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Abstract

Eulerian-Lagrangian relationships <calculated from Monte-Carlo
simulation of particle movements are compared with estimates from analy-
tical approximations based on Lagrangian kinematic relationships.
Results of a one-dimensional numerical simulation and a three-
dimensional analytical approximation for isotropic homogeneous turbu-
lence are discussed. The Monte-Carlo simulation is mathematically and
physically similar to the analytical approximation despite the fact
that the numerical simulation is fundamentally incorrect for three-

dimensional turbulence.
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In a recent paper prepared by Lee and Stone,1 Monte Carlo
techniques were used to predict one-dimensional diffusion in a station-
ary, homogeneous field of turbulence. An analytical expression to be
used to predict Lagrangian statistics from Eulerian statics was also
presented. The analytical solution for cloud growth compared favorably
with the results from the Monte Carlo simulation, and both results
agreed with Lagrangian statistics computed by Baldwin and Johnson‘sz
three-dimensional algorithms. It is indeed impressive that a one-
dimensional turbulence model approximated cloud dispersion as well as a
full three-dimensional model. In this paper we re-examine Lee and
Stone's expressions and try to relate the traits of these two models.

The common assumption adopted in both models is that the general
Eulerian space-time correlation may be represented as the product of
spatial and convective time correlations. Lee and Stone approximated
the Lagrangian autocorrelation function at small time increments by the
Eulerian space-time correlation, and they assumed that the velocity
fluctuations are normally distributed with zero mean and standard

deviation o. They used the expression

. o’
R (5t) = ( 2 )% exp(-6t/T ) f n2e™®@ e 2 gp, (1)
n c 0
where a = QEQE :
n = N(0,1), and

Tc’ L are the convective Eulerian time and length scales.



The Lagrangian autocorrelation function at small time &t is thus

RL(ﬁt) = exp(-ﬁt/TC) {exp(azfz)-(1+az)(1-erf(a/J§)) _ 2 a}
n

,  (2)

where erf signifies an error function.
Since a first order autoregressive process successfully describes
the motion of a diffusing air particle, the autocorrelation function

must satisfy the following relationship,3
R (t) = (R (6t))F, t = kot . (3)
Therefore, RL(t) can be re-expressed as
R (t) = exp(~t/T ) {exp(a®/2)(1+a%) (1-erf(a/yD)) - 12 a}*/% (4)
7

The Lagrangian integral time scale, TL’ is defined as
o
T, = g R (t)dt (5)

If we introduce the Eulerian parameter o = a/At, , which was used by
Philip& and Baldwin and Johnsonz, then the ratio of Lagrangian to
Eulerian integral time scales will be

_1‘
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Lee and Stone obtained RL(ét) by expanding the exponentials,
exp(-ét/Tc) and exp(-an), in Equation 1 for small values of &t~0.

TL/TC was obtained in conjuction with the random force model.5 Their

result is

_ 8 3541
T /T, = (14 (£)%a) (7



Equation 6 is a more exact solution to the Monte Carolo simulation, yet
the differences found are negligible. Table 1 displays values calcu-
lated from Equations 6 and 7 by using the tabulated error function in
Abramowitz and Stegun.6 It is not surprising that Equation 6 success-
fully predicts results from a Monte Carlo simulation, since it is the
natural consequence of a Markov process.
Baldwin and Johnson employed Corrsin's independence hypothesis7

They proposed a numerical iterative procedure to estimate the Lagrangian
autocorrelation function based on Taylor‘58 integral relationship. The
method has been extended to more general turbulence fields including
anisotropy and uniform shear effect by Li and Meroney.9 The general

Eulerian space-time correlation is separated into two parts such that
- W B o B -E
Ry(r,8,t) = F, (/T ) [(1-%|f|sin"0) exp(-|F])] - (8)

The bracket term stands for the general Eulerian spatial correlation
function which is obtained from the classical Karman—Howarth10 relation-
ship by assuming that the f-function is exp(-'%‘). Fl(t/Tc) is the
convective autocorrelation function. For comparison with Lee and
Stone's analysis, an exponential form of Fl(t/TC) is adopted such that

Fl(t/TC) = exp(—t/TC); hence, RL(t) becomes
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and 02 is obtained from Taylor's integral relationship,

we £ By

oz(t) = 2u2 J J RL(t) dt dt1
0 0

Adopting the following nomenclature

one obtains

2
o'l
R (ty) = exp(-t)) {e  (l-erfyo’D)(1+4a’T + 7 o*1%)

/2
- %— * L 65 pefTy (10)
Jn
and
t* tl*
I(t) = f I RL(I*) dr, det, .
0 0

TL/TC may be computed from Equations 10 and 5 for various « and are
also tabulated in Table 1. For a small value of « the estimated TL/TC
agrees with Monte Carlo simulation predictions. As « increases the
deviation becomes appreciable. Lee and Stone warned of the possibility
that the one-dimensional model inadequately represents the spatial
variation of the correlation function in three-dimensional homogeneous
turbulence. Indeed their results agree with these more exact calcula-
tions at small «.

Suppose that instead of using Equation 8, we replace it with the
-1l
S

simplified expression RE(r,B,t) = used by Lee and Stone.



The Lagrangian autocorrelation function is then

-t 2
RL(t*) =e {ea I (1+2a21)(1~erme21) - J%— 4&21 3, (11)
T

where I(t,) retains its earlier definition.
If At, is a small value such that At,»0, I(t,) will approach its

asymptotic value,

at,?

I(&t*) = -

Substituting this approximation for I(At,) into Equation 11 recovers

Equation 2 with a = oAt,. Values for TL/TC calculated from Equa-
tion 11 are also listed in Table 1. The results are significantly
larger than estimates from Equation 4 and Equation 10. Deviations

between estimates from Equation 10 and Equation 11 solely result from
the simplification introduced for the general Eulerian spatial correla-
tion function. TL/TC is overestimated, when one assumes that the
f-function is the same as the g function in an isotropic homogeneous
turbulence field.

Differences between estimates from Equation 4 and Equation 11 are
due to the different approaches employed. By virtue of Lagrangian
kinematics of a fluid particle, the independence hypothesis is appli-
cable only when t is so large that there is no relation between the
fluctuating velocity and the particle position. Equation 10 represents
results based on such theory.

Equation 2 may be interpreted in terms of the independence

hypothesis and Equation 11 by ignoring the influence of fluctuating

velocities on particle position at small times. For small &t, (see



Figure 1), particles released at t=0 are most likely to arrive at
x = USt, but they will actually scatter about x = USt. When one assumes
RL(26t) = R%(Gt), the independence hypothesis is essentially utilized
twice. Hence, the assumption neglects the contribution to the autocorre-
lation from those fluid particles which scatter about x = USt. At
large t, Equation 4 underestimates the Lagrangian autocorrelation as
compared to Equation 11. Table 1 shows that TL/TC values derived from
Equation 11 are larger than time ratios calculated from Equation 6. The
resultant overestimations and underestimations tend to compensate;
hence, the expressions result in close agreement between Lee and Stone's
one-dimensional analysis and Baldwin and Johnson's three-dimensional
approach.

The discussions presented in this paper attempt to physically
visualize the intrinsic differences between Monte Carlo simulations and
methods based on Corrsins'indepdence hypothesis. The Monte Carlo simu-
lations reproduce the results of the independence approximation at small
time, but are based on principles which contradict the basic assumptions
of the independence approximation, and the one-dimensional Markov pro-
cess does not reproduce the expected variation of spatial correlation
required for three-dimensional isotropic homogeneous turbulence. The
estimated Lagrangian-Eulerian time scale ratio calculated from either
approach varys less than the magnitudes observed during atmospheric

dispersion experiments.
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