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NUMERICAL TURBULENT MODEL
FOR DOUBLE DIFFUSIVE CONVECTION

Abdullah S. Al-Ghamdi * and Robert N. Meroney *
ABSTRACT

A numerical investigation of the transient behavior of a doubly-diffusive flow under the influence
of combined heating and shear flow is presented. The analysis is based on a one-dimensional
algebraic stress turbulent model (ASM), which produces a set of nine partial differential
equations and six algebraic equations. The partial differential equations were solved by an
implicit finite difference technique. The numerically produced temperature and density profiles
as well as the entrainment rates are compared with their correspondent experimental data. The
numerical simulations agree qualitatively with experimental findings and show a similar trend.
It even predicts the layering phenomenon as it occurs in experimental results

NOMENCLATURE

Symbol Definition

Al’ A2! A3

Cps Cyu,Cpy, Crp Constants for ASM, See Table (1)

CEtls CEﬂ) F

CECZ?CPI’ csz Cp3

C Concentration

C, Thermal capacity

d Diffuser height above the interface

D Mass molecular diffusivity

g Gravitational constant

H Upper interface height

k Turbulent kinetic energy (uluJ) /2

k, Turbulent temperature fluctuation (Th?2/2
K, Turbulent concentration fluctuation (C) >/2
P Pressure

Pr Prandtl number (v/o)

Q Flow rate

Qy Heat flux
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1.0 INTRODUCTION

Reynolds number (uy,, H/V)

Bulk Richardson number (g Ap.,.,. H)/(p
Conc. Richardson number (g8 AC,,. H)/(u,.>?)

Temp. Richardson number (gB; AT,.. H)/(u,,.2)

Schmidt number (v/D)

Time

Temperature

Velocity components

Coordinate directions

Greek Svmbol

Thermal molecular diffusivity

Thermal eddy diffusivity

Mass eddy diffusivity

Thermal expansion coefficient

Saline expansion coefficient

Dissipation of turbulent kinetic energy
Dissipation of turbulent temp. fluctuations
Dissipation of turbulent conc. fluctuations
Eddy viscosity

Density

Effective Prandtl number for k,k, k,£,€,,€,
Gravitational potential

superscripts

Fluctuation quantities

U?)

Double diffusion occurs in a fluid in which the density is a function of two components
of different diffusivities (e.g. salt and temperature). This phenomenon occurs in different
modes, but of great importance is the diffusive mode when the higher diffusive component (i.e.
heat) is destabilizing and the other component (i.e. salt) is stabilizing. This kind of flow can
be seen in many natural and engineering systems. For example; in nature this may include - but
not limited to- the deepening of the surface mixed layer into the stably stratified layer below as
a result of turbulence induced by surface wind and cooling. While in engineering applications,
this type of flows can be noticed in ocean discharge of power plants cooling water or ocean
thermal conversion systems, in energy extraction from salt gradient solar ponds, in the energy
storage in molten salt tanks, in the disposal of pollutants and waste water in lakes, and in the
processing of binary or multicomponent solutions, to name only a few.



Experimental work is costly and time consuming. Continuous calibration of various
instruments is unavoidable, and accurate measurements of the velocity in saline water are difficult
to make. So a better understanding of the problem can be attained through a numerical approach
rather than from the experiment. A reliable numerical technique provides a flexible tool which
allows for changing the parameters (e.g., thermal and solute Richardson numbers, Schmidt
number, and Prandtl number) and may lead to a better understanding of the behavior of the
problem for a wide range of initial and boundary conditions. Besides, it may be used for
prediction of the transient processes in large environmental systems where continuous
measurements are prohibitively costly.

Under consideration in this study is the problem of transient double diffusive flow where
a stably stratified salt layer is being eroded from below due to continuous heating and from the
top due to heat removal and shearing. The behavior of the temperature and concentration
profiles as they evolved with time is investigated, and a close attention is paid to the mixing
process at the interface that takes place in the presence of combined heat and shear flow. The
specific objective of the study is to develop a one-dimensional turbulent model (Algebraic stress,
mass flux, and heat flux model (ASM)), which can predict the temperature and salinity profiles
as they evolve with time and to use available experimental data for model verification.

2.0 PREVIOUS NUMERICAL MODELS

There have been relatively few numerical models which consider double-diffusive
systems. Atkinson and Harleman (1983) developed a one-dimensional (vertical) turbulent kinetic
energy (TKE) model to simulate the temporal evolution of vertical temperature and salinity
profiles in a salt gradient solar pond. From their model, a general entrainment relation was
derived to predict the growth of the upper convecting layer in solar ponds. However, in their
model, they neglected the side-wall induced instabilities and used a fixed 10-cm grid spacing
(which 1s several times greater than the observed vertical-length scale of instability). This led
to a quantitatively unreliable model. A better version of the model which accounts for the role
of sidewalls was developed by Schladow (1984,1988). Earlier Cha et al. (1981) developed a
one-dimensional numerical model to predict the diurnal variation of vertical temperature and
concentration profiles in solar ponds. In their model, the convection term in the equations was
neglected, and the fluid motion was retained through the use of augmented diffusivities.

Murty (1988) used a numerical model based on finite elements to investigate a laminar
and steady double diffusive convection in a cell. His results agree well with experimental data,
but the cell size was limited by the unit cell and the model needed to be modified to account for
infinite fluid. Kazmierczak (1988) solved numerically the laminar Naiver-Stokes equations for
double diffusion in a horizontal fluid layer subjected to a constant bottom heat flux. His
numerical simulation predicted the time varying temperature and salinity fields, but there were
no comparisons made to experiments he performed because the flow in the experiment was
mainly turbulent and the simulation was based on laminar governing equations.



Murota and Michioku (1989) developed a one dimensional numerical simulation based on
the work developed originally by Mellor and Yamada (1974), using a turbulent closure model
to examine the mixing phenomena in single diffusive flows produced by the combined action of
mechanical and thermal stirring. Their numerical simulation agrees well with the experiment
they performed, and it reproduced the mixing rate, temperature profiles and turbulent profiles
with remarkable accuracy. However, the model was developed for a single diffusive flow
(temperature stratification only) and extension to double diffusive flow is required. Ohtsuka and
Yamakawa (1989) analyzed a stably stratified shear flow generated by two streams of water at
different densities and velocities, by solving the Naiver-Stokes equations without any turbulence
average modelling. Instead they considered the turbulence transport mechanics analytically.
They claimed that their results agree with experimental data within 10%.

In an attempt to examine the stability of double diffusive flow, Murota and Michioku
(1989) also used perturbation theory to develop a stability criterion for both the direct mode and
oscillatory mode. Their results compared satisfactorily with experimental data. Another effort
to study the effect of variable stratification on linear diffusive stability was performed by
Zangrando and Bertram (1985), where they developed a numerical solution based on Fourier
series expansion. Their solution indicated that the overstable case approaches Walton's
perturbation solution at large values of solute Rayleigh number and deviates significantly at low
values of solute Rayleigh number.

Some calculations were also performed to predict numerically the heat and mass fluxes
and/or the entrainment across a density interface. Linden and Shirtcliffe (1978) developed a
model to estimate the fluxes of heat and salt across an interface. When compared with
experiments, the model provides a reasonable description of the observed transport over an
intermediate range of density ratios, but fails at low and high density ratios. In the more recent
work by Mory (1991), three entrainment laws were established theoretically for entrainment
across an interface in the absence of mean shear. His proposed laws are in good agreement with
experimental data provided by various researchers.

In turbulent flows usually the number of unknowns is greater than the number of
equations and a turbulent closure is required to solve the system. The algebraic stress and heat
flux model (ASM) approach avoids the assumption of local turbulence equilibrium between
production and dissipation required by the popular x-e turbulence closure approach. ASM
replaces the partial differential equations for velocity-velocity, velocity-temperature, and velocity-
concentration correlations by algebraic expressions. Therefore, the ASM model raduces the
computational complexity by reducing the number of partial differential equations, yet ASM
retains all second-order correlations, permits non-equilibrium values to exist, and retains most
of the physical properties of the problem. The ASM approach model was suggested originally
by Rodi (1972), where he noticed that the velocity correlations are differential and nonlinear only
due to the presence of convection and diffusion terms. So to eliminate these terms, he correlated
them with the convection and diffusion terms of the kinetic energy transport equation.



Meroney (1974,1976) used the ASM model to study the behavior of stratified turbulent
shear flows in the atmosphere. He found that for a clear-air turbulence test case the ASM model
compared very well with a more-comprehensive but numerically more complicated mean Reynold
stress model (MRS). Rodi (1980) showed that the results obtained from the ASM model for a
plane vertical buoyant jet in stagnant un-stratified surroundings are in excellent agreement with
experimental data. Hossain and Rodi (1982) applied the ASM model to a vertical buoyant
turbulent jet in a stably stratified environment. They found that the model results are in good
agreement with the experimental measurements. Uno and Ueda (1989), proposed an improved
dissipation rate equation and discussed some fundamental aspects of the ASM in thermally
stratified flow.

No publications were found which discussed the application of the ASM mode! to double-
diffusive flows where the effects of solute and thermal stratifications coexist. In this
contribution, the ASM model is extended to account for solute stratification: this will
automatically introduce new equations as well as new terms to the governing equations.

3.0 GOVERNING EQUATIONS

The turbulent equations governing the distribution of the flow quantities in a doubly
diffusive flow can be obtained from the conservation laws of mass, momentum, thermal energy
and species concentration along with an equation of state. Al-Ghamdi (1993) provided a detailed
derivation of the 3-D equations. This study is concerned with 1-D turbulent model and all the
equations will be presented in this context. The 1-D turbulent governing equation when scaled
by the scaling parameters shown in appendix (1), are:

1) MOMENTUM EQUATION:

@ - __1_ azu _ a(u W) (1)
dt  Re 3z2 dz
2) ENERGY EQUATION:
or _ 1 &T _ 3a(w'T) (2)
ot Re Pr §z2 dz

3) CONSERVATION OF CONCENTRATION:

i(z - 1 ?Cc _ B(W) (3)
0t  Re Sc gz2 dz



4) TURBULENT KINETIC ENERGY:

The transport equation for the turbulent kinetic energy (k) in 1-D flows is:

Ok _ [ L&k _ 3 7% + o)) - T

3t  'Re 9z¢ oz =
+ [RiWw'T" - RiWCT,

3z © (4)

where turbulent kinetic energy is defined as k=1/2 (uju]) . The terms on the right hand side
of equation (4) represent diffusion, production, dissipation, and stratification terms, respectively.

If the k is assumed to diffuse down its gradient, then we may write:
g 7= 7 d , Ve Ok
— (KW ¥ DWW B e {—ms
! D) 0z ( Gy 0z

0z

Yis (5)

5) TURBULENT FLUCTUATIONS IN TEMPERATURE:

The turbulent temperature fluctuations equation, in the 1-D case is given by:

ok, 1 Ok, 0 (77 7— 0T
_—t = [t . O - M (6)
ot Re Pr §z2 az(ktw)] i 3z ¢

This equation determines the temperature scale of the fluctuations as equation (4) determines the
velocity scale. The two equations have similar form with exceptions that the latter relation does
not include pressure strain nor stratification terms. Again, k, is assumed to diffuse down its
gradient; thus:

- @, ok,

d
= 2 (—£—F), (7)

Tt
(egw’) G, 0z

9
oz
6) TURBULENT FLUCTUATIONS IN CONCENTRATION:

Likewise the 1-D transport equation for turbulent concentration fluctuations is given by:

ok,
Jt

sl Bk 3 = =—mac | (8)
[__ReSc 322 Tz(kcw)] CW-SE €.

This equation determines the concentration scale and is identical to equation (6). Also k. is
assumed to diffuse down its gradient; thus:



(9)

7) EDDY DISSIPATION OF KINETIC ENERGY:

The transport equation for the dissipation of kinetic energy can be developed from the main flow
equation as:

g T g e T ot I =
E=[_l_62€_i(w+lap aW)]__%_{_a"g(au aW}_*'aU(Vfau

)]

ot Re 9z2 0z Re 0z 9z Re "0z 0z dz' Jz2 oz
_ 2 ou’) vz ow’ _ , 0v’ 5, ow’ ow'vsy _ 2 r0u’\,, OV a, W -
Eé[( 37 ) az*'( az) (az)“'( az) ] Re[(@) +(-é-z—2-) +(azz) ]
2 s BT mu 0C . OW
- 2 s e
(10)

The first bracket on the right is the diffusion term, the second bracket represents the production,
the fourth and fifth terms represent the destruction terms, and the sixth is the stratification term.
This equation contains high order correlations and therefore requires model assumptions.

As in the case of the turbulent kinetic energy the second part of the diffusion term can
be modeled as:

d =, 1 op’ ow’ Vr Oe
-8 = ) =i (11)
oz e'w Re 0z 0z ) G, 0z
Rodi (1972) argued that the production term can be written as:
Production of € = CEITECU;W;%. (12)

Meroney (1974) concluded that the destruction term is controlled by the dynamics of the energy
cascade process and is independent of viscosity, and can be modeled as:

2
Destruction of € = C‘Ez%. (13)

Finally Meroney (1974) suggested that the stratification term can be modeled as:

1 . . 0T ow’, _ . aCT w - € C = s ==y (14)
g [leT('?z"—S‘"z' 2Rlc(-3?—z)} F(Tc) [Ri w'T Riw'C’].



8) ENERGY DISSIPATION:

The transport equation for the turbulent thermal energy dissipation is given by:

aet= [ 3. azet__a_(ﬂ,—;)}_ 2 BU( ) +£2: aT au)+62T W;BT]
ot Re Pr 3gz2 o0z ¢ Pr ' 9z 9z 0z 0z 0z’ §z¢ 0z

dz "~ 0dz Re Pr " 3z2" '

(15)
As in the kinetic energy dissipation equation, the high order terms need to be modeled. Direct

analogy suggests that the second part of the diffusion term -the first term in the right side of
Equation (15)- can be modeled as before, as:

——— 05 O€
i(etw’) B et (16)
0z e OZ
The second term represent the production term and can be written as:
: _ € 777 0T
Production of €, = Cp,—T'w 1)
k oz’
and the last two terms are the destruction term which can be modeled as:
eet
Destruction of €, = Cg,— 7 (18)

9) CONCENTRATION DISSIPATION:

In a similar way, the transport equation for the turbulent concentration dissipation is given by:

at Re Sc §z2 az < Sc 0z ' oz az dz 0z azz oz
2 [(55) - _2 (&2
ReSC 9z2 !

(19)

where: the terms on the right represent diffusion, production and destruction (the last two terms),

O Fan _ ®s aec
o e 2 20




respectively. As in the energy dissipation equation, the various terms can be modeled in a
parallel way as:

Production of €, = C‘El-e-c;wi—@g, (21)
k 0z
. €€,
Destruction of €, = CE?T' (22)

10)VELOCITY CORRELATIONS:

In the 1-D case, two velocity correlations equations are produced, namely:

ouw’ _ 1 FuwW _ 8 72 ., _ —90u _ _,, ou’

gt 'Re oz oz MW ruP)l - wia -G (23)
_ 2 (ou’ ow ey T R
Re{ aZE) "‘[RITUT R.ICUC],

and;

b T ol

N A e I NPy 7 W AP

gt = lme gz ~ 3 WV ravpI i) - o (5% (g

+ [2Ri w'T - 2Ri W'C"] .

where the terms on the right side of the equations represent diffusion, production, pressure strain,
dissipation and stratification terms, respectively.

Notice that the terms in the (w)? equation are similar to those in ~ u’w’
equation, and they have the same physical meaning except that the production term is missing
from the latter equation.

The pressure-strain term is normally an unmeasured quantity in a laboratory flow, yet it
is an important term that cannot be neglected. It has been suggested by a number of researchers
that the pressure-strain term can be modeled as:

PSg = [Pressure Strain] o
iUy 0

€ B 2
= -Cpi"jz (u_iuj‘_ﬁij?k) -Al (P.I_‘,r-a

2 (25)

where: P; is the production term of u’ uJ:- :



Meroney (1974) and Hossain and Rodi (1982) both recommend that for high Reynolds
number flows, the turbulence is locally isotropic so that the energy is dissipated equzlly in each
component of u’;. Based on this assumption the dissipation terms in the above two equations
become:

” Bui Buj _

Y 2. 26
T, 0% 36ije. (26)

11) VELOCITY TEMPERATURE CORRELATIONS:

Two velocity temperature correlations resulted for the 1-D approximation these equations

are:
ow’T’ _ 1 FTW _ 0 3 w2 0T p T
S T I S R~ R
2
- 2 (9TIOWy . 2Ri k] - RITC.

Re Pr 0z 0z

Physically the terms on the right represent the diffusion, production, pressure strain, dissipation
and stratification, respectively; and;

TG 32,,/m7
T _ 1 _FuT _ 9 yrymyy - 9T _ rmdu
at Re Pr §z2 0z dz 0z (28)

2 ou’ BTFJ
Re Pr 0z 06z

Terms in Equation (28) have the same physical meaning as those in Equation (27), =xcept that

the pressure strain and stratification terms do not exist in the u’T’ equation.

In an analogy to Equation (25), the pressure scrambling term can be assumed to be:

PS.rn = Pressure Strain = - szTec(uif T) - APom (29)
where:
_ .1 _ e BT Uy
Porp = Production = EP“' = ui”j'g}; ”kTa_xk (30)

The turbulence is again assumed to behave isotropically at the local scale; thus, the dissipation
terms are assumed to be zero in the above two equations.

10



12) VELOCITY CONCENTRATION CORRELATIONS:

In a similar fashion, the two equations produced for velocity-concentration correlations

are:
ow'c’ _ 1 Fcw L. B = ey 51 0C ;1 0C
& T Resc oz Bz CW PN Wm0 L
.
= Rezsc(%cz %“;) + [-2Ri K} + Ri,TC,
and;

TR =T
ou’c 1 Fu’ch | 3 graen - wi9C _ e du

0z 8z

0
ot Re SC gz2 9z
B 2 ( ou’ BC;)

Re Sc 0z 0oz

(32)

The terms in these equations carry the same physical meanings as the corresponding terms in the
velocity temperature correlations. Also the dissipation terms are assumed to vanish under the
assumption of turbulent local isotropy. The pressure-strain term will behave in a similar way and
can be written as:

PS.r = Pressure Strain = - C, T‘; (ulch - 2,Prs, (33)
where:
= lon & 2D, == aC _ —7= 9y
Pora = Production = -EPij = - uu; & uC ax;' (34)

13) TEMPERATURE CONCENTRATION CORRELATIONS:

The correlation between temperature and concentration fluctuations is given by;

aT'c’ _ 1 i FPTCT_ 3 =rmrAn g - (71 8C == 3T
3t - HeemtEeas a2 Fz YT Ot [TW g rwiCia] g,
Y. I T ac’)]

Re Pr Re Sc 0z 0Oz

The terms on the right side represent the diffusion, production and dissipation terms,
respectively. To be consistence with previous analysis, the dissipation term vanishes due to the
assumed turbulent local isotropy.

1i



The Boussinesq approximation, which assumes the density is constant except in the
buoyancy term of the momentum equation has been utilized in developing the above equations.
The density of the fluid is a function of both salinity and temperature and is given by:

p = Pol1 - Bo(T-T,) + BolC-Co)]. (36)

In the above equations, u is the velocity in the x direction, P is the pressure, T is the
temperature and C is the species concentration. ¥, o and D are the molecular viscosity, thermal
diffusivity, and solute diffusivity respectively. B is the thermal expansion coefficient, . is the
saline expansion coefficient, and T, and C, are reference temperature and concentration,
respectively. The various turbulent terms are:

ey g |

k=2@7 + v + W), e-= 'yz , (92 , (W27, (37)
2 0z 0z

1
%! %5z

ey T’

- 1 (72 = _ 1 (9T)2 (38)
ke 2(T)' i RePr(az)'

N aci __ 1 9, (39)
ke 2( booo& ReSc(az)’

and the dimensionless numbers resulting from the scaling process are defined as Re, Reynolds
number; Pr, Prandtl number; Sc, Schmidt number; Ri;, temperature Richardson number; and
Ric, concentration Richardson number. They are defined mathematically as:

UnaxcH

Re = = , Pr = % , Sc = %,
Ri. = IBATmE . gBAGLH H
¥ AUZ, 2 AU,

By using Prandtl's assumption, which relates shear stress to local velocity gradients
through the eddy viscosity, and incorporating the length scale proposed by Harlow and Nakayama
in 1967, one gets:

2
ve = Gpie (41)

Following a similar argument, the thermal and salinity eddy viscosities can be written as:

k k
@y = Gkt @ = Ck=. (42)
r c
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4.0 ALGEBRAIC STRESS MODEL DEVELOPMENT

A model of turbulent closure would be considered useful if it possess width of
applicability, accuracy, simplicity, and economy in computational time and storage. The ASM
has the advantage of reducing the number of partial differential equations , thus, resuiting in
reduction in computer time and storage, and yet it retains the applicability to a wide range of
problems with a reasonable accuracy. The ASM model requires algebraic expressions for the
velocity, velocity-temperature, velocity-concentration, and temperature-concentration correlations
to replace the partial differential correlations. These new expressions are dependent upon an
accurate representation of the production-dissipation terms in their respective exact relationships.
These algebraic equations can be derived as follows:

4.1 Reynolds Stress Equations

By examining the governing equations one finds that the convection and diffusion terms
in the Reynolds stresses equations are responsible for the differential form of the relations. If
these terms are eliminated, one ends up with more manageable algebraic relations to replace the
(computer-time consuming) differential forms. One possibility is to neglect the rate of change,

convection and diffusion terms in the ujuj, uiT/, uic’, T'C’ equations to produce a
simplified algebraic equations for these quantities. A more reasonable and physically appealing
idea is the one introduced by Rodi (1972). He postulated that the convection and diffusion terms
of the Reynolds stress are related to their corresponding terms in the turbulent kinetic equation,
and the later terms are related to the production, dissipation, and stratification terms of the
turbulent kinetic energy; thus:

. . . ulu] . ) ) (43)
(Convection-Diffusion) T = kj (Convection-Diffusion) .z,

e

ujug
= lkJ(P_e+S)ofk=(P+Ps—e+S)ofTE§?jT' (44)
or:
—— k(P+PS-€+8) .-
ugll; = 2 2% (45)

(P-€+5)
where: the production, dissipation, and stratification terms of the turbulent kinetic energy and

u i- u} are as defined previously in Equations (4) and (23)-(24). However, to avoid numerical
singularity Equation (45) is rearranged to take the form:

13



and the diffusion, convection, dissipation, allgi strgnﬁcg.}mn terms of the turbulent kinetic energy
of uiu
Ps ' (46)
(g e * § (7€ SVoxs

Uin =

4.2 Heat Flux Equations

Following Rodi's reasoning, Meroney (1974,1976) extended Rodi's postulate to the heat
flux equation, and he argued that the diffusion and convection terms of the heat flux equation are
related to the convection and diffusion terms of the turbulent kinetic energy. Gibson and Launder
(1976) proposed that the turbulent heat flux is related to both the turbulent kinetic snergy and
temperature fluctuations as:

uiT{

(Convection - Diffusion) ofal = (Convection - Diffusion) of [ET;

t

- BT Dk b e BT thn(k)l
2k "Dt 2k, 5
ulT’ ulT"
= - €losk * >k [P - €] e, -

(47)

In their analysis they assumed that the dissipation and production of k, are in balance so that the
second half of the above equation vanishes. In the current analysis the assumption of balance
between temperature fluctuations production and dissipation is not imposed, so that the turbulent
heat flux equation takes the form:

Tl (P+PS_6+S]ofuT

u:T" = , (48)
2k(P—e Sotx * 31 2k (P - €)oru,

and the diffusion, convection, dissipation, and stratification terms of the turbulent kinetic energy
and temperature fluctuations are as defined in Equation (4) and (6) and (27)-(28), respectively.

4.3 Mass Flux Equations

Since the mass is a scalar quantity, one would expect by analogy that Gibson and
Launder's postulations for heat flux can be further applied to the mass flux terms. Similarly, one
can postulate that:

= (P+PS-€+S)ofE?

e - : r (49)

ﬂ(P‘E *Slotx * 3% (P =€) ork,

<
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and concentration fluctuations are as defined in Equation (4) and (8) and (31)-(32), respectively.
4.4 Temperature Concentration Fluctuations

The temperature concentration fluctuation is expected to be related to both k, and k,
according to the following correlation:

, : : _ T : ; :
(Convection - Diffusion) , 7w = (Convection - Diffusion) ., VE
4 c
AT AT
T Dk T’C’ | Dk,
= S + e
2k, Dt Dik,)] 20 [ Dt Dik.) ]
AT AT
= g; [P+ S -€lory, * i;!f [P - €lor i,
r c
(50)
Rearrangement of this equation, yields an equation for T7C’ of the form:
TG = = (P -e )ofl"x‘_"? f 51)
5k, b " err, * g (P - €ory,

When proper terms are substituted in Equations (46), (48), (49) and (51), one obtains the
algebraic equations for the turbulent fluctuations terms.

5.0 ALGEBRAIC STRESS MODEL EQUATIONS

Substitution of the terms outlined in the previous two sections into the one-dimensional
turbulent governing equations yields, after some additional mathematical manipulation, a
simplified form of the governing equations:

Qu _ 1 Pu _ 3w (52)
at Re §z2 0z
at Re Pr gz2 oz

ot Re 5S¢ §z2 oz

15



ok _ 1 Pk, 9 K9k, _ =y du _
3t  Re 9z% | A 0.€ & g e (55)
+ [Ri w'T? - Ri w/C’]

ok, _ 1 Pk, o , Cukk, Ok, — 3T
3 Rl i 92 oE B WTigp TS (56)
akc = 1 azkc d kakc akc : ac
at Re 5¢ 372 | oz checﬂ') (w C:)-gé €. (57)
-ge- = iie_a-_a( Cﬂkzﬁ)
22 az er 0z (58)

o
2
o _ o € FT“‘c [Ri w'T’ - Ri_w'C’]

Oe. 1 %, 8 &kfjieE)
dt Re Pr 9gzz 0z G.€, 0z (59)
arT EE
= Coes (WT) () 52 = Cora(F)

aec = 1 azec + ..g. (—_kakc --—-aec]
ot Re Sc 9z2 0z Go.¢€, 0z (60)
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= Cpea (WY () £E = il =2
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(61)
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A Y T E 0T x g s T
— [-(1-3,) (W) 5, * 2Rik,~RicT'C'l kk, (63)
k(G + 2 (-TW-2L —¢ + RIWT -RIWT)] + 2k [-WT ey
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(1 - 2) (- TwZ - Pk,

u'T’ = J (64)
1, =r=0
kﬂ[che+_2'(_uwag"e"erwT RJ. }]'l'—k[ %‘GJ
=1~ )(wj)ia—cm -2Ri k] kk,
wiCl = s oz teke (65)
1 _'7_}811__ . o ac
ke [Cpe += (-u Wias g + Riw'T-Ri w'C") ] +—§k[-_m/c5-ec]
§ - 772 9C _ —r=ou
== _ [(1 aA)( e i w'c’ =) 1kk, I
e T -Ri —=aC
k. [Cose + = (-UW' 22 -+ RIWT - R1WCY) ] +—2-k£—wc-a.E -¢.]
ac oT
(-Tw' = -C'w/==) k. k
W = = == 0z - oz cac (67)
Ekc['w;T;ﬁ -€,] 1-—kt[—w}c"E -€.]

The set of constants incorporated in the above equations has been determined experimentally by
different researchers. The average values used in the current model are listed in table (1).

Table (1): Coefficients used in ASM model.

C Cq Ce Ce, Cey Ceo ¥ Oy Ce Oy
0.09 0.09 1.44 | 1.92 144 192 |15 1.0 1.3 0.7

Og Oy O A, A, A, Ca Cp Cy
1.0 0.7 1.0 0.55 |0.0 0.0 2.5 2.5 2.5

6.0 NUMERICAL SOLUTION

For a one-dimensional problem, nine partial differential equations and seven algebraic
equations (Equations (52) through (67) need to be solved numerically. The partial differential
equations are parabolic, because the time derivative is first order and present in every equation
while there is, at most, a second derivative in a spatial dimension. A finite difference approach
is used to solve this set of equations. For the main variable in each equation, the method uses
central-difference formulae in space evaluated at forward time steps, while for the other
variables, information from previous time step were used. The resulting algebraic equations
were solved by use of Thomas algorithm in the z-direction. This method requires a double
sweep of the z profile and is actually a straightforward Gaussian elimination procedure.
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It was realized (Meroney (1974)) that it would be physically meaningless to allow positive
definite quantities (such as velocity, temperature, concentration, turbulent energy, turbulent
energy fluctuation, or turbulent concentration fluctuations) become negative. One can avoid the
anomalous behavior by evaluating all the sink terms as if they were (sink)® f**! / f*, where n is
the time step, and f is the dependent variable.

A computer code in Fortran language, was written to perform the numerical calculations
needed to solve the set of equations. The logic of the solution is as follows:

1) The physical properties of the fluid and the ASM constants are specified.

2) The initial values of all the variables are stated at time t =0.

3) The coefficients for the tri-diagonal matrix for each partial differential equation is
calculated using the information of the previous time step. Then the tri-diagonal
matrix is solved for each equation to evaluate the values of u, T, C, k, k, k, €,
€, and €, at time t + At.

4) Using the result of step 3 above, the Reynolds stresses, the heat fluxes and mass fluxes
are calculated by their algebraic equations.

5) Steps 3-4 are repeated for the next time step, and the solution is continued until the
desired number of time steps is achieved.

6) Output is printed at selected time steps.

The solution requires the initial profiles for temperature, velocity and concentration. To
initiate the turbulence, the initial conditions for the other variables are assigned the following
values:

k(z,0) = &(z,0) = k(z,0) = k(z,0) = &(z,0) = g(2,0) = 1.0X10”
u'T’(z,0) = wT'(z,0) = u/C’'(z,0) = wC'(z,0) =1.0x10"3

In order to satisfy the continuity equation for this 1-D problem the velocity in the upper
mixed layer is assumed to be uniform, and its value decreases with time due to the thickening
of the layer. By applying the conservation of mass equation one can calculate the value of the
uniform velocity at each time step as:

(H-Az)

pg=f”p(c)u(c)dz=amz+f p () u(t)dz.
Q 0

By rearranging this equation, the velocity of the upper layer becomes:

1 [(E-Az)

E=A_QZ + p () ult)dz.

pAzJo

For constant heat flux cases the temperature at z = 0, 1 can be calculated from the energy
balance in the cell adjacent to the wall:
while for the constant temperature cases the temperature at the bottom wall can be specified by
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T, = 1.0, and at the free surface Ty = 0.0.
The rest of boundary conditions are specified as:

@ z=0: C,=(C,
u(0,t) = 0
k(0,t) = &(0,t) = 0,k(0,t) = k.(0,t) = (0,t) = &(0,t) =0
u’T’(0,t) = wT/(0,t) =u’C’(0,¢t) = wC'(0,t) = TC(0, £) =

I
o

@ z=1: Cy = Cy
k(1,t) = &(1,t) = 0,k(L,t) = k(1,t) = g(1,t) = g(1,1) =0

u'T'(1,t) = wT'(1,t) =uC’(1,t) =wC(1,t) =TC{1,¢E) =0

7.0 NUMERICAL RESULTS AND DISCUSSION

The numerical model developed in the previous sections is used here to predict the
behavior of double diffusive flows. In order to verify the performance of the model, initial and
boundary conditions similar to experimental data provided by Al-Ghamdi (1993) were used to
establish a base for comparison between the numerical results and the corresponding experimental
data. The numerical model has the advantage of producing some variables that are not measured
in the experiments, either due to absence of the appropriate instrumentation during the course of
the experiments (mean velocity, velocity fluctuation, temperature fluctuation and concentration
fluctuation), or to the lack of methods able to measure some variables (such as the dissipation
of energy, temperature and concentration). The test case examined is for a salty fluid that
consists of three layers, namely; a bottom mixed layer at high density, an upper mixad layer at
low density, and a stably stratified layer in between. The system is heated from below while the
temperature of the upper layer is kept constant. During the experiment the upper layer moved
at controlled velocity. Numerical calculations for two different cases are presented below, and
the changes of the temperature, salinity, and density with time as well as the entrainment across
the interface are examined.

CASE (D: A constant bottom temperature condition is considered. The parameters for this
case are similar to the conditions of experiment MLH9 of Al-Ghamdi (1993), and they are:

Bottom temperature 32°C
Upper temperature 22°C
Average upper layer velocity 0.0026 m/s
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Salinity in bottom layer 5%

Salinity in upper layer 0%

Water level in the tank (H), mm 1533
Lower interface location (z/H) 33
Upper interface location (z/H) 75
Reynolds number 4.15x 10°
Thermal Richardson number 8.90 x 10°
Solute Richardson number 8.88 x 10*

The calculated temperature, concentration and density profiles are shown in Figures (1) to (3).
One can see a trend similar to that observed experimentally. The interfacial layer thickness
predicted by the numerical solution was found to be about 32 mm. It lies in the range of the
experimental findings given by Al-Ghamdi (1993) of 16 mm to 40 mm. An expanded view of
the upper interface is depicted in Figure (4). From this figure the location of the upper interface
was calculated, and its progress with time is compared with the experimental results of in Figure
(5). Figure (5) indicates that the numerical solution overpredicted the progress of the upper
interface by about 5%. A Comparison of the numerically calculated temperature profiles with
the experimental data are presented in Figure (6). This figure suggests that the numerical
calculations and the experimental data aligned well in the upper part of the tank, but the
numerical solution significantly overpredicted the entrainment at the lower interface. This
overprediction of the entrainment rate is most likely due to the approximation of strongly 3-D
mixing process by a 1-D numerical mixing model.

CASE (I): In this case a constant heat flux is applied to the tank bottom. These conditions
represented the situation studied by experiment MHL?2 of Al-Ghamdi (1993), and they are:

Heat flux supplied to the bottom 196 w/m?
Upper temperature 220
Average upper layer velocity 0.0028 m/s
Salinity in bottom layer 5%
Salinity in upper layer 0%

Water level in the tank (H), mm 1600
Lower interface location (z/H) 35

Upper interface location (z/H) 78
Reynolds number 4.67 x 10°
Thermal Richardson number 4.80 x 10°
Solute Richardson number 7.01 x 10

The numerical results for this case are presented in Figures (7) to (12). Again these figures
suggest a qualitatively satisfactory solution, but the numerical model again overpredicts the
entrainment rate at the interfaces. These results show that the numerical solution can predict the
layering phenomenon observed experimentaily, but it predicted layering to occur earlier than
observed during experiments.
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Once this layering occurred, a numerical instability developed, and the program was
terminated. In this specific case only one layer appeared, but in some other test casas a series
of layers were produced before an instability in the program occurred. A comparison of
experimental and numerical entrainment rates at the upper interface are shown in Figure (11).
The numerical model overpredicted the entrainment rate by about 15 %. The temperature
profiles calculated numerically are compared with their corresponding experimental results in
Figure (12). Good agreement between the numerical solution and the experimental data occurs
in the upper part of the tank, where the flow is mainly one-dimensional, but in the lower part
of the tank where the flow is fully 3-dimensional, the numerical model overestimated the mixing
process.

8.0 CONCLUSIONS AND RECOMMENDATIONS

The phenomenon of double diffusive flow, where both heat and concentration coexist in
the flow field, was investigated in this research numerically using a 1-D Algebraic Stress Model
(ASM). When compared with experimental data, the numerical model exhibited trends consistent
with the experimental results, revealed the same profile phenomena, and gave acceptable mixing
rates. The numerical results permitted a wider range of boundary conditions than the one
possible during the experiments. It provided a qualitative estimation of experimentally
unmeasured quantities.

The model was able to predict the layering phenomenon observed in the constant heat flux
experiments. But quantitatively, the model overpredicted the entrainment rate at the upper
interfaces by 5 to 15 %. The numerical model agreed well with the experimental results in the
upper part of the system where the flow was mainly 1-D, but in the lower part of the system
where the flow was fully 3-D the numerical model overpredicted the mixing process. Finally
the 1-D model turned out to be a good tool for first order prediction. Expansion of the model
to a 2-D or 3-D case is expected to result in a better prediction of the mixing processes
associated with doubly-diffusive flow subjected to combined heating and shear flow.

REFERENCES

Al-Ghamdi, A. S., (1993), Experimental and Numerical Study of a Doubly-Diffusive Flow
Subjected to Combined Heating and Shear, Ph. D. Dissertation, Civil Engineering Department,

Colorado State University, Fort Collins, CO.

Anderson, D. A., J. C. Tannehill, and R. H. Pletcher, (1984), Computational Fluid
Mechanics and Heat Transfer, Hemisphere Publishing Corporation, New York.

Atkinson, J.F., and D.R. Harleman, (1983), " A Wind-Mixed Layer Model for Solar Ponds,"
Solar Energy, Vol. 31, No. 3, pp. 243-259.

21



Cha, Y. S., W. T. Sha, and W. W. Schertz, (1981), "Modeling of the Surface Convecting

Layer of Salt-Gradient Solar Ponds," Proceedings of the 16th Intersociety Energy Conversion

Engineering Conference, Atlanta, Georgia, August 9-14, pp. 1732-.

Gibson, M. M., and B. E. Launder, (1976), "On the Calculation of Horizontal, Turbulent,
Free Shear Flows Under Gravitational Influence," Journal of Heat Transfer, February 1976, pp.
81-87.

Harlow, and Nakamara (1967),

Hossain, M. S., and W. Rodi, (1982), "A Turbulent Model for Buoyant Flows and its

Applications to Vertical Buoyant Jets," HMT, the Science Applications of Heat and Mass

Transfer, Vol. 6, Pergaman Press.

Kazmierczak, M. ., (1988), Transient Double Diffusion in a Fluid Layer and a Composite
Porous/Fluid Layer Heated From Below, Ph. D. Dissertation, University of Illinois at Chicago.

Linden, P. F., and T. G. Shirtcliffe, (1978), "The Diffusive Interface in Double-Diffusive
Convection,"J. of Fluid Mech., Vol. 87, Part 3, pp. 417-432.

Mellor, G. L., and T. Yamada, (1974), "A Hierarchy of Turbulence Closure Models for
Planetary Boundary Layers," Journal of Atmospheric Sciences, Vol. 31, pp. 1791-1806.

Meroney, R. N., (1974), Buoyancy Effects on a Turbulent Shear Flow, Colorado State
University, Report No. CER73-74RNM38

Meroney, R. N., (1976), "An Algebraic Stress Model for Stratified Turbulent Shear Flow,"
Computers and Fluids, Vol. 4, pp. 93-107.

Mory, M., (1991), "A Model of Turbulent Mixing Across a Density Interface Including the
Effect of Rotation," J. of Fluid Mechanics , Vol. 223, pp. 193-207.

Murota, A., and K. Michioku, (1989), "Numerical Simulation of Turbulent Structure Produced
by Combined Action of Mechanical and Thermal Stirring Using a Turbulent Closure Model,"

Refined Flow Modeling and Turbulence Measurement, Universal Academy Press, Inc.

Murty, V. D., (1988), "A Finite Element Solution of Double-Diffusive Convection" Int.
Comm. Heat Mass Transfer, Vol. 15, pp.165-177.

Ohtsuka, M., and M. Yamakawa, (1989)," An Analytical Study of Turbulence in a Salty

Stratified Flow," Refined Flow Modeling and Turbulence Measurement, Universal Academy
Press, Inc.

22



Rodi, W., (1972), The Prediction of Free Turbulent Boundary Layers by use of a Two-Equation

Model of Turbulence." Ph. D. Dissertation, Mechanical Engineering Department, Imperial
College, London.

Rodi, W., (1980), Turbulence Models and Their Applications in Hydraulics, JAHR.

Rodi, W., (1982), Turbulent Buoyant jets and Plumes, The Science and application of Heat and
Mass Transfer, Vol. 6, Pergamon Press.

Schladow, S. G., (1984), "The Upper Mixed Zone of a Salt Gradient Solar Pond," Solar
Energy, Vol. 33, No. 5, pp. 417-426.

Schladow, S. G., (1988), "Simulation of Dynamics of Double-Diffusive Systems," Journal of
Hydraulic Engineering, Vol. 114, No. 1, pp. 1-20.

Uno, I., and H. Ueda, (1989), "Some contribution to the Algebraic Stress Turbulence Model
for the Application of Stratified flows," Refined Flow Modeling and Turbulence Measurement,
Universal Academy Press, Inc.

Ushijima, S., and S. Moriya, (1989), "Calculations of Thermal Stratification Phenomena in a
Cylindrical Vessel," Refined Flow Modeling and Turbulence Measurement, Universal Academy
Press, Inc.

Zangrando, F., and L. Bertram, (1985), "The Effect of Variable Stratification on Linear Double-
Diffusive Stability," J. of Fluid Mech., Vol. 151, pp. 55-79.

APPENDIX

The algebraic stress model equations were made dimensionless by using the following scaling
parameters:

u* = u /umax

z* = z/H

t* = (t uy,)/H

T* = (T - TI(Ty - T)
C* = (C-C)/(C,-C)

k* =k 2
k* =k "’ATmaut2
kX = kb JAC,.}
g* = (€ H)/u 5>

&* = (& H)/ (AT U mad)
g* = (g, H)/(AC,,2U o)

p* = p/(pu,,)
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