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ABSTRACT

Existing effective viscosity models which have been very valuable
in the mean field closure method for turbulent boundary layer computation
have shown certain undesirable limitations for certain realistic but
general boundary layer flows. The more general flows usually involve
non-negligible considerations of pressure gradients and such wall con-
ditions as roughness, curvature and aspiration or transpiration in
varying degrees of importance. The effects of these external and wall
influences have, unfortunately, been underplayed by most existing

effective viscosity models.

The present model of the effective viscosity is developed for a
general flow and has shown remarkable agreement with experimentation,

without being any more complex than existing models.






EFFECTIVE-VISCOSITY MODEL FOR TURBULENT
WALL BOUNDARY LAYERS

1. INTRODUCTION

The use of an effective viscosity assumption provides closure for the
turbulent boundary layer equations of motion for enhanced mathematical
treatment. Boussinesq introduced and assumed a linear relation, of the
same form as the Newtonian Law of friction, between the Reynolds shear
stress and the mean velocity gradient. The coefficient in this linear
relation has since become known as eddy-viscosity. Although the concept
of the eddy-viscosity, and worse still, a constart eddy-viscosity, is
physically unsound, it nevertheless allowsrreliable and useful predictions
to be made for most types of flows. One is thus compelled to ignore the
lack of physical rigor.

An effective viscosity may therefore be defined as the sum of the
kinematic molecular viscosity, and the eddy viscosity.

i.e. v =v +¢ 1.1
e

If, further, it is assumed that the effect of wall roughness is very
similar to the effect of the molecular viscosity on the flow, so that an

apparent kinematic viscosity , v, » may be defined, then:
v =v_ + ¢ 1.2

The form of equation (1.2) may then be used to reduce the turbulent
boundary layer momentum equations to a form similar to the laminar case,
which is closed and soluble by some mathematical techniques. The form of
the eddy-viscosity is difficult to establish especially near the wall.

Many models of the eddy-viscosity have been introduced for the wall
region of the boundary layer. Reichardt®, for instance, assumed the
following:

+ v’
E=K(y+— §; tanh —) 1.3

v 8
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on the basis that in the boundary layer, the eddy-viscosity, € , increas-—

, +3 + . . . .
es with vy as y = 0, and changes monotonically into a linear function
+
of y as the region beyond the overlap region is approached, Deissler6
tried to take account of a turbulence diminishing toward the wall and sug-

gested the relation:
-3—= au+y+ [ 1 - exp (- au+y+ ) ] 1.4

Where, a , is a numerical constant. This relation gives an eddy viscosity
which is proportional to y+q in the inner wall region. Van Driest7, on
the basis of a modified Prandtl's mixing length, suggested the following
form

e =xk292 [ 1 - exp ( - yf/A ) 12 | %%— 1.5

where A = 26 for the zero pressure gradient flow along a smooth wall.
This relation also approaches the wall as y+“. The more familiar recent
additions to the eddy-viscosity models for the inner wall region are the
models due to G. Mellor and A.M.0. Smith and their colleagues. Mellor
gg_gl?’lq argued that in the wall region, the eddy-viscosity is a univer-

sal function of vy, EE-, and the molecular viscosity, v , which can
oy

be represented by the functional curve
e —
e x4/ (x3 + A3) 1.6

where Y = %X\/ET_: and A is a constant ( = 6.9). The form of equation
(1.6) is as yet the most satisfactory form of the eddy-viscosity introduced
for the wall region, and except in severe cases, it is only very slightly
affected by pressure gradients and wall conditions.

Smith et al.,1»2 modified the Van-Driest model in the inmer wall
region obtaining an analytical relation for the general variation of the

turbulence function A.



3
€ = k2y2 [ 1 - exp (-yf/A+) 12 | 5%‘ 1.7
-1/2
3
Ry + +
where A+ =26 { - [exp (11-8v ) - 1-] + exp (11-8V))
V+ o o}
o

In the outer region of the boundary layer, not many changes have been

made to Clauser's original assumption of a constant eddy viscosity,

( == 0.018). Mellor et al.,14 assumed a constant value of £ = (0.016 ,
U16 _— = UiG*
which they said could be modified by the curvature of the wall in the fol-

lowing manner:

£ = 0.016 [1 - a* 2% 1.8
U16* . r '

where A% is a numerical constant.
Smith gE_gl.,z modified their outer region constant eddy viscosity

with an intermittency factor and thus obtained:

T 5% = 0.0168 [ 1+ 5.5n° ]'1 1.9
Most other researchers in this field have simply chosen a constant in the
neighborhood of 0.018 which satisfied their particular kind of flow.

In the overlap region of the turbulent boundary laver, Smith
gglg;.z applied the constraint of continuity of the eddy-viscosity from
the wall outward. Their wall eddy viscosity function however approximates
a linear function of y  1in this region. Mellor g&_gl.l“ assumed that

the eddy viscosity in the overlap region must be some universal



function of vy , and UlG* (chosen as a suitable scaling parameter),

cu
3y
and obtained the following linear function:

€
g er - ¥R 1.10
Earlier, Rotta® had assumed that the mixing length at y = 0 is not
necessarily zero (especially in rough-wall flows) but has some finite
value Ko . Hence the applicable mixing length in the transition region
should be £ = ﬁo + ky.

U

. e _ 2 | 9u * 1.11
i.e. 16* (Ko + xy) .I 3y | / U16

Most of the models introduced here have been obtained essentially
on the basis of wide experience with turbulent boundary layers, leading
to intuitive guesses that satisfy some boundary constraints and approximate
turbulence characteristiés on a large scale. In fact, all the wall eddy-
viscosity models, including the one presented herein, are curve fits
scaled on suitable wall region parameters. Fortunately the wall region
boundary layer is virtually insensitive to external influences, so that
curves for the eddy-viscosity obtained in that region give the illusion
of a universal character.

In the overlap region of the turbulent boundary layer, the
dimensionless eddy-viscosity (e/Ulé*) appears to be a linear function
of y+ as assumed by all the models. The influence of external and wall
conditions on the eddy-viscosity in this region is only quantitative,
linearity still being maintained, as the overlap region is virtually a
constant shear stress region.

All the models except that of Smith gz_gl:,l,z assumed a constant

value for the non-dimensional eddy-viscosity in the outer region of the



boundary layer. Clearly the eddy-viscosity is not a constant in this
region but decreases far from the wall across the zone of intermittency.
When corrected for intermittency, a sizeable portion of the outer bound-
ary layer shows a fairly constant value for e/UIG* . Hence the assump-
tion of a constant outer region eddy viscosity will not be expected to
have a large influence on predictions of velocity profiles except in the
outermost region where, anyway, the vertical gradient, 3u/3y , of the
velocity is usually very small. In predicting shear stress distribu-
tions; in diffusion problems and generally in problems involving large
gradients of mean quantities as in the atmosphere, the use of a constant
outer eddy viscosity should be noticeably erroneous. Moreover, all
experimental data indicate that the outer region eddy viscosity is not
only intermittency controlled but is also quantitatively dependent on
streamwise pressure gradients and wall condition. The reader is
referred to the data of Moffat g}_gl:,ll and Fraserlo. This is obvious
also from an examination of the boundary layer momentum equations for
the outer region. Only in the simple case of fully developed channel

and pipe flows can a constant eddy-viscosity be compatible in the outer

boundary 1layer.



2. THE EFFECTIVE VISCOSITY IN WALL BOUNDARY LAYERS

Having reviewed the developments in boundary layer eddy viscosity
modélling, we will now try to establish a satisfactory functional form for
the effective viscosity in the wall boundary layer. The effective visco-
sity was defined as:

v =v + ¢ 2.1

where, v, is the apparent kinematic molecular viscosity due to wall

roughness.

It is clear that what we are trying to do by defining, A is to
increase the effective viscosity close to the rough wall. In that case,
we can alternatively effect all such changes via the eddy viscosity.

If the roughness geohetry is such that an equivalent Nikuradsel? sand
roughness height, kS , can be meaningfully defined (i.e., flow effects

and turbulence mechanism are preserved, under the transformation) then

we may define an augmented dimensionless vertical distance.

=_'\<7(Y+ks) ViTo 2.2

Certainly, if we cannot mathematically model the roughness geometry by
some transformation which preserves turbulence mechanism, we cannot hope
to obtain a mathematical model of the roughness influence on an effective
viscosity. Perry and Joutert!3 discuss an alternative approach to model-
ling the apparent viscosity.

In the wall region of the boundary layer, perhaps the best way to
look at the problem of the eddy-viscosity form is a method used by
Meroneyl®. Meroney obtained an expression for the Reynolds shear stress
distribution near the wall, by a Taylor series expansion of the total
flow velocity. If such an expansion is repeated for the wall boundary

layer as defined in the present study, one finds that:



- Vo 2 1 dUl 3 L
(L : - (L . = - —_ . -
u'v ln/u4 (\) ) 3] (voul Ul dX) y + [5\)115 Vou4]y + ...
2.3
i
where u, = %T-é—g
i il i
ay y=0
From (2.3) it is seen that:
1 Vo ) U1 du u4 5 u4 u5 \
€=g(v—) (vo-q—d—x-)—4va'£y+ Vo-lq—S\)-u—l-y+... 2.4

It will now be assumed that at the wall where the Taylor series expansion
is valid y® 1is very small and may be dropped from equation (2.4), or

in non-dimensional form,

v+2 3 3 V+Z
Ui5* = ¢, = gig (v: - FUI ) ~ 42 %E;-+ Kgs* X" 2.5
where
g = @ty and F = 2 Y 2.6
U3c3  ay" =0 Uz dx
From equation (2.5) it becomes clear that the wall conditions have

a direct influence on the form of the eddy-viscosity in the wall region.
In the absence of wall effects, the eddy-viscosity at the wall is pro-
. +3 . . . +n
portional to Yy , but is otherwise proportional to y , (3<n<4).
In the transition region of the turbulent boundary layer, the eddy visco-

sity is directly proportional to Y and may be written as

£ =¢t=§-g——x 2.7

1 8*

where, g , is a simple functional constant for any particular flow
through which pressure gradients and wall conditions quantitatively

affect ¢t .



Except for the functions, Z and g in equations (2.6) and (2.7),
we have now obtained the functional relations for the eddy viscosity at
the wall and in the overlap region of the turbulent boundary layer.
Since the eddy viscosity function must be continuous from the wall out-
ward, we will now fit an empirical curve to the two relations repre-
sented by equations (2.5) and (2.7). On the basis of the power law

behavior observed in equation (2.5) and (2.7) we postulate a curve of

the form
4 3
¢ = >\1 X + >\2 X . _].'_ 2 8
R T B (N Ik
where
_ + _ 2 +o + _ +3 + _
Xl =V, {g A v (VO FU1 ) /K] /(v0 4x/A) 2.9
(4ge/A - 4av 2 (v - FUTY)
2. %2 + +3 o o] 1
Az = {A v (v. - FU.") -
o] 0 1

(v; - 4x/A)

For the curve of equation (2.8), the function, g , varies with y by

about 0.5 about the value unity, such that we can empirically approxi-
mate g by

3+ 3
g=1+10.031 x 10 (vo x) 2.10

For this value of g , the value of A which consistently gives the
best fit for a number of experimental results is A = 7.2. Herring and
Mellon used a value of A = 6.9 in the absence of additional corrections
on g . With these estimates, the wall region effective viscosity for

the general turbulent wall boundary layer is satisfactorily described by
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2
3 u__ Bu 3 duy 3 . cuv , _ 3 ,cu
o j_-v - —_— V) - ) \
oy [(1 - cy) Bx] + oy ( By) 3y (1 - cy 9x "1 - cy
1,1
13 3 1 _232 du _gigrly & (S
T pox 9y (1 - cy) * dy Vay "~ " dy "1 - ¢y 2.13

where c(=1/r0) is the wall curvature, and is positive for concave
curvature. In the absence of pressure gradients and wall effects,

the outer region eddy viscosity is adequately represented by

ﬁ"§¥'= 0.016 x An Intermittency factor.

1

In that case, if we assumed a suitable power-law velocity profile,
Eq. (2.13) can be analyzed further to yield the following outer region

effective viscosity profile (See Appendix for analytical details):

v 0.0 ad* Vo §* « 4 '
¢O = n-lé—* .016 Y(l""l’] }—o—-) 1+(bﬁ; —dFR6*+m;; -h§ q(l/ro))f(n)

2.15

where Yy = an intermittency factor (=1/(1 + 5'5n®)) and a, b,
d, m and h are numerical constants.
For the cases of interest, the streamwise gradient of curvature is

usually very small compared to the remaining terms in Eq. (2.15). Hence

we finally obtain by comparison with experimental data of Fraser!®, that:

b

6* vo 6*
¢ = 0.016 y(l+an—) [1+(2'8 — - FR_ + m—) f(n) 2.16
o) Lo U1 8 ro

where f(n) = 500 sinh(n) , and a * 12-1 .



Vo =R + +1 2.11
8% | [7°23 + %3]  [7-22 + 2]

where

>
]

+2 + +3 +,, .+
1 [g - 126vo (vo - FUl J vo/(vo - 0.23)
2 126v" - 15-6) (vF - FUT) - 0.23g] /(v - 0.23)  2.12
o= Vo o Yo T 701 M= o : ‘

With reference to the data of Fraser!?, the eddy viscosity profile
in the outer region of the turbulent boundary layer shows a distinct
trend with the streamwise distance, x , which, however, may be
diminished by non-dimensionalizing the eddy diffusity, e , with
Uld* . A slight trend with x is still noticeable probably because
the displacement thickness, 6&* , calculated in the conventional way,
does not adequately represent the growth influence of the turbulent
boundary layer especially when wall effects and external conditions
on the flow are severe. Moreover, the eddy viscosity profile shows
definite dependence on the external and wall conditions, i.e., pressure
gradients, transpiration, etc., on the flow. Examination of the momen-
tum equation of fluid motion shows that the effects of transpiration,
etc., on the eddy viscosity are local, not history-oriented as one

would naturally anticipate. The experimental results of Fraser!®

also confirm this.
In the orthogonal system of parallel curves Fig. (6), the
vorticity transport equation for two-dimensional fluid motion can be

reduced to the following approximate form, for the outer boundary

layer:



11

Interestingly, Eq. (2.16) reduces to a form previously suggested by
Mellor 93.5l-»3 (except for an additional 6*/rO factor), in the
absence of pressure gradient and wall transpiration. The constant,

m , has not been evaluated in the present work because adequate curved
wall data were not available to the present authors. In the con-
tinuing research on analytical boundary layer predictions, the results
of a mean turbulent closure method will be regressed to compute the

constant, m , and to modify the present model for cases of thermally

stratified flows.
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3. COMPARISON WITH EXPERIMENTAL RESULTS

Prior to the formulation of the present effective viscosity model,
one of the most satisfactory effective viscosity models in turbulent wall
boundary layer computatién appears to be that due to Herring and
Mellor!". The forms of the Herring-Mellor model and the present model
are compared against the experimental measurements of Moffat et al.,!!
in Fig. 1. The boundary layer studied by Moffat et al., is due to a
highly accelerated flow with wall transpiration. It seems obvious that
the Herring-Mellor model is most satisfactor& only for simple flat-
plate flows without mass transfer at the wall. When pressure gradients
and wall transpiration may be considered, the Herring-Mellor model
under-estimates the viscosity of the flow especially in the inner wall
region and the outermost region of the turbulent boundary layer. The
present model provides an accurate description of the inner wall region
since it is tailored to obey the governing differential equations at the
wall, but suffers a negligible deviation in the lower overlap regiom.

The matching point between the inner wall and the overlap solutions
fluctuates with the type of flow and is not exactly fixed by the present
curve fit, However, apart from this small deviation in the overlap region
of the boundary layer, the present model shows a much more satisfactory
fit to the experimental results of very general types of flows. Further
illustration of the superiority of the present effective viscosity model
over previous models is obtained from the direct use of the models in
boundary layer computations. The computer program of Herring and Mellor3
was used for all computations, with modifications only in the effective

viscosity models.
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The example used is the imcompressible boundary layer flow studied
by Moses!®, which was used at the Stanford Symposium on the ''Computation
of Turbulent Boundary Layers." The first portion of the flow is in an
adverse pressure gradient. Subsequently, the pressure gradient is
removed and the layer relaxes to conditions of nearly zero pressure
gradient. Comparisons with Moses' data are shown in Figs. (2) and (3),
where theoretical skin friction, shape factor and mean velocity pro-
files are plotted against the data points. While the present method
gives an almost exact fit to the experimental data points in all cases,
the model of Herring and Mellor shows definite deviations (up to 15%)
especially in the skin friction distribution and in the outer region
of the mean velocity distribution. Figure (4) shows most clearly
the difference between the two models. The Herring-Mellor model shows
marked deviations in the wall and outermost boundary layer regions.

The present effective viscosity model has also been used for the
compressible turbulent boundary layer of Moore and Harkness!”, and has

shown very good agreement with experiment, Fig. 7.
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4. CONCLUDING REMARKS

We may now conclude that if a scalar eddy viscosity is assumed to be
a valid concept in wall turbulent boundary layer theory, then such an
eddy viscosity has the following characteristics:

It is a continuous function of y which approaches the wall surface
as a power function, y+n , of the vertical distance y from the wall.
If the external and the wall conditions on the boundary layer flow are
unimportant n » 3 , but n > 4 as the effects of the flow environment
become important.

Away from the wall the eddy viscosity function is a linear function
of y , soon reaching a maximum and then gradually decreasing to zero
very far from the wall. Even in the region away from the wall, the eddy

viscosity function is at least quantitatively dependent on the conditions

at the wall and in the free stream.

For moderate roughness, it appears that when an equivalent Nikuradse

sand roughness height can be meaningfully defined, the influence of

roughness can adequately be modelled as an apparent y - shift effect.
Finally, a mean velocity field closure method which predicts the
turbulent boundary layer downstream of a known station should yield very
close predictions, as the iterative scheme of such a method usually
corrects slight errors in the effective viscosity assumption. Moreover,
the dimensionless effective viscosity appears to be a function of the
local boundary layer parameters and is history-oriented only through

such parameters.
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*
(1) Terms in (%—92 and higher order are negligible.
0

.. c . . .
(ii) Terms in (%§' are small in comparison to other terms in the

equations.

equation (1) becomes:

* * N x
T, Uz ug an 90X r, Us on ax
. [zula+ 6 3 G2y 2 8 ]+ 1 3 g
* u. * - e g T T AT
8 u3 u3r0 an u3 ro u3 on an
§* 1 3 —— &% &% Ju2 u26*2 dc
B T CRV IRl -l il - (3)
o] 3 o 3 3
ou 94U du dU1
As y >, == g so that we can write - £() 35 such that
f(y) 1 as y > = . The continuity equation is
1w o @
(I-cy) oax (l-cy) ~— 9y

whence we can obtain that:

* .. *
e =T e ) £ Ry,
0 o
and
- - ox N5 n* §*
V=V, o+ [udn* - FRg, [ (1 + —n*) £(n*)dn* (s)
o0 0 o

We shall, further, make the following simplifications:
@ T2 @annt”
(ii) In the absence of severe wall and free stream influences, the
effective viscosity ¢o is satisfactorily approximated by

§* 3 _— au.

¢, = 0.016Y= ag‘ an* U 3% (from equation (3)).
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APPENDIX

The combined momentum equation (2.13), which is essentially the

so-called vorticity transport equation is

2
1 9p P 1 P U ——
w2 ]
p 9x oy “l-cy ayz ay
3 cu'v'
+ 3;'( T-cy )
- 9 u du . E—-(v EE) _ 2__(cuv ) 9 cu2
oy { (1-cy) ox| 3y dy dy ‘l-cy’ 5§'(1-cy)
Let u=1ul,
V = V-ﬁ;
y = n*s*

If we assume that after correction for intermittency, the dimensionless
effective viscosity, ve/U,G* , is fairly constant across a large portion
of the outer region boundary layer, the left hand side of equation (1)

becomes:

U, 2 v 3T * 23
171 e F u o, 8 311] (2)

- . * " ARl
Y §*2 u,s§ ro an

9 1
ay l-cy

where %-%E—. ) has been neglected in comparison with other

terms in equation (1).

v 9 u

—€ = = 1€
If U 6+ o, > an*i u, , and if:
du U,8*

_ Vv 1 _ 1
F = U2 dx and Ry, = =5

Then, with the following assumptions:
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With these simplifications, equation (3) reduces to the following:

1 ¢ |1 + Cl L 1= 0.016 + 0.016n* ol
Y "o T LNV N B -v2on T,

- n* 8* n* * s* 1 (%
+vom [1-}; (_17?1“.1—)]+FR6* [l—n Q]G (n*)

6*
— H'(n%) (6)
(o]

¢, = 0.016v [1 - %;1‘/—‘2‘% n* %][1 + v,Q'(1*) + FR,G(n*)

+ %*_ H(n*)]

N &)
v 0O'(n* * 6* * 2 6* *
Let v Q'(n*) + FR(,G(n*) + ;O-H(n ) = (bV - dFRg, +m iz)f(” )
and n * 7
where b , d , m are numerical constants. Then
. §* o §*
d>o = 0.016y |1 + 12-1n g 1+ (bVo - dFRd* +m }:)f . (8)

The constants b, d, m and the function f(n) can be determined
by comparing equation (8) with experimental results. The effect of
(FRG*) in equation (8) is so small that only for very severe pressure
gradients (corresponding to very high g in Reference (3)) is that

term of any importance. In that case, d is taken as unity.
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NOMENCLATURE

Turbulence functions in Van Driest and Smith
eddy viscosity models.

du
v 1
2 )
1

Pressure gradient parameter (=
Functions.
Roughness height; Nikuradse' roughness scale.
Mixing length, value at wall.
Pressure.
Wall radius of curvature.
K
Ut s

Roughness parameter (= S )

Displacement thickness Reynolds number.

Free stream velocity, Ul/UT
Yo
Friction velocity (= (—BJ )

Streamwise velocity , u/UT

Vertical velocity, VO/UT at the wall.

Streamwise space coordinate.

Uy
. T
Transverse space coordinate, -

U s
Boundary layer thickness, —5—

Displacement thickness

-
=

Viscous sublayer thickness,

<

Molecular viscosity

Kinematic viscosity

Effective viscosity (= v + g)

Apparent viscosity in rough wall flows.
Density

Intermittency factor

Shear stress






n, n*

Transverse dimensionless space coordinate
(y/8), y/6*

Eddy-viscosity in turbulent flows.

Von-Karman constant.
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