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ABSTRACT

The behavior of dense gas volumes emitted instantaneously into a simulated
atmospheric boundary layer are compared to a numerical volume-integrated box
model. Three different size source volumes were released into five different
wind fields. The dense clouds were rapidly diluted to low values of con-
centration by gravity induced entrainment velocities.

1. INTRODUCTION -

Sudden release of a dense gas near the ground is accompanied by horizontal
spreading caused by gravitational forces. Such clouds will drift downwind
from the source location at ground level, providing an opportunity for igni-
tion if the gas is flammable or perhaps for acute toxic effect to life in its
path. When the buoyancy forces are large they tend to dominate cloud shape,
inhibit advection by the wind, and suppress dispersion by atmospheric
turbulence.

Restricting attention to instantaneous volume source behavior one finds
field experiments performed on the sudden release of Freon-12 with an initial
mixed specific gravity of 1.25, and spills of liquid natural gas (LNG) on land
or water with initial specific gravities near 1.5 [ref.1,2,3,10]. Most
recently, Picknett (1978) describes the release of air/Freon gas mixtures with
initial specific gravities ranging from 1.03 to 4.17 [ref.4]. The LNG experi-
ments are complicated by release mechanisms, and the recent Freon experiments
may suffer from instrument placement problems [ref.5]. Equivalent laboratofy
experience is limited to various lock-exchange experiments in water where the
initial depth ratio of current to intruded fluid is often significant or to
finite time releases of heavy gases from area sources [refs.6,7,8,9,10].

In a set of experiments preliminary to those diécussed herein, Lohmeyer,
Meroney, and Plate (1981) released small volumes of Freon-12 in a wind tunnel
by permitting a known bubble volume of gas to rise through a liquid column and
burst at the w;nd-tunngl ground surface (ref.11). Most of these experiments

were performed in a calm environment.



This paper considers the results of wind-tunnel experiments performed to
examine the behavior of dense plumes during periods of gravity spread/air
entrainment dominance. A modified box model is presented to provide a frame-
work of interpretation for the experiments. The experimental equipment and
procedures are described. Finally, the data are evaluated and the order of

magnitude of entrainment constants specified.

2. BOX MODEL FOR DENSE GAS CLOUDS

Consider a dense cloud which is instantaneously released as a cylindrical
box of radius, Ri’ and height, Hi’ that undergoes a slumping motion in which R
increases with time. As the motion proceeds one may assume the box mixes with
ambient air, but maintains uniform properties internally. The radial velocity
is assumed to vary linearly from zero at the center to a maximum at the outer
edge of the cloud. Entrainment may occur over the upper cloud surface and at
the front edge. Model details are contained in Appendix A of Meroney and
Lohmeyer [ref.12].

Frontal spread velocities are calculated from a modified version of the
total energy budget equation suggested by van Ulden [ref.13]. Dilutidn of the
gas cloud occurs by entrainment across the upper cloud surface and the frontal
area. These entrainment rates are adjusted to account for stratification
modified gravity spread rate and background turbulence. Finally, although
some models propose to relate drift distance to drift time by a normal wind
speed (i.e., x = uRt, where up is a reference velocity), the current calcula-
tions use a cloud arrival time related to a logarithmic wind profile.

The final equations developed were nondimensionlized with respect to time
and space scales equal to T = Vilfs(gi)-ljz and L = Vi1/3 respectively where
gi = g(SGi - 1). Nondimensional variables are indicated by a superscript star

(¥). The final expressions used are

Energy Equation:

du * cu #2 c u #2 Ap /p i u %2

B cda BB B R g B e (1)
dt* n R*3 R* 2 H* ¥ 1 o

for t* < Ri*llz
Radial Growth Equation:
L u * but never 1 th (2a)
T & 3 ut never less than a
o

dR* _ 7
dex ~ 1/2 . (2b)
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Dilution Equation:

% ;
i u * + 21 R¥HFu * (35

Advection Equation:

dx* - 1 H*
SR~ LR & —=p =g, =) (4)
dt g Ri*lfz K 2 z
Entrainment Relations:
where u¥*=c¢c u* (5a)
Y r g
a, Ri*"lfz
u* =c¢c u%+ (5b)
Z 2 =1
o Ri Ap./p
4 x i'"a
o B
6 mR*
=~ 1/3 2
Ri, = (gi’) v, /u, (é)
£ 2 )
and x = (V¥) and R¥ H* y =1 . (7)
Constants found to fit the various data most satisfactorily are B."= gy =
0:1; B1 = 0.9, a, = 2.6, A, = 0.39, k = 0.4, Bz = 0.1, and o, = 3.5. The

Boussinesq assumption was not made during the development of these
expressions. Equations (1), (2), (3) and (4) were integrated by a fourth-
order Runga-Kutta scheme. Note that the cloud dispersion is only a function
of initial cloud geometry (i.e., Ri/Hi ratio), Richardson number, Ri,, and

surface roughness length, zo*, and initial specific gravity.

3. EXPERIMENTAL CONFIGURATION

An experiment was designed to examine the dispersion of instantaneous
volumes of dense gas released at groundlevel in a wind tunnel capable of
simulating the atmospheric boundary layer. The gases were released as
initially half cylindrical clouds and the concentrations were monitored by an

aspirated-hot-wire katherometer.

3.1 Wind Tunnel and Source Generation Equipment

The open circuit wind tunnel used had a test section 0.5 m high, 1.5 m
wide, and 5 m long. At the tunnel entrance was a dense honevcomb and a vortex
spire/barrier flow conditioner arrangement which produced a 30 cm deep turbu-
lent shear layer which reached equilibrium and remained stationary over the

final 3 meters of the test section. A 14 cm x 16 cm x 12 cm deep container of



water was maintained flush to the test section floor 2.5 meters from the
entrance as noted in Figure 1. The rectangular box contained an apparatus to
£fi1l a half cylinder cup with dense gas, to raise the filled cylinder above
the water surface until it stood exposed to the wind, but isolated by a water
seal, and to suddenly rotate the horizontal cylinder about its axis, leaving
a volume of dense gas almost motionless above the water surface. The cup
rotated 180° in less than 1/20 second. A small magnet on the cup activated a

reed switch which provided a voltage pulse to timing instrumentation.
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Fig. 1. Experimental configuration.

3.2 Concentration Measurements

Dense gas concentrations were measured with an aspirated hot film
anemometer (katherometer) constructed from a DISA 55E07 mass flow transducer.
The aspiration velocity at the 1 mm diameter probe tip was set at 0.1 m/sec to
assure approximately isokinetic sampling of the plume: A fiber filter was
present at the probe tip to reduce system sensitivity to pressure perturba-
tions during shear flow measurements. All tests were corrected for a slight
time lag required for the sample to travel through the probe to the detection
wire. Extensive tests indicate such a probe has a flat frequency response to
150 Herz, concentration sensitivity to 0.10 percent, and resolution within
15 percent of a measurement [ref.14,15]. Since the probe is subject to drift
and temperature effects it was recalibrated frequently. No significant devia-
tions were detected.

During each realization of a volume release the katherometer response was
registered on a chart recorder. Each sample point was recorded a minimum of
five times. Time response was displayed within a resolution of t = % 0.1 sec
(t* £ * 3).



3.3 Shear Flow Measurements

The extremely low speeds (0.0 to 0.4 m/sec) that were required to
simulate the dense cloud drift necessitated the use of special calibration
procedures for the hot wire anemometer used to measure velocities and
turbulence. DISA 55A22 hot wires monitored by a DISA 55D01 anemometer were
calibrated in a low speed nozzle whose speed was set with low-volume flow-
rators. Velocity and turbulence measurements were made over the test section
to detect the presence of any secondary cross currents. Velocities are

reliable within 25%.

4. BEHAVIOR OF EXPERIMENTAL DATA

Experiments were performed with Freon-12 (Specific Gravity = 4.17) and a
neutral density Helium/Freon-12 mixture (Specific Gravity = 1.0) and 35, 165,
and 450 cm3 initial volumes; hence length scales for the dense releases were L
= 3.3, 5.5 and 7.7 cm; whereas time scales were T = .032, .042, and .049
seconds respectively. Wind tunnel velocities at a 10 cm reference height were

varied from 0 to 1.0 m/sec.

4.1 Shear Flow Characteristics

Equilibrium boundary layers were developed over the last 3 meters of the
test section. Velocity profiles were found to fit a power law exponent
p = 0.13 above 1 cm and to fit a logarithmic velocity prefile over most of the
boundary layer with u_‘,‘-/uR = 0.048 and z, = 2.4x10-5 m. Characteristic

1/3/u*2, varied from 445 to 26,000 and « at

Richardson numbers, Ri, = gi'Vi
calm conditions. Local longitudinal turbulence intensities were about 20% at
the predominant cloud layer height of 0.5 cm. Shear stresses were nearly
constant over dispersion depths, vertical turbulence intensities were small, ~
6%. Evaluation of profile shape, turbulence intensities, and integral scales

suggested the simulated boundary layer scale was between 1:1000 to 1:2000.

4.2 Dense Cloud Dispersion During Calms

Over the ten fold range of source volumes studied all radial growth and
concentration decay behavior collapsed together when plotted as R¥ vs ta*; Xm
vs ta*, and Xy VS R*. The data also duplicated the earlier behavior of
independent experiments performed by Lohmeyer et al. (1981) for 50 cm3 source
volumes released in a different wind tunnel using different instrumentation
and release mechanism [ref.11]. Average data behavior are included with wind

shear results discussed in the following paragraphs.



4.3 Dense Cloud Dispersion with Wind Shear

The presence of a wind field influences the dispersing dense gas in the
following manner. In a weak or moderate wind the cloud slumps rapidly. It
spreads radially, but the portion moving upwind slows somewhat and thickens.
Subsequently, the entire cloud beings to drift downwind. When gravity driven
velocities fall below local wind field speeds, at t* near Ri, Cffz, background

turbulence and wind shear begin to enhance entrainment, and when gravity

I

driven velocities fall below u, at t* Ri the shear flow completely

¥ *?
dominates mixing.

Results from the experiments for varying wind shear are presented in
Figures 2, 3, and 4. The downwind transport of a dense cloud in terms of
dimensionless coordinates x* and ta$ is shown in Figure 2. One notes the
regular decrease in cloud arrival time as uR* increases (as Ri, decreases).
The clouds appear to accelerate toward background advection speeds only after
an initial inertial hesitation. The cloud appears to remain stationary for
ta* < 10.

Figures 3 and 4 describe plume dilution X, versus t * and x* respective-
32 apd (x93

during calm situations. For wind shear situations concentration variation

ly. Plume concentrations decay assympototically as (ta*)

with arrival time behaves in a rather irregular manner depending on initial
cloud size. TFor the smallest cup size increasing wind speed results in
progressively faster concentration decay rates. For the medium and large cup
sizes initially small wind velocities result in apparently lower concentration
decay rates, as the clouds are convected downwind without a proportionally
higher rate of dilution. At higher wind speeds the cloud dilutes faster, the
decay rate increases, and the slope of the xﬁ vs ta* curves steepen again.

As shown in Figure &4 concentrations universally increase downwind with
wind speed compared to the calm situation; however, the data suggests for each
cloud size and downwind location a wind speed exists which results in maximum
concentrations measured. At higher wind speeds one expects the added diluting
capacity of the atmosphere to cause concentrations to vary inversely with wind
speed for a fixed source rate.

Figure 5 emphasizes again the influence of wind shear by examining the
variation of ta* and X when x* is held constant and the variation of xm
when ta* is held constant. No strong source size perturbation is apparent in
the distribution of arrival times; however, source size obviously influences
concentrations at low wind speeds. As uR* becomes large X, appears to

approach similar values for all source sizes studied at the given ta*.
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5. BEHAVIOR OF NUMERICAL BOX MODEL

The volume-averaged box model discussed earlier can reproduce radial
cloud dimensions and maximum concentrations measured during calm conditions
within experimental error and statistical scatter. It can not reproduce the
actual vertical and radial variations of height, concentration and velocity in
time. Indeed, if the box model is designed to reproduce maximum concentra-
tions measured at various radial locations, then the bulk average concentra-
tions predicted will always be too low, and the entrainment rates too high for
the reality of local entrainment physics. Nonetheless, such a model has

engineering value and it is important to evaluate its limitations.

5.1 Comparison to Wind-Tunnel Experiments

Cloud transport distance calculated is plotted versus arrival time in
Figure 6. The behavior is quite similar to that measured in Figure 2. Cloud
dilution is plotted versus arrival time in Figure 7 and distance in Figure 8.
Here the limitations of the box model become apparent. Due to the well mixed
cloud assumption the model can not reproduce the lower decay rates at low wind
speeds and higher decay rates at high wind speeds. The box model does repro-

duce the set of curves representative of higher mixing rates at the higher
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predictions.

velocities. It also predicts higher concentrations at a given distance with
higher wind speeds. The limiting decay rates at low concentrations behave as

X, ~ ta*-1/3 and Xp ~ x*-1/3

at large times.
To illuminate the independent effects of Ri, and zo* the box model
results were plotted as shown in Figure 9. Comparable data is found on Figure

5. The box model results are generally similar, but they do not reproduce the

sources of roughness effect found in the plots of dilution versus wind speed.

Nonetheless, for such a simple model the predictions are respectable.

5.2 Prediction of Propane Cloud Behavior

The box model was used to predict a range of hazard distances produced by
instantaneous spills of propane or L.P.G. The results are limited to flat
terrain, uninterrupted by surface obstacles, a neutrally stable atmosphere
(Pasquill-D), roughness z, = 2 cm, and surface drag u*/uR = 0.05. The most
widely used hazard assessment and response tool currently used by fire depart-
ments and other emergency response agencies in the USA is the Chemical Hazard

Response Information System (CHRIS) [ref.16]. This methodology calculates



lower flammability distances (LFL) based on a neutral density Gaussian plume
model. The following table compares CHRIS predictions for various spill

situations with the numerical box model.

TABLE 1

Propane (L.P.G.) Hazard Assessment.

CHRIS BOX

Spill Sizes LFL Halfwidth ta LFL Halfwidth tal
(short tons) (kg) (m) (m) (min) (m) (m) (min)
0.1 91 18 8 0:1 30 28 0.50
1.0 907 152 18 1 66 60 1.00
10.0 9072 602 38 4 140 127 1.25
100.0 90720 1389 98 9 300 275 2.00
1000.0 907200 3195 200 21 650 600 2.67

6. CONCLUSIONS

A series of experiments with sudden release of dense gas volumes at the
ground in a shear flow confirms that inertial/buoyant spreading is rapidly
followed by self generated entrainment. When Richardson numbers are suffi-
ciently large, the gas may be diluted well below flammable or toxic limits
before the effects of shear turbulence are evident. No previous numerical
dense cloud model has been evaluated with respect to such a large set of

controlled and repeated experiments.
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NOTATION: Symbols Definition

¢, Entrainment coefficients
Ca/2 Skin friction coefficient
gf Modified gravitational constant
H Height of cloud
k von Karman coefficient
L Length scale
P Power law coefficient
R Cloud radius
Ri, Richardson number, Eq. (6)
t Time
t Cloud arrival time at X
i Time scale
u Friction velocity
v8 Cloud volume
X Downwind distance
z, Roughness length
i Various constants in Egs. (1) to (5)
xl + Plume dilution, volume or mole fraction
Subscripts
i Initial cloud property
Property at ambient air
R Evaluated at reference height (zR = 10 cm)

Superscript
% Nondimensional quantity
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