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Fluid Mechanics and Wind Engineering Program
Department of Civil Engineering
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Summary

The dispersion of effluent plumes emitted on or in the near wake
region (x/H £ 5.0) of a cubical model building have been examined. The
model study was performed in a wind tunnel with a simulated neutral
stratified shear layer. Mean concentration measurements were made on
the model building for three different roof vent locations and three
different building orientations. A full-scale measurement was conducted
in the near wake region for central roof vent release.

The concentration level on the lee face of a model building is
greatly reduced by the presence of a sharp edge of the model building.
The optimum location for intake vent on the building, with equal vent
exhaust to vent intake distance, is a position away from the downwind
direction and at a location where it cannot "see" the exhaust vent.
Orientation of the building at an angle of 45 degrees results in a
secondary peak concentrétion on the building and in the near wake

region.

Introduction

Mean concentration distributions of effluent plumes emitted om or
near buildings is a common concern to health physicists,'regulatorv
agencies, and air conditioning engineers. There is relatively little

‘guidance available in handbook format, and the problem is difficult to
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deal with theoretically. It is therefore an aspect of dispersion which
is ideally suited for study in wind tunnels or water channels.

Halitsky (1) conducted his verification experiments of the surface
concentration on a model building under conditions of non-turbulent,
uniform, mean velocity profile and isothermal temperature. The data may
be distorted, as discussed by Wilson (2) and Meroney (3), since Halitsky
failed to simulate the random fluctuations of atmospheric turbulence and
the relative length scale. Wilson presented a measurement on the‘build-
ing surface for various vent locations and building sizes in a simulated
atmospheric boundary layer. A value of B = 0.11 was suggested by Wilson
for the minimum dilution factor of roof vent releases. The tests per-
formed by Wilson and Halitsky were with the upwind face perpendicular to
the wind. However, the effects of other building orientations to the
wind have not been reported. Hence the purpose of the mean concentra-
tion measurements on the building in this study is to stipulate the
building concentration distributions which result from different roof
vent locations and building orientations for a simple building geometry.

The behavior of mean concentration distribution in the wake of a
building has been provided by several authors, (Huber (4)). But most
measurements were concentrated in the region beyond the building cavity
zone. Therefore the other purpose of this study is to specify the
concentration level and distributions which occur in the near wake
region behind a cubical model building.

The associated concentration fluctuation measurements are reported
in the second part of this study. The purpose is to provide a better

understanding of the concentration behavior in a model building wake.
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In the study of mean concentration behavior the general non-
dimensional concentration coefficient, K, is defined as the ratio of the
actual concentration, ¥, at any point in the field to a reference

concentration:

KV

Rty

where L = reference length, V =reference velocity and Q = contaminant
release rate.

In the present study, L and "V are chosen as JE; and UH’
respectively, where AC is the cross wind, cross-sectional area of the
building for © = 0° orientation and UH is the velocity at the height
of the building. Since the projected fromtal area will be proportional
to Ac it is felt that Ac is a more convenient variable.

All the model tests in this paper were made with a passive source
(little or no effluent momentum) located in the building surface. This
configuration would be representative of a leak in a nuclear reactor
containment structure or the discharge from a small flush vent, but it
would not be representative of a large diameter, higher velocity jet
release common in modern ventilation systems. Concentrations in passive
vent plumes decay more rapidly than in jet plumes because the latter
have an initial undiluted core. Therefore a minimum dilution criterion
developed for passive releases may not be sufficiently comservative for

jet releases if there is reason to believe that the intake will be

exposed to plume centerline concentrations.

Experimental Facilities and Measurements

Mean concentration measurements and the system imposed error are
presented followed by a brief description of the wind tumnel facility

and the boundary layer parameters in this section.



Wind Tunnel Facility and the Boundary Laver

The facility used was the thermally stratified wind tunnel of the
Fluid Dynamics and Diffusion Laboratory at Colorado State University.
The tunnel was designed for simulation of a thermally stratified bound-
ary layer in the atmosphere; however, the boundary layer simulated was
neutral for this study. The boundary layer used in the study was
developed over the length of the test section (240 cm downwind from the
entrance). Spires, barriers and a distributed surface roughness were
utilized to provide a fully developed boundary layer approximately 30 cm
deep with a power law exponent 0.19 throughout the test section.
Figure 1 shows the mean velocity and local turbulence intensity profiles
as a function of non-dimensional height in the boundary layer. The
height in the plot is normalized with respect to the boundary layer
thickness. The local turbulence intensity is defined as the ratio of
the root-mean-square velocity, \/;—2’ to the mean velocity, U, at a given
height in the boundary layer. The effective roughness height, Zo, was
7.5 x 10-3 cm and the integral time scale, T = f: Ru(t) dt, was found to
be 0.25 sec at Z/H = 0.3, and Uﬁ = 330 cm/sec. Table 1 shows some
characteristic parameters of the simulated atmospheric boundary layer.

Additional data concerning the wind tunnel facility and the bouandary

layer are described by Li, et al. (5).

Mean Concentration Measurements

Given a desired wind tunnel modeled flow configuration, pure helium
was released at a flow rate of 12.5 cm3/sec (exit wvelocity ratio,
Ue/UH = 0.19). Diffusion patterns were allowed to stabilize three
minutes before any concentration measurement was taken. The concentra-

tion of the tracer gas (helium) was withdrawn by a sampling probe and



analyzed by a thermal conductivity gas chromotograph (TCGC). The
sampling probe (1.47 mm O.D. and 1.06 mm I.D.) was made of a hypodermic,
stainless steel tube. The probe was mounted on a traversing mechanism
and perpendicular positioned with a distance, 0.3 mm, off the surface of
the model building for surface concentration measurements. The TCGC was
modified so that continuous sample analysis was possible. Background
concentrations were examined before and after each measurement to
correct for drift.

A plexiglas model (5 cm x 5 cm X 5 cm) was constructed to simulate
a cubical building in the wind tunnel. The degree of blockage was less
than 1 percent of the tunnel cross sectional area.

The dimensionless concentration coefficient, ke = XEAU/Qe, is equal
to 660 in the present study. The exit momentum effect is neglected

since (pe/pa}o's Ue/UH is only equal to 0.07.

Data Reduction

The bridge output of the TCGC was monitored by a voltage meter and
recorded by a X-Y recorder. A calibration curve between the voltage
outputs and the actual mean concentrations was obtained by running the
calibration gases through the TCGC. An interpolation scheme developed
from quasi-Hermite piecewise-polynomials based on local procedures
suggested by Akima (6) was employed to interpolate data for contour plot
generation.

The total system error of the measurement is imposed by the
instrument semsitivity (~30 ppm), the background concentraion of helium
in the air within the wind tunnel (<30 ppm), and the nonisokinetic
nature of the sampling near the surface (~10 percent). The resultant

uncertainty in the concentration data is below 20 percent.
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Results and Discussion

The results and discussion presented in this section are divided
into five categories. Concentration measurements on a model building
and in the building wake are presented for three wind directions.
Analysis of minimum dilution factor is made for surface concentration

measurements.

Concentration Measurements on the Model Building Normal to the Wind

Figure 2 through Figure 10 show the isopleth graphs of constant
concentration coefficient XK. Eaﬁh ﬁ isopleth formed a closed contour
originating from the vent location unless intercepted by the presence of
the ground. These contours display a degree of distortion or displace-~
ment depending on vent location and wind direction. Isopleth lines tend
to retain a closed shape though they are distored into irregular lobes.

The concentration level on the cubical building for different roof
vent emission locations and wind normal to the frontal surface are dis-
played in Figure 2 to Figure 4. It was found that the comcentration
level on the building decreased as it passed around a sharp edge on the
building. The effect of the sharp edge imposed on the surface concen-
tration level is shown in Figure 11, where concentration coefficient is
plotted versus distance from the wvent 1location. A rapid rate of
decrease is fduud in Figure 12 just after the gas passed over the edge
point (edge points are indicated on the figure). The effect of the
sharp edge is predictable, since the gas plume passing the sharp edge
continued to follow a trajectory similar to the flow pattern around the
building. Thus an "extra distance" was traveled by the gas plume after
it left the edge and before it entered the region of the lee face.

Moreover, the dispersion process in the near wake tends to reduce the



concentration of the reattached gas plume. Therefore, for an intake
point which cannot "see'" the vent location one observes lower concen-

tration than an intake point, with equal distance from the exhaust vent,

which can "see" the vent location. The concentration level at points
which can "see" the vent location in the near wake region for 6 = 0°,
central roof vent release are also shown in Figure 12. By considering
those points which can and cannot "see" the vent but with equal distance
from the vent location, the effect of the sharp edges effect become
obvious. The sharp edge effect was found most significant within the
region 1/6 H from the edge on the lee face. The plume appeared to
reattach on the lee face of the building at a height 5/6 H from the
ground level. The sharp edge effect was not as significant for the side

building face, since the flow tends to advect the gas plume in the

downwind direction.

Concentration Measurements on the Model Building Skewed to the Wind

Figure 5 to Figure 7 show isopleths for buildings rotated
45 degrees to the wind direction. A secondary peak occurring near the
edge of the building was found and is shown in Figure 5a. This
phenomenon is significant for © = 22.5° and 6 = 45° orientation (as
shown in Figures 5a, 6a, 7a and 10a). A recirculation flow occurred in
the separation zone which advected the contaminants upwind across the
top edge from the sides. Two counter-rotating vortices are induced at
the upstream roof edges when the wind direction is changed from the
normal position. The two vortices tend to return the contaminants to
the roof. The interaction between the recirculation flow and the
vortice produces a secondary peak of concentration on the roof near the

downstream edge.



Dilution Factors

Surface concentration data in the form of dilution factors,
D= Ke/K, were plotted against the non-dimensional distance r/JK:' from
the exhaust vent location, as shown in Figure 13 through Figure 15. The
minimum dilution factor, Dmin = BKe(r/JE;)Z, corresponds to maximum
surface concentration which is expected at a given distance from a roof
vent. Previous expressions proposed by different authors for minimum
dilution factors are also noted on the figures. For the 6 = 0° case a
value of B = 0.11 (suggested by Wilson (2)) provides a linéﬁr limit
beneath all measurements. Some recent measurements around two nuclear
facilities were also examined by Meroney (3). Again B = 0.11 provides
a lower bound for 99 percent of all measurements. Figure 13 indicates
that the data for 6 = 0° case agree well with the prediction. Figure 15
shows that B = 0.11 may not be a safe lower bound for buildings at
large angles of orientation to the apprecach flow. B = 0.11 does appear
satisfactory for the € = 22.5° cases; however, a limited number of the
data for © = 45° fall below the B = 0.11 1line. These data were
measured in the region where three building edges intersected. At
similar distances from the vent location concentrations obtained for the
8 = 45° case are higher than concentrations observed for the & = 0°
case by a factor ranging from 3 to 9. A comparison of data for equal
distances from the vent location for 6 = 22.5° and 6 = 0° suggest
a similar tendency with a factor ranging from 2 to 5 (as shown in
Figure 11). Therefore, a correction factor is recommended to adjust for

an orientation effect upon minimum dilution factor.

£(8) = . e where 86 is in radions



Concentration Measurements in the Near Wake Region Behind a Model
Building Normal to the Wind

Isopleths of constant K for 6 =0° and a central roof vent
release have been plotted on the =x-y plane for different x/H sec-
tions (as shown in Figure 16). Isopleths for the centerline longitudi-
nal section is displayed in Figure 17. The maximum value of the concen-
tration level in the crosswind plane occurred on the ground after
x/H = 7.0. Figure 18 indicates that the centerline ground concentration
increased from the building edge to a maximum, then it gradually
decreased with x/H =4.0 for 6 =0° case and at x/H = 2.5- for
8 = 45° case.

The vertical mean concentration profiles at v = 0.0 for 8 = 0°
and a downwind roof vent release are presented in Figure 19a. The down-
wash effect tended to entrain the effluents into the near wake region
and to carry the effluents toward the ground for the downwind roof wvent.
Higher concentrations were observed closer to the ground than when
compared with the central roof vent release. The maximum value of the
crosswind concentration distribution for the downwind roof vent release
occurred on the ground at x/H = 5.0, whereas the maximum value occurred

at x/H = 7.0 for the central roof vent release.

Concentration Measurements in the Near Wake Region Behind a Model
Building Skewed to the Wind

Vertical mean concentration profiles at y = 0 for 6 = 45° top
center roof vent release are displayed in Figure 19b. The downwash
effect due to a change in the wind direction becomes more significant
than for the case of 6 = 0°. The maximum value of the crosswind con-
centration distribution for 8 = 45° and top center release occurred on

the ground when x/H exceeds 2.5. The «crosswind ground level
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concentration profile is shown in Figure 20. Two secondary peaks
occurred near the edges of the plume. The two peaks are due to the two
counter rotating vortices, which are generated by the orientation of the
building. The vortices originate from the upstream edges of the roof
and travel along the wind direction passing by the edge of the near wake

region.

Conclusion

Measurements of gaseous dispersion have been made on a cubical
model building in a neutral strafifiéd shear layer and in the near wake
region (x/H £ 5) behind a model building for roof vent emissions. Based
on the experimental results obtained in this study and a comparison with
similar experiments by othgrs, the following observations can be made.

1 Concentration isopleths on a building surface will appear as
closed continuous curves with their centers at the vent location unless
intercepted by the presence of the ground. These isopleth shapes may be
expanded (compressed) or distorted depending on the flow conditions or
building configuration.

2. With equal vent exhaust to vent intake distance the mean
concentrations decrease as the intake directions deviate from the wind
direction. The concentration level on the lee face of a model building
is greatly reduced by the presence of a building corner. The effect of
the edge becomes insignificant if the intake direction deviates from the
direction of the main gas plume. Therefore for different roof vent
locations and different wind orientations, given equal vent exhaust to
vent intake distance, the optimum location for intake vents is a posi-
tion away from the downwind direction and at a location where it cannot

13

see” the exhaust vent.



11

3a The algorithm proposed for calculation of minimum dilution omn
a building, D . = BKe(rNA—C T given by Wilson (1976) is
supported by these measurments for the 8 = 0° orientation. The value,
B = 0.11, provides a lower bound for more than 99 percent of the mea-
sured data. Orientation of a building such that wind does not approach
normal to a building face tends to decrease minimum dilutions. A cor-
rection factor depending on orientation angle was found to adjust pre-

diction algorithms where

1 n i £ 2
= i e e = L
£(8) & 0$6S7 and D_._ = B£(6) Ke(JA_)
n &
4. Orientation of the building at an angle of 45° results in a

secondary peak concentration on the crosswind, ground concentration
distribution. This secondary peak occurs at the edge of the near wake
and near the ground.

S Orientation of a building a angles other than normal to the
wind tends to increase the concentration level as a result of an
enhanced downwash effect in the near wake region. The maximum ground
concentration in the near wake was found to occur at x/H = 2.5 for an

8 = 45° orientation.
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Nomenclature

AC Reference building area

B Constant for minimum dilution factor

D Dilution factor

H Height of building

K Non-dimensional concentration coefficient

Ke Concentration coefficient at effluent vent

L Reference length of building

Q Contaminant release rate

Ru(t) Autocorrelation function

UH Velocity at building height

Ue Velocity of effluent

u' Fluctuating velocity component

v Reference velocity

X Observed concentration

) Building orientation

X, V52 Coordinates, origin is ground level under the center of the
roof

Um Free stream velocity

e} Boundary layer thickness
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Table 1. Characteristic Parmaeters of the Simulated Atmospheric
Boundary Layer

Model Scale Prototype Field Result
(1/2000) : Counihan (1977)%*
n 0.19 0.19 0.17
6 (m) 0.30 600 600
z (m) 7.5 x 107 0.15 0.15
z _ 1

Aat 3~ 90 0.0667 134 148
( Efaﬁ z 1

T 5= %0 0.152 - g 0.152 0.188

_2)
u' z _1
( 5 57 ¢ 0.118 0.118 0.153

u, 2
(ﬁ;) 2.44 x 10-3 2.44 % 1072 2.26 x 1073
UH = (m/sec) 3.3 = —
ReH 11050 - e

*n = 0.096 loglozo + 0.016(1031020)2 + 0.24

- 108 L 1/6
Z

a

NIH
o

Zz
at &

—2
( 1 )=o,4xz.a9x(1og g—)

o]

-1

[}

u.\2 -3
(ﬁ_) = 2.75 x 10 + 6 x 10-4 ¥ &
o 810 o
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Figure 2. Concentration coefficient isopleths on a cubical
model building (8 = 0°, upwind roof vent release).
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Figure 3. Concentration coefficient isopleths on a cubical
model building (8 = 0°, central roof vent release).
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Figure 4. Concentration coefficient isopleths on a cubical
model building (8 = 0°, downwind roof vent release).
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Figure 5. Concentration coefficient isopleths, K, on a cubical
model building (6 = 45°, upwind roof vent release).
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Figure 7. Concentration coefficient isopleths on a cubical
model building (8 = 45°, downwind roof vent release).
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Figure 6. Concentration coefficient isopleths on a cubical
model building (0 = 45°, central roof vent release).
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Figure 8. Concentration coefficient isopleths on a cubical
model building (8 = 22.5°, upwind roof vent release).
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(c) x/H=2.0

Figure 16. Concentration coefficient isopleths in the near wake
region for 8 = 0°, central roof vent release.
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Figure 16 (continued).
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(g) x/H=5.0

Figure 16 (continued).
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(a) Y =0 for 8 = 0°, downwind
roof vent release
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Vertical mean concentration profiles in the near wake region.
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