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EXECUTIVE SUMMARY

A literature review was performed of agricultural meteorology and wind engineering literature
to identify the parametric effects of hill shape, vegetation density, and clearing size on hill-top
wind speed. Forest meteorology research was examined which considered forest canopy density,
tree height, understory structure and tree species effects on wind speed parameters such as
displacement height, d; surface roughness, z, ; and surface drag, u. /u,.. Field and laboratory
measurement programs were surveyed which studied the variation of winds downwind of tree
stands and the effect of clearings on clearing winds. Numerical and mathematical models were
evaluated to determine the state-of-the-art of predictions of combined effects of hill terrain height
and vegetation cover on wind fields.

The survey identified several tables and algorithms which may be used to estimate forest canopy
displacement height and roughness length. Surface drag data seems to be much less systematic;
hence, large variations in magnitude are recorded, and no one algorithm is reliable.

Field and laboratory measurement programs find that the presence or absence of vegetation can
produce significant changes in wind speed. Vegetation may also enhance or inhibit the presence
of flow separation over hill crests. Limited data taken near wind turbines erected near tree
stands confirms that lower turbine productivity occurs at significant distances downwind of
vegetation.

Analytic models based on linear-perturbation theories were identified which can predict the
combined effects of hill height, hill slope, hill shape and surface roughness variation on hill top
wind speeds. These perturbation models have been validated against field and laboratory
measurements, and they are found to predict trends correctly, but in some cases may overpredict
hill crest wind speeds. Numerical models (FLOWSTAR, MS3DJH/3) based on linear-
perturbation methods and Fourier decomposition of complex terrain are available which can
predict the joint effects of terrain elevation, thermal stratification, and non-homogeneous surface
roughness. These models are constructed to work on small workstations or PC computers.
These models are currently limited to stationary situations, "mild" terrain and roughness
variations, and mild stratification such that flow separation and blocking do not occur.

Spreadsheet results are provided which estimate the added value of different size clearcut areas
over various two-dimensional ridges. Predicted information includes depth of the inner layer
of the flow at crest height, wind speeds in the outer and inner region, and fractional speed-up
factors. Data is provided for roughness change speed-up, hill induced speed-up, and combined
effect of hill slope and roughness variations.

Alternative diagnostic models based on the concept of mass consistency are also available which
have been used to examine hill crest flows in the presence of vegetation (NOABL, UICWINDS,
NUWINDS, ASL, etc.) Some of these models use ad hoc type modifications to allow for
stratification and vegetation effects. These models are also limited to flows which have no
separation or blocked regions.



Some authors have also proposed modifications to finite difference or finite element equation sets
to account for vegetation drag on wind fields (HOTMAC, CSURAMS). The principle
adjustment used is the addition over the vegetation filled portion of the grid of a drag term
related to vegetation density. These models have been used to predict winds over meso-scale

size regions, are often computer memory and time intensive, and require a fast workstation with
considerable memory.

Robert N. Meroney, Professor

Fluid Mechanics and Wind Engineering
Civil Engineering, Colorado State University
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L INTRODUCTION

Wind turbine aerodynamics is concerned with the interaction between atmospheric flows
and the turbine’s rotor. The wind-turbine rotor operates in the atmospheric surface layer, where
wind shear, gustiness, and the local micro-meteorology of terrain shape and vegetation change
the operating environment. Since wind turbine performance is critically linked to the availability
of wind energy at turbine hub height, preferred sites are those with moderate and persistent
winds (20-40 mph).

Hills or ridges are known to cause wind "speed-up" associated with streamline
convergence. Convergence will occur in neutrally stratified flows at hill crest; whereas
maximum streamline convergence will often occur on the lee of a hill or ridge when the wind
flows between the surface and an elevated inversion. Tall vegetation such as woods, wind-
breaks, or forests may degrade the wind environment over a hill. Eddies created by a tree
canopy can enhance surface mixing reducing near-surface wind speeds, and the eddies
themselves may cause gustiness which increases turbine blade loading and fatigue.

Given the simple-minded assumption that wind power is proportional to wind-speed
cubed, even a 10% decrease in hub-height winds speed may reduce available wind power by
25%. Thus, knowledge of how vegetation cleared regions over hills may enhance or diminish
hill crest velocities would be valuable planning information. Often the key question is how
much clear cutting on the site of a proposed wind energy farm is required along the ridge tops
and hilltops to maximize wind resources while minimizing environmental impact.

Wind energy specialists have focused frequently on the potential for wind speed
amplification found in hilly terrain. Their concerns have led to additional field and laboratory
data on the behavior of neutral and stratified flows over both two-dimensional ridges as well as
three-dimensional isolated hills, valleys and gorges. Agricultural and forest meteorologists are
concerned with "blow-down" in vegetative canopies during wind storms and the air transport of
insects, pheremones, insecticides, herbicides, moisture, CO, , soil, burning debris and smoke.
Analytic and numeric models have been created to estimate wind flows above and within such
canopies in complex terrain situations.

This review will focus primarily on information related to the operation of wind turbines
on hill crests partially or totally covered with forests. Chapter 2 provides a short background
about flow amplification over terrain covered with minimal vegetation (ie. no flow displacement
and small local roughness; d = 0.0, z, = 0-0.10 m). Chapter 3 summarizes what is understood
about wind flow over vegetative canopies over essentially horizontal ground surfaces. Chapter
4 considers the joint effects of vegetation and roughness effects over hills/complex terrain.
Analytic, physical and numerical models used to characterize such flows are noted in Chapter
5. Conclusions relevant to the problem of wind turbine installation in vegetated hilly terrain are
provided in Chapter 6.



II. WIND FLOW OVER HILLS/COMPLEX TERRAIN

The earth’s surface is covered with almost imperceptible bulges and depressions on the
global scale. The highest mountain barriers only extend above the earth’s radius by about one-
tenth of one percent from it’s sea level value. Nevertheless, the presence of hills, mountains
and valleys determines a great portion of the weather we live within. Mountains and hills and
valleys induce variations in wind speed and turbulence from the mean sufficient to justify
location of wind energy devices in complex terrain. Unfortunately, for most of man’s weather
experience most measurements have been made over flat homogeneous sites. Thus, the
understanding of wind flows over complex terrain has become a special area of meteorological
consideration. Interest in weather modification, air pollution, and wind energy over the last
twenty years has led to extensive additional information about mountain climatology. Today,
there are numerous books and monographs specifically focusing on the climate and specifically
the winds developed over complex terrain (Blumen, 1990; Frost and Shieh, 1981;Hiester and
Pennell, 1981; Hunt and Simpson, 1982; Wegley et al., 1978).

2.1 General Wind Speed and Turbulence Characteristics

Single hills and isolated ridges are known to produce higher wind speeds at a given
height over the crest than far upwind during high speed neutrally stratified air flow. The
approximate improvement in wind speed should be of the order of h/L, where h is hill height
above the surrounding terrain and L is some characteristic horizontal hill width (say the distance
from the crest to half-hill height). Thus, a smooth surfaced hill with average approach slopes
(hya/(2L)) of 0.10, 0.2, 0.3, 0.4, or 0.5 should produce fractional speedup [AS = (u(z) -
u,(2))/u,(z)] increases at crest of the order 20%, 40%, 60%, 80% and 100%, respectively, or
corresponding order increases in wind power up to 73%, 174%, 309%, 483%, and 700%,
respectively (See Figure 2.1.1). Speedup does not seem to be as sensitive to hill shape for the
same average slope as long as flow separation does not occur (See Figure 2.1.2) .  These
values may be reduced by the presence of forests, local undulations, and regions of flow
separation. In particular, when hill slopes exceed 0.3 it is likely that flow separation may occur
at hill crest decreasing wind speeds and inducing large gustiness. Figures 2.1.3 through 2.1.4
display wind and turbulence profiles measured over different slope triangular hills in a boundary-
layer wind tunnel (Bouwmeester et al., 1978). Fractional speed up is defined as AS = (u(z) -
u,(z))/u(z), where uy(z) is the upstream profile and z is the height above local grade. Typically
wind decreases at the foot of the hill then accelerates to hill crest. Over steep hills separation
may occur at the hill crest (Figure 2.1.4), which decreases crest wind speeds and produces
gustiness and excess turbulence downstream.

Figure 2.1.5 displays the effect of 2-dimensional hill shape on fractional wind speedup.
Note that hill slope is more significant than hill shape on defining wind profiles as long as the
elevation is not so abrupt as to generate separation regions downwind. Three dimensional hills
are found to produce lower wind speed increases than similar cross-section ridges.



T

Figure 2.1.1 Characteristic wind speed and power availability over the crest of a two-
dimensional ridge.



VELOCITY PROFILES FRACTIONAL

SPEED UP
1.0rx/L=-6.67 Mx/Lz-2.0 x/L=-0.83 "x/L= 0 ~x/L=0
0.8} - . L. _
_2 06 - = 3 2
I0h
0.4" — - -
02}f . L L £
0 1 ] ] 1 ] 1 ]
0 05 10 0 05 100 05 100 05 10 0 1.0
/u As
U/ ¥sh
STATIC PRESSURES OVER HILL SURF.
———x /L Cp
} Q75
h=8em 1:6
//////ﬁ//////:)j S0
L=15cm
| ]
"3 _V
TURBULENCE INTENSITY
1.0r x/L= -4.0 [ x/L=-1.67 [ x/L=-058 [ x/L=-0.17 rx/L=0

10h

! ! ] 1 J 1 1

]
0 0.1 c2 0 0.l 02 0 0. 0.2 o 0.1 Q2
A -
Figure 2.1.2 Velocity, turbulence, and static pressure profiles over a 1:6 slope triangular hill.
(Meroney, et al., 1976)




VELOCITY PROFILES FRACTIONAL

SPEED UP
1.0 x/L=-10.0 " x/L=-2.25 | [x/L=-0.97| [ x/L= 0 ~x/Lz O
08} = o s L.
2
10n0-6 - » - -
0.4+ = = b
0.2+ = g = 8
o 1 1 ] ] ] 1 \ 1 _
0.5 1.0 0.5 10 05 1.0 0.5 1.0 0.5 1.0
u/umh As

W STATIC PRESSURES OVER HILL SURF.
iu—-) X
Cp

-2 .o=1 o] ] 2
x/L

TURBULENCE INTENSITY

" x/L= -4.0 Cx/L=-172 [ x/u=-112 [ x/L=-0.62 C x/L=0.0

1 1 1 ]

0 ol 02 0 Q.l 02 O al Q2 o} Q. Q2
V/u
Figure 2.1.3 Velocity, turbulence and static pressure profiles over a 1:4 slope triangular hill.
(Meroney, et al. 1976) _




FRACTIONAL

VELOCITY PROFILES SPEED UP
Or ¢ /L=200 " x/L=-2.5 ~ x/L=-103 " x/Lz 0 © x/Lz 0
0.8} L d
0.6 L N
A
I0h
0.4} - L.
Q.2 = —
o) 1 1 \ 1

i

h=5c¢cm \..1. 1 : !/L

//r//_//// Ay A TS

L=5em

STATIC PRESSURES OVER HILL SURFACE
Cp
=03

- -0.2

—~ -0.1

L
-2 -1 0] | 2

- 0.1

- 0.2

Figure 2.1.4 Velocity, turbulence, and static pressure profiles over a 1:2 slope triangular hill.
(Meroney,et al. 1976)



(8L61 'Te ‘12 AQuo1dN)

‘sadeys [[1y JUQISJJIP JOAO 15910 pue mop) yoeoidde usamiaq dnpaodds L1100[9A §°1°7 2andiyg

SV
0 _ 00l S0 001 S0 001 60 00l S0 0O S0 0,
: ! - g H10
’ , : - : 120
: : - : | (€0
: , ! ; - 50
¥ : i . Yso HOI
4 - . £ {90 4
+ - - - 140
s 4 4 = - y 80
: : . ; H60
< — 2 el e S e =
L M=
H
I
v oee, y Y, sty Y = ._..“:
M

___\_ v\_ _v\_ v\“ v\_ _v\a = r_m.



It is more difficult to predict quantitatively the exact wind patterns in complex terrain
where multiple hills, mountains and valleys occur over an extensive area. Flow interactions,
blocking, and channeling may either enhance or decrease wind speeds. Indeed, at the present
state of the meteorological art the serious wind-turbine meteorologist may be limited to field
measurements, large meso-scale numerical models, or physical models in such cases.

Thermal stratification will also change the air flow over single hills and mountains
substantially. Stable stratification may cause low level winds to move laterally around a hill
barrier decreasing crest top winds but enhancing hill side winds, or alternatively an elevated
inversion just above hill crest may induce very strong winds on the downslope side of a hill or
ridge. Indeed some of the most persistent and attractive wind-energy locations appear to be
associated with such downslope conditions. Blumen (1990) has edited a series of articles about
such flows in hills, mountains and valleys into a monograph on atmospheric processes over
complex terrain. In particular chapter 4 on mountain waves and downslope winds by D.R.
Duran, chapter 5 on perturbation solutions to flow over hills by D.J. Carruthers and J.C.R.
Hunt, and chapter 7 on physical modeling of flow over hills and mountains by R.N. Meroney
are relevant reading for the wind-energy climatologist interested in wind power meteorology in
hills and mountains.

Turbulence behavior over hills depends upon upwind fetch, strength of stream line
convergence over the crest, and regions of increased shear. For small hills such that surface
flows have limited time to come into local equilibrium with the new hill flow conditions the
upwind turbulence is primarily advected along streamlines with minor changes; hence changes
in wind shear play a small role. On the other hand convergence and divergence of streamtubes
may lead to "rapid-distortion" or stretching, twisting, or shortening of turbulent vortex elements.
Stretching distortions can lead to enhanced local vorticity and increased turbulence. When the
local turbulent velocity is scaled by local mean speed at the hill crest the net effect may be a
decrease in turbulent intensity although in absolute terms the turbulent fluctuations are greater.
Of course if separation over the crest occurs then elevated regions of increased turbulence
downwind will occur.

Hills or mountains with small slope or long upwind fetch conditions permit the near
ground flow to move toward local equilibrium with local shear. An inner boundary layer, I,
grows upward in which these effects are significant. To a first order the depth at crest should
be related to 1,In[l, /z;] = 2x*L, where z, is surface roughness and L is characteristic hill
width.! For most conditions I, = 0.05 L when h/L is of order one. In such conditions over

! The characteristic hill width, L, may be defined in at least
three different ways. It can be total base-width of hill from
upstream base to downstream base; it can be the distance from up-
or down-wind hill base to hill crest; or it can be the distance
from hill crest to the location up- or down-wind where the hill is
one-half the total hill height above the base. The half-height
width is used for characteristic width throughout this report.
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moderate slope hills analytic and numerical methods based on linear-perturbation concepts work
quite well (See Section 5.0). To a first order the fractional wind speedup, AS, is still found to
be proportional to h/L.

2.2 Field and Laboratory Measurements

As a result of environmental and energy concerns there now exists a large number of
field data sets related to wind flow fields over hilly and mountainous terrains. Some were
performed to answer questions about nuclear power safety, others were concerned with
atmospheric transport of power plant plumes, and some were specifically posed to evaluate wind-
energy potential over hill crests. Articles in Blumen (1990) refer to experiments of the Dept.
of Energy ASCOT test series (Geysers, CA; Brush Creek, CO), the Environmental Protection
Agencies CTMDP test series (Cinder Cone Butte,ID; Hog Back Ridge, NM; Tracy Power Plant,
NV), and various international measurement efforts like the Askervein hill project (US, NZ,
UK, CN). Meroney (1978, 1980) reviews pre-1980 field studies which had laboratory
counterpart experiments (eg. Rakaia River Gorge, NZ; Gebbies Pass, NZ; Kahuku Point, Oahu,
HA). During the 1980s a number of field studies over relatively smooth isolated hills and ridges
were performed specifically to validate wind flow models proposed to predict wind-energy
potential (Askervein Hill, Blashaval, Brent Knoll, Great Dun Fell, Nyland Hill, UK; Kettle Hill,
CAN). Table 2.2.1 summarizes some details of 69 laboratory studies for 31 cases of which
comparable field measurements are available.

Almost all of the isolated hill and ridge studies examined terrain with very small surface
roughness (1-3 cm); hence, there are few published data (found during this review) for wind
flow over simple terrain shapes incorporating forests, woods, shelterbelts, clearings or clearcut
areas. (This is not to say individual meteorological measurements do not exist in clearings and
clearcut areas in hills, but no extensive sets of measurements were made in such situations to
document terrain wide flow.) One exception was the two-dimensional ridge study performed
in Australia by Bradley (1978) (See discussion in Section 4.1).

The ASCOT Brush Creek study involved a 650 m deep valley in western Colorado where
the southwest-facing walls were dry, and barren, while the northeast-facing walls were moist and
brush covered. The vegetation was found to make a significant difference in diurnal absorption
of thermal radiation, and the wind flows which developed in the valley. The ASCOT Geyser
area study were performed over tree covered hills and meadow covered valleys. Again inclusion
of the vegetation in analytic and numerical models was necessary to reproduce the wind flows
observed. Unfortunately, no high wind conditions were observed in either ASCOT study, for
the principal program goal was to evaluate the mechanisms of night time and daytime drainage
flow in open-ended valleys.

An extensive set of physical model experiments were also performed during the 1980s.
The Askervein Hill Project was a collaborative study of boundary-layer flow over low hills
(Taylor and Teunissen, 1987). Two field experiments were conducted during fall 1982 and 1983
near and around Askervein, a 116 m high hill on the west coast of the island of South Uist in



the Outer Hebrides of Scotland. Over 50 towers were deployed and instrumented for wind
measurements. Most were cup anemometers mounted on simple 10 m posts, but two 50 m, one
30 m, one 16 m, and thirteen 10 m towers were instrumented for three-component turbulence
measurements. Subsequently, wind tunnel simulations of the hill were carried out at three
different length scales (1 to 800, 1 to 1200, and 1 to 2500) in two wind tunnel facilities
(Teunissen et al. 1987) The wind-tunnel results compared well with each other and with full
scale data (Figure 2.2.1) Changes in mean flow speedup over the physical models were
reproduced very well, including those due to small local terrain features that may be physically
small at model scale. Relaxation of the aerodynamic roughness criterion (Re. = u.z /v > 2.5)
affected the flow only on the lee side of the model hills. Turbulence changes induced by the hill
did not depend on the nature of the surface roughness (suggesting the inner boundary length was
quite small). An excessively smooth surface reduced the degree and extent of separated flow
and resulted in overestimation of hill crest wind speeds. Simulations in two facilities using three
models at three different scales showed a gratifying degree of consistency. The only effect of
model scale was a predictable increase in difficulty in making measurements very close to the
surface as the size of the model decreased. The depth of the turbulent inner layer was similar
to the value predicted by Jensen et al. (1984) discussed in Section 3.5.

2.3 Summary

The general behavior of wind flow over simple and complex terrain is qualitatively well
understood. Measurements in field or laboratory situations have been made under an amazingly
broad range of conditions. Nonetheless, the possible combinations of hill shape, slope, surface
roughness, stratification conditions, upwind approach conditions, surrounding terrain
undulations, and unsteadiness associated with the diurnal cycle and weather result in few
quantitatively reliable estimators for hill crest wind speeds.

Actual measurements of wind flow over vegetation covered terrain which can be used to

specify the effect of forrest edges, clearings or clearcuts on wind energy siting are minimal.
The few studies identified will be discussed in Sections 3.5 and 4.2.

10
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