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1. INTRODUCTION

The dispersion behavior of a non-
stationary source in a turbulent shear flow has
long been of interest because it represents an
initial building block in understanding the most
fundamental dilution process in the lower atmos-
phere. 'In this study we consider a clasiic
problem in the diffusion theory: a passive,
ground released, instantanecous point scurce.
Consequently, based on the knowledge of this
particular source, the concentration distribution
from varied geometries and varied emission dura-
tion may be obtained by proper integration over
‘space and time. ; &

The significance cof a turbulent
diffusion process is to examine the ersemble
probability distribution of a "tagged" fluid
particle in a turbulent medium over space and
time. This probability distribution function

f'“\is usually dependent on a particle's travel time
and flow properties,

By introducing the concept of a
velocity autocorrelation function, G.I. Tavlor
(1921) derived a comprehensive expression for
the standard deviation of a particle's spatial
displacement. However, the basic assumption of
Taylor's work was homogeneous turbulence. In
atmospheric flow, esnecially at the ground level,
the applicability of homogeneous turbulent diffu-
sion theory ceases to be valid due to the
characteristics of shear. Many efforts have
been made to study diffusion behaviors in shear
flows. The concept of eddy -diffusivity (k-
theory) has been widely accepted to close the
turbulent transport equation. With a uniform
‘velocity medel, the K-equation can simply be
transformed into a heat conduction equation.
Unfortunately, wniform velocity models are far
from adequate'in describing the rcal transport

- process near the ground level. In addition, the
uniform diffusivity assumption has been shown
invalid in beundary layer flows (Hinze, 1959;
Monin and Yaglom, 1971). However, a realistic
model containing a non-wniform velocity profile
and a non-uniform diffusivity distribution

"presents great analytic difficulties. The. -
difficulties were often found in applying the
information of diffusion studies to environmental
sciences (Singer and Freudenthal, 1972),
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In this study, we will use the
Lagrangian Hypothesis incorporated with the
governing transport equation containing a
logarithmic velocity profile and linear
diffusivity distribution. The previous analytic
contributions due to Chatwin (1968) and Putta-
Cermak (1971) in similar studies will also b
described,

2. ANALYSIS

Based on conservation of mass, the
transport equation in a fully developed turbulent
boundary layer can be written as: '

-:—:1‘- u(})j—; = :3.—;~ 'Kyg-;-‘)a‘* %(K;;;;J (0
where _ ' ’
¢ local mean concentration
t time
z longitudinal coordinate
y lateral coordinate
% vertical coordinate
u  mean velocity at z-direction
K, eddy di ffusivity at y-direction
Ky eddy diffusivity at y-direction
The long-itudinal diffusion term'ﬁ&"-gi- is -

negiected because it is, by order of magnitude,
smaller than the mean convective term “‘%%

(Monin and Yaglom, 1971). For 2 ground released

.instantaneous source, the initial condition reads:

1.C.: c(z,4,3t)= 8(0,0,0,0)

where 8 is the Dirac-delta function. In a half-
space with a reflecting floor, the boundary con-
dition reads:

£ dc  de

i *
St 0,7;,3;,3-;“’031? z,y > T oo
y— +oo i
dc _ -
and K’-g? =0 at 3=0 .

From Prandtl's mixing theory, the
vertical momentum eddy diffusivity is a linear
function of 3. In a neutrally stratified turbu-
lent flow, the Reynold's analogy simply states
that the momentum and mass .transfer mechanisms
are essentially the same. Hence, one can define
vertical mass eddy diffusivity as:

Ky ey
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where 4 is Karman's constant (=0.4 in air), u,
is the shear velocity. Since the transport
process occurs mainly at the ground level, con-
sequently the mean velocity profile can take a
-logarithmic form:
= e ry -

“£(y) K ,&m(b) 4 .
where y, is the roughness parameter.. The lateral
eddy di?fusi¥ity can be assumed to be propor-
tional to K},-i.e., K,_,=A Ky=/t}{u.' ¥ , in

which A is a constant. Thus, the complete trans-
port equation reads: :
g b g frY., Je
FIM h) 7z @)

=3—}@w‘;§;— ¥ g“?;(‘ruQ& f;—;) :

"As stated at the beginning of this
paper, the complete solution for the transport
equation with a nonlinear velocity profile and
a non-uniform diffusivity distribution has not
yet been obtained in any case. In this work, we
apply the direct integration over the y and
axes to eliminate the sum of the orders of the
differential equation. The lost information
during the integrations will be evaluated by
using the consequence of the Lagrangian Similar-
ity Hypothesis.

First of all, when we apply integra-
tion to (2) over y direction, we obtain:

IL , 4e , (¥VFL _ 2 aL
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where

. @
L(z’y,f)““ [0¢'(if,y,j—,t)dy .

L(z,3,t) is the marginal distribution of c(z,y,
¥,t)}. It also has the significance of a concen-
tration distribution from an instantaneous line
source due to its independence of y.

If we again integrate (3) over z-
domain, we obtain: .

aL 2 3Ly Y
= 5y (rey i )

where i
L;fg,t}=f Liz,3,t)dy .

L.(7,t) is thus the marginal distribution of
L(x,7,t). One can immediately solve (4) incor-
porated with the corresponding boundary con-

ditions:
I T

L3, ¢) = Kuf © ot : (5)

L. can also be taken as the concentration distri-
bution of an infinite plane (x-y) source at 3=0.
One can thus recognize that L. has a form of a
negative exponential distribution in #-space
with a parameter of KJ + . Consequently, L.

i -

has a centroid at ku,t and a standard deviation
of Ku,t . A

"This may not be the best diffusivity model for
Ky~ However, after the integration over y and
using a polynomial expansion in lateral direc-
tion, as we will show later, the functional form
of Ky is not strictly ipportant.

The centroid of a "puff' at any instant
on the horizontal plane (2-y plane) can be evalu-
ated by directly taking the first moment of
equation (2). Because of the plane homogenity,
the horizontal concentration distribution should
be symmetric also w.r.t. y (this is true because
the transport equation is linear; symmetry in
momentum transport due to symmetric flow config-
uration may not always be truec, for instance, the
asymmetric vortex shedding behind a cylinder);
1By : :
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The trajectory of ¥ is:

: T ¢
R f} ™

- He’
The implicit trajectory of 3 can also be evaluated
to be ) ' : '
¥ 7. 'z
ettt R A . (8)
Al Sl

Note that in the integration processes’
(3) and (4) we have reduced the sum of the orders
of the governing equation to only a -t dependent
equation. However, it was done at the expense of
losing the concentration distribution in y and z
directions. In other words, we have obtained the
exact expression for L. (z,t) where

Ll = [Tl pt) ax

=f7“vc(x.,y,é',f'_)dydz .
rodew

In order to find a general expression of L and ¢,
one can simply apply an infinite series expansion
over z and y , namely

Liz,58) = L, (3,8) X (x| g,¢) - ()]

and.

C(&’,y»}'aéj=f-(l’, })t) Y(ylz,éut) . (10]

The selection of functional forms of conditional
distribution functions X @nd Y will be discussed
below. : !

3. SIMILARITY HYPOTHESIS AND SIMILARITY
. MOMENTS = ° ; .

The Lagrangian Similarity Hypothesis
was first suggested by G.K. Batchelor (1959),
The hypothesis states: - :

""At the ground level, the statistical
properties of the velocity of a marked fluid
particle, at time t after release from the ground,

. are functions of shear velocity u, and travel

time t."

The validity of this hypothesis and its
application to turbulent diffusion were confirmed
by Gifford (1962) and Cermak (1963). The similar-
ity parameters from the definition are:
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the most important consequence from the hypothesis
is that the standard derivations of the concentra-
tien distribution at time t are lincarly propor-
tional to u,t, i.e.,

/-\ a'x=q,u;,t, 0'5,=yu‘,t and o}:bu,t 2 [12_)

These can be shown on the ground of dimensional
analysis (Chatwin, 1968). From (5), the form of
negative exponential distribution gives imme- .
diately the value of ¢ asgu,t. Thus, vertical
diffusion constant b is equivalent to Karman's
constant 0.4.

- Note that Chatwin (1968) was the first
to analy:ze a transport equation with logarithmic
velocity profile and linear vertical diffusivity.
In order to simplify the problem, he only discus-
sed a two-dimensional casc. The equivalent situa-
tion is to start the problem from (3) instead of

.(2). He also found that the transformed transport’

equatlon in the g~ space is

3Ls+(?ft)--—-(/ﬁ—z?,typqe )ﬁ £20,=0

in which y ‘is Euler's constant (0.577)

and L (ﬁ)q)"&l{u £ L (2, pikhs X sy

Thzs equation is apparently too
complicated to be.solved. Chatwin applied the
Aris Moment method (Aris, 1956), and obtained a
series of ordinary differential equations:

z A .
n ’i:* +(q+f)d—5*-—(7_-:)3,

£-f ,zn, ‘é"-'o 1,2
{ Ff pliLy - .

where
By(n) =fm,6‘r_5 f,d, 7)dp

The first two equations were solved by Chatwin
(1968) : .

59(?) e’

g 1
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1) = 5= Ungrr-1) = _
Putta and Cermak (1971) continued the calculation
and obtained a complicated analytic expression for
B by using the following identity:

,-;,&.:’; ”Tdf;*e -@w(*]er)—*o

8,(n)= —’T E[ %3 dy &;-(qer)*!«;"(? ¢ ety *2

"2 d 3 .— 1)’ 1
/ql n+3e (7 )[ "( r;) {1s)

P, )+ r’e'”)]

@)

r (J i )

where

is 1 derivative of 1ncomplete gamma function

’gnsuith respect to parameter j,

"he subscript s in this paper indicates the
function is in the similarity -space.

~source.

The most important result of this
work was the obtaining of the longitudinal dif-

‘fusion constant 2 after a series of analytic

integrations. The a-value was predicted to be:

w5,

Note that a-value has been studied by various

authors (Cermak, 1963) and suggested to be within
1.0 to - 4.0.

Another important contribution from
Putta's and Cermak's work was to show that the
longitudinal standard derivation is inscnsitive
to the height. The normalized third moment, or
the skewness, was estimated to be -1.

4. CONSTRUCTION OF A COMPLETE DISTRIBU-
TION FUNCTION

The present authors continued and _
extended the study from a line source to a point
In addition, the authors have conducted
a wind tunnel study of this problem. The experi-
ment was carried out in a micrometeorological
wind tunnel at Colorado State University. An
aerosol-filled gas bubble was released in a
column of water to subsequently rise and burst
at the floor of the wind tunnel (Yang and Meroney,
1972). Time-dependent concentrations at a fixed
point were monitored with a laser light scatter-
ing measuring device. Figure 1 shows the experi-
mental results of ;. One can see the longitu-.
dinal growth of a puff, although scattered,
follows the trend of @ = 1.5. The longitudinal
skewness was also plotted in Figure 2. Note that
most of the skewness was slightly less than the
predicted value of -1.0 (absolute values). This
is due to the finite instrumentational resolutiom.
In addition, any long-trailed distribution
function has greater contribution to the 3rd
moment than to the 2nd moment from the tail.
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Figure 1 LONGITUDINAL STANDARD DEVIATION
'PLOT (WIND TUNNEL DATA) ?
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Figure 2 LONGITUDINAL SKEWNESS PLOT (WIND
TUNNEL DATA)  ~

Authors also examined a recent field study of the
similar problem. Full scale concentration
measurements were conducted by Pacific North-
western Laboratory at Hanford Reservation,
Washington (Nickola, 1871). The a-value was
found to be between 1.3 and 1.7. (See Yang and
Meroney, 1972.) :

4.1 LONGITUDINAL DISTRIBUTION FUNCTION

From equation (14) the three analytic
. moments in the longitudinal coordinate are
obtained, i.e.,
_ ﬁ,f 3% < )
il 0 ™ i

Ty = 1.5 w, t
and skewness = -],

We are to construct a functional
expression by using the given moments. .In other
words, we seek an expression for X(z|3,¢t) in (9).

This can be done in two ways:

Gram-Charlier Series. For an
independent variable, any continuous function
h(s) can be cxpressedzin a Gram-Charlier Series:

-s o
,frshf(—‘;;—’“)d/g;(ng.“..H,(s;,.._) (17)

where

= %%lis 2 normalized parameter,

o

= mean of the original distribu-
tion function,

o = standard derivation of the
original distribution function.

. 3 ; :
HS(S} Ei872g8Y Hermite polynomials of
A degree 3,

and
sk. = skewness of the original
j;(s -s‘J’hrsjqés
T ¥

distribution = .
Tnis series expression states that any distribu~
tion function in the normalized space S can be
taken as_a perturbed form of a standarg normal
77 ¢ " 7% (Kendall and Sturt, 1963). The improve-
ment of fitness by taking higher than 3rd moments
in the Gram-Charlier series was given by Cramer
(19£7). The attractive feature of this series is
that it takes normalized.moments as independent
coefficients. Since the similarity parameters

are already normalized by definition, the trun-
cated expression for Xg(4) thus reads: '

_a2 '
E- £ (5*- 3,4)] Lo B8

Inverse-garma distribution. The
Gram-Charlier series is a general form of a dis-
tribution function which applies given normalized
moments to construct a truncated series. However,
in many cases, a set of given moments can also be
used to select a standard distribution function,
There are several advantages to the use of a
standard distributicn function. First, one can
develop a better functional feeling since the
trends of most standard distribution functions can
be found (Parzen, 1967), Second, the intermittent
"negative concentration' in a truncated series can
be avoided. Third, most standard distributions
have a relatively simpler functional form than
the Gram-Charlier series. For instance, the
chosen gamma distribution because of its one-way
skewness in this study has a negative exponent of
the first order. In the Gram-Charlier series,
there is always a second degree term in the
exponent, :

e 2
7

Xs(B) = 5=

: Examining the general shape of a gamma
distribution in space « one has to apply the
following transformation

@' = constant - w

in order to fit the longitudinal distribution.
This is actually an inverse gamma distribution.
This is a 2-paremeter family with a "floating
mean". Based on the given knowledge, (Parzen,
1967), we have the following set of conditions,
namely, :

standard deviation: - q;'= ff- = f and
.skewneSS' skg=—2_=_q,
e AT Im

The result reads: A = 2,0 and » = 4.0, The
truncated Gram-Charlier series and the inverse
gamma distribution were plotted in Figure 3.
One can see there is not significant difference
between two distribution functions.

. Note that one cannot -justify which
distribution, the Gram-Charlier series or inverse
gamma, is a better description of the exact cloud
concentration distribution, unless higher moments
are obtained, .
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Figure 3 LONGITUDINAL SIMILARITY DISTRIBUTION:
. TRUNCATED GRAM-CHARLIER SERIES
REPRESENTATION AND INVERSE-GAMMA
DISTRIBUTION REPRESENTATION

To obtain the 4th moment in equation
(14) one would, however, face tremendous analytic
complexities. This effort may nct be so rewarding
in gaining further knowledge of the distribution
shape. (Cramer, 1957). Hence, we propose to use
the inverse-gamma distribution to close the
solution. By "closed form", we mean that the
integrated value is exactly unity as a distri-
Jution function is normally defined,

Using the chosen values (A=2,1=4),
one can write the similarity profile as:

X; ()= 7_,—;%[2 -(2—,5)]%"”“’ ; Bz -o,2
where . '
I )= 3_-2-%' = :
therefore,
Xy(f)=5(2-p'e pe-m,2.

The explicit form is s 7
X(x RS -z “[*'M.J
Cele) M e (19)

aw, b
where
- ugt kKu,t
= T I}fn _h‘é'?'
The line source distribution in the 4-y domain
thus reads: :
N 3 -22- - .
L,('A,-q)--g-(Z-;) e Al e, (20)
4.2 COMPLETE DISTRIBUTION FOR AN INSTAN-
TANEOUS POINT SOURCE
i S To extend a line source solution to a

¢#0int source, one can simply expand the Gram-
Charlier series in the lateral direction, i.e.,

lz,9:50) =Lz, 58 Y (y] 2, 3,2)
2 .
= L(:;},t);,;—;{%;a.- E + ;:- (skewness in - direction)®

'(;"—3;)+...:| )
The 1st moment vanishes because

o @ k4 L4
f C(r,g,;,t)ydy =f Cs(t's"}'t) g Z }*;;:;:0,
i i wt

From the same reason of symmetry, the skewness in
€ - direction vanishes; :

skewness in £ -direction = 0.

Therefore, one obtains g

Z
c(z,4 3 #)= Lz, L) 'f;—:fT

Based on the experimental results (Fig. 4), the

(21).

‘authors suggested

. 3 = ’.0 . . (22]
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Figure 4 GROWTH OF HALF WIDTH OF CONCEN-
TRATION IN THE LATERAL DIRECTION

Note that in Figure 4, the half widths
(from center line to the one half of the maximum
concentration) were plotted. This is because the
data are presented in discrete points. In addi-
tion, for a nommal distribution, the half width
is proportional to standard deviation.

From equations (21), (22), (9), (19)
and (5), the resulting closed form concentration
distribution function for a passive, ground re-
leased, insaqg;nious point source reads:

. 3 ;'.
e -z fen)
(I:(:f’y,}’t): e 2 .(2 -ﬂ) (23)

3.
4t

in which 4, ¢ and n were previously defined.
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In similarity space, the distribution

* function has the following form:

Jgal
e g’ e T 20)

%m9w=— =

Thus, this distribution function is

actually'composed of three distribution functions:

an inverse-gamma distribution in B -domain, a
normal distribution in £ domain, and.a negative
distribution in 7 domain. These are illustrated
in Figure 5.
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Figure 5 FINAL DISTRIBUTION FUNCTIONS IN THE
SIMILARITY - SPACE
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