailing on a body, one can readily determine the complete
instantaneous or average characteristics of the motion of that
body. It would seem that a limitation to the force field approach
would lie in the difficulty to completely describe a force field.
However, the net force on a body can always be decomposed
into a driving force on the body and a resistive force due to
the body. The ratio of the driving to the resistive force provides
adimensionless descriptive quantity for the local force field on the
body. Thus, if one can locally or sectionally describe the above
ratio, one has locally or sectionally defined, quantitatively, the
prevailing force field.

It appears clear, that explicitly, the force field theory
emphasizes the “tenacity” or “cohesiveness” of a fluid in motion.
A high “cohesiveness” means that conceptual fluid particles are
strongly bonded together, so that external perturbations on the
fluid are strongly resisted. This situation will be taken to
correspond to a large force field. This rather odd definition of
the force field is adopted in this paper in order to emphasize
that, for the stability of a flow, the force of primary interest is
that due to the fluid reaction to external impressed forces. If
this resistive force is large, the flow is stable to perturbations.
A zero force field corresponds then to the situation of a
critical “cohesiveness” for which the fluid could resonate to
certain types of disturbances present in it. Since a negative
“cohesiveness” is physically meaningless, a fluid must readjust
to increase its “cohesiveness” whenever the property tends to
disappear. This is precisely what happens in the transition from
laminar to turbulent flow. The fluid undergoes a phase change
with respect to its cohesive property. The same situation is
observed on a more severe scale in the phase change from
liquids to gaseous state or vice versa.

Unlike the approach of seeking analytical solutions to the
Navier-Stokes equations, the force field theory permits a philoso-
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phical pursuance of the general flow problem, using physical
analogies and the abundant experimental results available. This
paper discusses the general force field theory and its application
to the simplification of the laminar flow stability problem.
Generalized stability criteria are derived in an amazingly simple
manner and yield rather excellent results when applied even to
the most general type of flow problem.

Force Field Concept of a Stability Number

The force field prevailing on a fluid may be described by the
local forces as follows.

Local Force Field =
¥, (Local Driving Force, Local Resistive Force)

If one focuses attention on planes perpendicular to the stream-
wise direction, then in dimensionless form, for a two-dimensional
flow:

Force Field =
¥, (Section Driving Force/Section Resistive Force, #)

where = y/A and A is a suitable scaling length. Since the force
field theory implies that the stability characteristics of a flow are
determined by the prevailing force field, one may appropriately
define the dimensionless force quantity in the above expression
as the flow Stability number. In general, one may then write:

Stability number =
(Net Driving Force/Net Resistive Force) = Sn

Hence, Force Field =y,[Sn,n]. Thus, the necessary and
sufficient parameters with which one may describe the general
dynamic characteristics of any flow are the section flow Stability
number Sn and the dimensionless position » as defined above.

Stability Number for Particular Flows

Consider the two simple one-dimensional flow problems
sketched in Figs. (1a, 1b). The first problem is a one-dimensional
flow along a horizontal plane, Fig. (la). For this case, the
prevailing force field is determined by the inertial and resistive
(primary viscous) forces. Thus, the descriptive force quantity,
Sn, is the ratio of the inertial to the viscous force, conventionally
called the Reynolds number U,A/v,. U, and v, are respectively
the reference velocity and kinematic viscosity and A is a suitable
scaling length. If, in addition, heat- and mass-transfer occur at
the boundary of the flow sketched in Fig. (1a), the net driving
force may be distinguished as the algebraic sum of an inertial,
and a buoyancy force and a force associated with the momentum
imbalance due to mass transfer, in the streamwise direction. It
can easily be verified that the ratio of the streamwise component
of the force associated with the momentum imbalance due to
transpiration or aspiration, to the streamwise viscous force is
given by Ax = (U A/v)(r,/U,). where v, is positive for transpira-
tion. The ratio of the streamwise buoyancy force to viscous
force will simply be called the x-Rayleigh number, Ra,. Thus, the
Stability number for the horizontal one-dimensional flow with
heat and mass transfer at the boundary is given by

Sn, = [Re,(1+vo/U,)+Ra,] (1
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Fig. 1 Schema of boundary-layer sections.
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Fig.2 Functional relations between (U ,5*/v),; and the shape factor, H.

The second flow problem considers the force influence in the
vertical direction only. If there is no heat or mass transfer at
the boundary, but the boundary is curved, the descriptive force
quantity in the vertical direction would be the ratio of the
centrifugal force to the vertical viscous force. That is, the Taylor
number, Ta (=2CRe,2), where C (=A/ry) and ry is the wall
radius of curvature which is positive for concave curvature. If
heat- and mass-transfer occur at the boundary, then the net
driving force in the vertical direction is the algebraic sum of a
centrifugal and a buoyancy force and the vertical component of
the force associated with the momentum imbalance due to mass
transfer at the boundary. Again it may easily be verified that
the ratio of the vertical component of the force associated with
the momentum imbalance due to transpiration or aspiration, to
the vertical viscous force is given by Ay = (v,A/v,)*. The ratio
of the vertical buoyancy force to the vertical viscous force is the
y-Rayleigh number, Ra,. Thus, the Stability number for the
vertical one-dimensional flow with heat and mass transfer at the
boundary is given by

Sn, = [Ra,+ Ta+ Ay] )

A Generalized Stability Number for Two-Dimensional Flows

In the more general two-dimensional flows, the force field
becomes slightly more complicated to describe. However, the
net driving force components, Fx and Fy, may be distinguished
forthe streamwise and vertical directions, respectively. Associated
with these driving forces are net resistive forces (primarily
viscous), Vx and Vy, due to the fluid. One may therefore want
to write that the appropriate Stability number is given by

Sn = [(Fx+ Fy2)/(Vx2+ V]2 3)
which is the ratio of the vector sum of the driving forces to the
vector sum of the resistive forces. Equation (3) is, however, in-
complete, as it omits the qualitative effect of the resultant force
direction. Suppose that the resultant force makes an angle Q with
the streamwise direction, where Q is positive if Fy is in the
positive y direction. If the streamwise direction is defined, the
influence of the sign of the angle Q is contained in the vertical
forces Fy and Vy. A new force ratio, Fy2/(Vy*+ Vx?), is the
more appropriate force quantity to use for the vertical direction
because in the physical flows, the instability modes are very
sensitive to the direction of Fy, and it should not suffice to
define this direction separately from Fy. Thus,
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Sn = [Fx?/Vx*(1+Vy*Vxh)+ Fy?/Vy*(1+ Vx2/VyH]H?: @)
where Fy and Vy are, respectively, the vertical driving and
resistive forces redefined to include the qualitative influence of
the sign of Q
Fx¥/[Vx¥(1+ Vy?*/Vx*)] = Sn}/[14+0(Re, *)] = Sn,’

&)
Fy¥/[Vy¥1+Vx*/Vy*] = Function {Sn,/[1+0(Re,)]. sign Q}
A function of two variables can usually be expressed in powers
of the one variable with functional coefficients of the other
variable. Thus
FyY[Vy*(1+ VX2 /VyH] = a,Sn,+a,Sn>+asSn )’ + -+ (6)
where g, is a function of sign Q divided by a quantity of order of
magnitude Re,’, and i=1,2,3.... It is clear that, for i> 1,
a,— 0, rapidly, for noncreeping flows. Thus, only the first co-
efficient a, of Eq. (6) may be appreciably different from zero if
Re,} is not small. Hence, one may define a generalized Stability
number for two-dimensional flows, away from the flow entrance
region, as follows:

Sn = [Sn,*+a,Sn,]"? (7)
where Sn, and Sn, are as previously defined and a, = const/Re,.
The above result is similar in form to one obtained by D. D.

Joseph! using a variational method for plane Couette flows
heated from below.

A’ Generalized Stability Criterion for Boundary Layers

Equation (7) indicates that for a simple two-dimensional
flow with no heat- or mass-transfer at the boundary the
generalized Stability number reduces to the Reynolds number,
(U, A/v,). Conventionally one uses the freestream velocity as
U, and a boundary-layer thickness as the scaling length A. One
soon finds, however, that with such a Reynolds number the flow
characteristics depend on the mean velocity profile shape factor
as well as on the Reynolds number. According to the force field
theory, the flow should depend only on the local Reynolds
number. It will thus be desirable to define a Reynolds number
which implicitly contains the influence of the velocity profile
shape factor.

Let the freestream velocity, U, be retained as the reference
velocity. Figure 2 shows a plot of the critical Reynolds number
against the mean velocity profile shape factor for a fairly wide
class of flows as taken from Rosenhead.? A best fit curve for
these data may easily be obtained if the shape factor parameter,
(10/H —4), is used. With this parameter one obtains from Fig. 2
that

log, o(U,5%/v); = 3+2.34tanh (y) @®)

where y = (10/H—4) and the subscript ci denotes values at the
point of neutral stability. Equation (8) may be rewritten as:
(U,8%/v)107 234 wnh ) = 103 at the point of neutral stability.
Thus, if a new length scale, A = §*[10~ 234 @nh (0] s defined,
a universal constant value, 103, is obtained for the critical
Reynolds number U, A/v, at the point of incipient laminar
instability. For a general two-dimensional flow, then
Sn, = [Sn2+a,Sn;),,'/* = 10° 9)
With A = 5*[10—2.34 tanh(lO/H‘4)].
An attempt will now be made to formalize this universal
stability criterion. Consider a two-dimensional laminar flow in
which, somehow, a perturbation has entered such that the

velocity components can be represented by a mean portion and
a fluctuating portion, whose mean is zero. That is

u=u+u, v=0+v, w=0+w (10)
Consider, further, a control volume whose dimensions are pro-
portional to the dimensions of the local disturbance length scale,
J. If the local amplitudes of the disturbance in the control
volume are, in the relevant Cartesian coordinate system ', v, and
w which may be finite or infinitesimal, the stability problem
reduces to finding the conditions under which these amplitudes
will be sustained and amplified, or damped out.
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The characteristic local fluctuational velocity scale within the
control volume is related to the rms velocity,
J=[([u?)+ 2y +(w2)a]2 (11)
Also, the characteristic period which specifies the order of
magnitude of the time required for the occurrence of a fluctuation,
is related to A/J. The energy of the fluctuation in the control
volume mentioned above is derived from the main flow, through
some mechanism, and manifests itself as primarily kinetic energy.
When the fluctuation occurs, its energy, per unit mass, is pro-
portional in order of magnitude to J2. The fluctuational energy
per unit time and mass is therefore of order of magnitude
J?/(4/J). Thus, when a fluctuation occurs, the amount of energy
which goes over from the main flow to the fluctuation in the
control volume, per unit time and mass is equal in order of
magnitude to J3/2. The same result may be obtained from the
primary production of turbulence term, u;u /(0;/0x ), if Prandtl’s
mixing length argument is used to show that (04,/0x ) is given
in order of magnitude by the ratio J/1. The previous derivation
is, however, more gencral than this latter alternative. The
fluctuational energy dissipation in an incompressible flow with
velocity fluctuations is given generally, per unit time and mass,
in Cartesian tensor notation by:

& = v{(0u;/Ox ;+ uj [Ox,)(Cu; [Ox ) (12)

Ifit is assumed that the local velocity gradients of the fluctuations,
du;'/éx;, ete, are given by the ratio, J/4, of the local scale
values, then the energy loss by fluctuations in the control volume,
per unit time and mass, is equal in order of magnitude to
vJ?/2%. 1f all other perturbations on the energy of the main
flow in the control volume are small compared to those
mentioned previously, then the fluctuation in the fluid will be
sustained only if the production quantity is greater in magnitude
than the dissipation quantity. Growth of the fluctuation implies,
in the conventional sense, instability of the flow. Thus, the flow
in the control volume is unstable if

J3/A > vJ?/A? (13)
If vertical distances are nondimensionalized with the
characteristic length A and all velocities nondimensionalized

with U,, the instability criterion (13) may be reduced to the
following form:

U, Ay > 1/I}/A) (14)

where [ is the local disturbance intensity defined as I = J/U,.
The inequality (14) indicates that for the fluctuations in a flow
to be sustained, the appropriate dimensionless force quantity
for the flow must be greater than some function of the local
disturbance intensity, I, and the local dimensionless disturbance
length scale, (A/A). Thus, in general,

Sn < y(l, /A (15)

for flow stability.

At the critical layer, it is quite legitimate to assume that
A/A is approximately constant. This quantity, /A, contains the
influence of the over-all mean flowfield. Further, the local
disturbance intensity, I, depends on the freestream and wall
disturbances, as well as on the local force field. Thus one may
write that, for general flow stability,

Sn < N®(I,,1,) (16)

where I = freestream disturbance intensity, I, = intensity of
disturbances characteristic of the wall, and N = numerical
constant, whose value depends on whether one has rigid-rigid,
rigid-free or free-free boundaries.

The aforementioned relation is in agreement with the result
obtained earlier in this section. The deduction was made from
analyses on flows of various mean velocity profile shapes that, if
Ais used as the characteristic length, a constant value is obtained
for the critical stability number, for laminar flow stability. Since
the best fit curve used to evaluate the constant matched the
flat plate experimental result, Re,, = 420 for Blasius profiles,
it may be rightly assumed that the flows analyzed simulated
physical flows with freestream disturbance intensities in the
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Fig. 3 Influence of Prandtl number on critical Rayleigh number for
laminar flow instability.

neighborhood of I, =0.01; this value being the average value
for the experiments that yielded the result, Re,, =420 for
Blasius profiles. The effect of wall disturbances is rather difficult
to define. Experiments such as that of Schubauer and
Skramstad? indicate, however, that for aerodynamically smooth
walls, wall disturbance effects are very small, compared to
I, = 0.01. Thus, the relation (16) may be rewritten as follows

Sn < 103(1,) (17)

for laminar flow stability. That is, N = 10® for rigid-free
boundaries. From relation (14), ¢(I,) must be a decreasing
function of I,, and from (17), ¢(I,) must be of value close to
unity for I, in the neighborhood of 0.01. The proper formulation
for ¢(I,) is given in Pt. II (Ref. 4) of this series. An
approximate estimate was given in Ref (5) as ¢(,) =
1/(L+2801 ). Relation (17) may be recast in the following
more conventional form, using the formulation for Sn:

Rex < {¢2(ll)—b(Ray+ Ta+Ay)}'2E[(1+v,/U,)  (18)
for laminar flow stability, where b is a numerical constant which
corresponds to the value of a,/10° at the point of neutral
stability, and & = 10137234 =nh 0} The constant b may be fixed
from the result for critical Reynolds number for asymptotic
suction profiles. For such profiles, the critical Reynolds number,
U,6*/v, for laminar flow stability has been calculated to be
between 4 x 10* and 7 x 10%, notably by C. C. Lin,® Iglisch,” and
Ulrich.® Equation (18) indicates that for a flat plate with suction
and no heat transfer at the plate, the critical Reynolds number
is given by

Re,, . =(1—bAy)E (19)

for moderate freestream disturbance intensity, I, = 0.007. The
asymptotic suction profile corresponds to the case Ay =1,
H =2 and (—v,/U,)U,x/v) = . Using a value for Res, .
between (4 and 7) x 10* in Eq. (19), one obtains that the constant
b has value in the neighborhood of 0.027.

The following generalized stability criteria may now be stated.
For laminar flow stability

Sn < 10°¢(1,) (20)
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or 3600 —
Re,, < {¢*(1,)—0.027(Ra,+ Ta+ Ay)} "2 (1 +0,/U}) (21)
3200
Results Using the Generalized Stability Criteria | :
The generalized stability criteria have been stated in the above H
. ; L . . 2800 1 1]
section. The following principal results have been obtained, using tl
the criteria, for various types of flows. 1l
1
Flows with Heat Transfer at the Wall (Stratified Flows) 2 2400 m =~ REF 18 'l l
If the influence of the freestream disturbance intensity is 3 (PIre:sSnc;oMoee’)hOd ! }
negligible, then for a flat plate flow with heat transfer at the B o H=261f ! =2, H=2.59
boundary the stability criterion (20) reduces to the following: g 20001~
z
Re,2 427 x 10°Ra, < $*(I ) x 10° (22) p
for flow stability. If the Rayleigh number is based on the depth % 1600 -
of the major unstable layer, the above relation becomes «
approximately 3
Ra < [¢2(11)/(H3PI‘)] % 10:4.8+7.02lanh(10/1174)} (23) S 1200 |

for flow stability, where Pr is the Prandtl number. In obtaining
the inequality (23), it has been assumed that

d(thermal) = [1/(1.026Pr'*)]6(momentum) (24)
after the manner of Eckert and Drake.®

For a Blasius velocity profile with a Prandtl number of
unity, one obtains that the critical Rayleigh number for laminar
flow stability is of the order of 300. Figure 3 shows a chart
of the Prandtl number effect on the critical Rayleigh number,
for various mean velocity profile shape factors.

No experimental data appear to be available for this type of
flow with which to compare the present result. Some numerical
results, nevertheless, have been obtained by other workers, for the
related case of penetrative cellular perturbations in a horizontal
layer of fluid composed of a layer of unstable density gradient
above which is a layer of stable density gradient. For the
classical rigid-free boundary solution corresponding to the
limiting case of infinite stability on top of the unstable layer,
Chandrasekhar'® gives a critical Rayleigh number based on the
depth of the layer of about 1100. In reality, of course, the
convective cells do penetrate the stable layer. Rintel'! and Stix, !?
have shown that for small stability on top of the unstable layer,
the critical Rayleigh number is much smaller than that obtained
by not taking penetration into account. For various degrees of
such penetrative cellular perturbations close to the limiting case
of infinite penetration, Stix'?> and Rintel,'! obtained critical
Rayleigh numbers based on the depth of the layer of 225 and
172, respectively. Although these results were obtained for no
mean flow, they indicate that the present estimate of 300 for a
Blasius mean flow with unit Prandtl number is very good.

The case of no mean flow may be simulated in the present
work by assuming a Blasius mean flow and choosing a suitable
Prandtl number to obtain the desired temperature profile. This
approximation is possible because the influence of Reynolds
number on thermal instability is of secondary importance at
moderate flow speeds.

If one defines the Richardson number, Ri, as the ratio of
the buoyancy force to the inertial force, it is easy to show
that:

Ri, = —BRa,/Re,? (25)
where L is a characteristics scale length and B is a numerical

constant. The stability criterion (20) can be rewritten, using (25)
in the following form:

Ri, > 042 x 10" *A(1—¢*(I,) x 10°/Re,?) (26)
for stability, where A4 is a numerical constant. As Re, — <o, the
critical Richardson number attains a constant value given by
0.42x 10" *A. Schlichting!® investigated the stability of flows
with density stratification with the aid of Tollmien’s theory.
The calculation was based on the assumption of a Blasius
profile for the case of penetrative cellular perturbations in a
horizontal layer of fluid composed of a lower layer of unstable

400 -

L | l 1 1 1 J
-0l 0] 0l .02 .03 .04 .05 06
i _9dp /18y
Richardson Number, 5 ay [Sy]o

Fig. 4 Critical Reynolds number for stratified flows.

density gradient above a flat plate with a density gradient in
the boundary layer and a constant density outside it
Schlichting!® obtained that the critical Reynolds number, Reg,.
increased rapidly as the Richardson number increased, changing
from Re,, = 575 for Ri =0 to Re,, = o for Ri = 1/24. The
value for Ri = 0 is rather too high compared to the accepted
value of 420. If, however, it is assumed that Schlichting’s
asymptotic result Re,, = oo for Ri = 1/24, is correct for wall
bounded flows, and if the characteristic scale length L is chosen
as the depth of the unstable layer, the inequality (26) becomes
Rigthermaly > (8.81/H3Pr)107-02 @nh 0 [T — (] Yx 10%/Re,?]
(27
or  Re,, < ¢(I)E/[1—0.114H>PrRiy, x 1077:02 w20 for
laminar flow stability. Figure 4 shows a plot of this result for
various velocity profile shape factors, in comparison to
Schlichting’s!? results for the Blasius profile. The present results
show the proper trend, at least.

Flows over Curved Walls

For flows over a curved boundary, the present method
indicates that
Re >+ 54 x 10*Re,2(Afry) < ¢X(1,)x 10° (28)
for laminar stability, where r, is the wall radius of curvature
which is positive for concave curvature. If A/r, is of the order
of 10™* or greater, the influence of wall curvature becomes
appreciable. Otherwise, the flow behaves much like a flat plate
flow. For the case where the influence of wall curvature is not
negligible, the stability criterion (28) may be written as follows

Re, 2(Afry) < 18.52¢%(1 ) (29)
for laminar stability.

In terms of the boundary-layer momentum thickness (29)
becomes

Re,*(0/ry) < (18.52¢%(1,)/H?)107-02 tanh () (30
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or Rey(0/rg}'* < (43¢(1,)/H) 10351 @b for Jaminar flow
stability.

For a Blasius profile, H = 2.6, at moderate freestream tur-
bulence intensity, the above criterion yields that the critical
Gortler number, Re,(0/r,)"?, for laminar stability is 0.30 for
all Re,. For H = 2.59, the critical Gortler number is 0.34.

These estimates compare very well with the values of 0.34
and 0.58 given respectively by A. M. O. Smith!# and Gértler.'?
Figure 5 shows a plot of the critical Gortler number for
various velocity profile shape factors, and Fig. 6 shows the
influence of streamwise wall curvature on the critical Reynolds
number for stability.

Flat Plate Flows with Mass Transfer at the Wall

For this class of flows the stability criterion (21) reduces to
the following:

Re,, < [¢*(1,)=0.027Ay] 2E/(1+v,/U,) 31

for laminar stability. The flows studied by C. C. Lin® and

T. S. Chen et al.,'® have been recomputed using the force field
method. The comparison is shown in Fig. 7. The present estimates
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Fig. 6 Effect of streamwise wall curvature on flow stability.
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are very good. It is clear from the relation (31), that wall
transpiration affects the flow much like pressure gradient. The
major influence is to alter the mean velocity profile shape
factor. Wall suction decreases the shape factor, which 1is
stabilizing, while wall injection increases the shape factor, which
is destabilizing.

Concluding Remarks

This work has been based on a force field hypothesis, which
emphasizes a dynamic fluid property called the “cohesiveness”
or fluid “tenacity.” This fluid property defines the ability of the
fluid to resist perturbations, and appears to be the primary
factor in the determination of flow characteristics. All the pre-
liminary results derived on the basis of the force field hypothesis
show no significant deviation from reality. In fact, the in-
completeness of some previous boundary-layer stability theories
becomes very obvious in view of the force field concept.
Boundary-layer stability phenomena and, indeed, general natural
stability phenomena seem to follow exactly according to this
force field idea. A general force field theory is therefore stated
as follows: “Particles in any system in nature will tend to
execute independent behavior or motion in accordance with their
separate internal force fields except in as constrained by the
prevalent external force field. It requires a steady force field
above a certain critical magnitude to establish “order” among
the particles. The magnitude of this critical force field is pro-
portional to the average internal force field of the particles.”

For the special case of two-dimensional wall boundary layers,
the following conclusions are drawn, on the basis of the force
field theory:

1) The general characteristics of the wall boundary layer may
be described completely, solely by the local “cohesive” fluid
property which is a function of position and section Stability
number. only. The section Stability number for a laminar flow
is given by the following relation:

Sn=[Re 21+ 1'0/U1)2+(I,(R(1),+ Ta+ Ay)]'"?
where a, = 1.1 x 107/Re,,
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Fig. 8 Distribution of the Stability number in a flat plate boundary
layer.

2) The position of incipient laminar instability is given
approximately by Sn, = ¢(I,)x 10> for a length scale A=
§*10Q7 2-34 anh (107H-4) Thig corresponds to

Res, = {pX(1,)—0.027(Ra,+ Ta+ Ay)} 12 /1+v,/U )

In all the arguments in the text, it has been tacitly assumed
that the resistive force is the conventional viscous force. Viscous
forces are inherent forces in fluids which manifest themselves
whenever there is shear, that is, a velocity differential among
the fluid particles. The viscous forces conventionally considered
are those due to streamwise and transverse mean shear. Viscous
forces due to fluctuational shear have not been considered in
this text. Thus, the formulations for the dimensionless force
quantities given previously are valid only for laminar flows
where the fluctuational shear forces are negligible. For turbulent
flows, one must reformulate Sk, and Sn, to include the
fluctuational shear forces. Figure 8 shows the distribution of
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the Stability number, as defined previously, in a flat plate
boundary layer.

All the preliminary results obtained using the deductions from
the force field theory are excellent predictions of real flow
characteristics. The simplicity of these results suggest more
fervent pursuance of the methods of the force field theory.
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