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Abstract, The extension of Lagrangian similarity theory of diffusion to stratified flow is examined,
to improve its prediction of the vertical spread of a passive substance. In the basic equation,
dZ/d¢=bu,$(Z/L) where Z is the average height of a cluster of particles, u, is the friction velocity
and L is Monin-Obukhov length. It is shown theoretically, under the assumption of an equivalence
between the diffusivities of heat and matter, that the unspecified function ¢ is the reciprocal of a
more familiar meteorological parameter ¢+, the dimensionless temperature gradient. The universal
constant b is found to be approximately equal to von Karman’s constant x for various stability
conditions. The predicted effect of stability on vertical spread shows excellent agreement with that
of the published data from the ONeill experiments.

1. Introduction

Ever since Batchelor (1959) introduced the idea of Lagrangian similarity to study
diffusion of smoke released at or near the surface under neutral conditions, there have
been various attempts at extending this approach to the case of stratified flows.
Pasquill (1966) put these formulations (Gifford, 1962; Cermak, 1963; Panofsky and
Prasad, 1965) to test by comparing the predicted values of vertical spread at a distance
of 100 m from the source with those observed during the O’Neill experiments. It was
found that the prediction of the effect of stability variation on the vertical spread was
considerably less severe than that shown by experimental data. Pasquill concluded
that the representativeness of the functions introduced arbitrarily in these formula-
tions to describe the effect of stratification on the vertical displacement was question-
able. The dimensional arguments can lead to the correct non-dimensional groups
involved in a problem, yet not their functional form. It is the purpose of this paper to
derive the similarity relationship from the appropriate diffusion equation and identify
the correct functional form of the similarity parameters. This approach also enables
one to estimate the errors involved in the assumptions made in the previous formula-
tions. The method used is an extension of the techniques introduced by Chatwin
(1968) in which the average position of a cluster of particles can be expressed in terms
of concentration distribution.

2. Background
Batchelor (1964) hypothesized that in the constant stress region, ‘the statistical

properties of the velocity of a marked fluid particle at time ¢ after release depend upon
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only u, (friction velocity) and #>. If X (¢ ), ¥ (¢ ) and Z (¢ ) denote average position of a
particle, then according to this hypothesis, the average rate of vertical displacement
of the particle released at the ground can be written as

dZ)dt = buy, 1)

where b is a universal constant. This result was supplemented with an assumption that
the average horizontal velocity of a particle equals the average horizontal velocity of
thefluidevaluated atthe average height of the particles, Z, multiplied by a constant ¢,i.e.,

dXjdt = a(cZ). (2)

A relation between X and Z for the neutral flow can be obtained from Equations (1)
and (2) after eliminating z.

In diabatic situations, a different set of parameters determines the turbulent state and
should be incorporated in any extension of the above treatment. According to Monin
and Obukhov’s (1954) hypothesis of Eulerian similarity, when the turbulence is homo-
geneous in the horizontal, the turbulent regime is completely determined by the fric-
tion velocity u, and the length L defined as

U3

S T (- Hlgc,)’

where u, and vertical heat flux H are independent of height and T is the average
temperature. All dimensionless variables are expected to be functions only of the
dimensionless height {=z/L. In particular, the average wind profiles can be repre-
sented by

(3)

a() =11 O - £ (@) @

where {,=z,/L, z, being the roughness length and f({) a universal function.

Gifford (1962) considered diffusion in stratified flow and suggested that average
vertical velocity of a particle must, on dimensional grounds, be proportional to u
times some universal function ¢ involving the stability length L, i.e.,

dZ/dt = bu,b (D), )

where {=Z/L. Since the relation should reduce to Equation (1) for neutral flow
(L= ), if follows that ¢(0)=1. In the absence of any experimental data on ¢, a
tacit assumption has been made in nearly all the works on Lagrangian similarity that
dZ/dt is equivalent to the standard deviation of the vertical velocity fluctuations o,,.
Whereas some authors (Gifford, 1962; Cermak, 1963; Klug, 1968) employed a
semi-empirical formula of Kazanski and Monin (1957) for o, (us(1—1/f)"*),
Panofsky and Prasad (1965) used existing experimental data for this parameter. The
assumption about the equivalence of dZ/dz and o,, is without sufficient basis and has
not been justified. These extensions of the similarity theory to the diabatic case, how-
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ever, retained Batchelor’s assumption expressed in Equation (2) (c=1) but used
diabatic wind profiles.

3. Derivation of Similarity Relationships in Stratified Flow

The Lagrangian similarity hypothesis considers the problem of diffusion of a number
of marked particles of fluid released from a fixed ground source at different instants of
time. Each fluid particle would occupy a different position at time ¢ after release and
X(¢) and Z(¢) are then the average longitudinal and vertical displacements, over all
such particles, at the time 7. In a homogeneous and stationary flow field, such a
diffusion may be likened to that of a cloud of marked particles released from a ground
source at one instant (Pasquill, 1966). The latter problem is of Eulerian type and
X(t) and Z (¢) are now equivalent to the coordinates of the center of mass of a cloud.

The distribution of concentration c(x, y, z, ¢ ) ata point x, y, z at time ¢ in a cloud
of passive substance, released in a plane homogeneous turbulent shear layer, can be
described by the diffusion equation:

66+_()6c d K6c+6 Kac ©)
— #lz) —=-— o e — 1,

ot x 0z dz) ay\ oy

where the longitudinal diffusion term is neglected, being much smaller than the con-
vective term u(dc/dx) and K, and K, are the eddy diffusivities of matter in the y and

z directions. Since the cloud is symmetrical with respect to the y direction, we can
integrate out the dependence of ¢ on y in the above equation to obtain

deg écqg 0 deq
—+id(z)—=-—| K,— 7
ot ) dx az( : 8:)’ @

where ¢o(x, z, £)=[%,, ¢(x, , z, ) dy is the concentration due to an infinite line
source. If the total amount of substance in the cloud is unity, the position of its center
of mass is given by

}?(r),Z(t)=J. J x; z.05(x, 2 t)dxdz, (8)
0~
By multiplying Equation (7) by zand x, respectively, and integrating it, Chatwin (1968)
obtained
dz il " dcgo d ©
—=|z— — | dz
t dz\  * oz
0
dx
_[ =J ﬁ(z) COD dz (10)
o

where coo=[*,, codx indicates the average concentration of particles over the x-y
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plane at height z. An equation for the distribution of ¢y, in the vertical is obtained by
integrating Equation (7) with respect to x, as

Ocge O 0cyg

5 (K, g) . (11)
The relationships in Equations (9) and (10) can be evaluated for thermally stratified
flow if K(z) and ¢o(z, t) are known. Although no direct measurement of K, is
available in stratified flow, it is possible to relate it to eddy diffusivities of other
entities. According to Monin and Yaglom (1965), in view of similarity of physical
mechanisms governing the exchange of heat and passive substance, namely, direct
mixing of air masses, their eddy diffusivities can be considered equal and should be
distinguished from diffusivity of momentum which is influenced by pressure fluctua-

tions in addition to turbulent mixing. Following this suggestion and using the Monin-
Obukhov similarity hypothesis, we have

Ky Z
AN

where ¢,({)=(z/T4)(0T/dz) is the dimensionless temperature gradient and T,=
= (1/kuy) (— H/oC,) is the scaling temperature. A number of forms for the function
¢5({) have been suggested in the literature. Since it is the form of function ¢ in Equa-
tion (5) which is of interest, we will use a power-law representation

¢ (() = AL (13)
in order to be able to evaluate Equation (9) and (10) analytically. Thus

(12)

K,=K,;z'77, (14)

where K, =xu,|L|’/A. p may have different values in different ranges of stability and
may thus be regarded as an index of stability.

The solution of Equation (11) with X, as in Equation (14), subject to the usual
boundary conditions for an infinite line source at the ground, is given by Monin and
Yaglom (1965) as

(z 1) : e - 15)
Eag (2t) = xp| — —5— |,

L I (1fa) (@K 42)** k Kyt (
where g =1+ p.

By substituting ¢y, and K, and integrating, Equation (9) reduces to

dz _ 2 1jx—1 I'(2[a)
— = K,a(¢*K; 1) I'—(lfc;:j (16)

dt

On integrating Equation (16), a solution for Z (¢) is obtained as,

rQfe), , a
Z (1) =m (®K2)=. (17
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To express dZ /dt in Equation (16) in terms of Z(z), we eliminate ¢ with the help of
Equation (17) to obtain

dz LRI rsme

which can now be written in terms of the original parameters as,

V4 G o
= p)[f(m)ff(m):l uadi (0). (19)

This equation is a parallel of Equation (5) which was obtained through dimensional
arguments. The universal function ¢({) in Equation (5) is identified as the reciprocal
of a more familiar meteorological parameter ¢,({) which incorporates the effect of
density stratification and, in addition, draws the distinction between matter and mo-
mentum transport. The expression «(1+ p)[I'(2/(1+ p))/I(1/(1+ p))]**? which re-
places Batchelor’s constant b, differs only slightly from x within the practical range of p
(Figure 1). Thus the present practice of regarding b as a universal constant equal to
(Gifford, 1962; Klug, 1968; Pasquill, 1966), can be continued, that is,

dz g
— ~rud (D). (20)

The extent of approximation involved in assuming an equality between dX/dt and
i#(2) (i.e., c=1) was found by Chatwin (1968) to be 1.442u, for neutral conditions of
flow (i.e., for the logarithmic velocity variation). It is useful to investigate this approx-
imation in non-neutral conditions. A velocity profile based on a log-linear form of
f(©) (e, f({)=In{+pL) when substituted in Equation (10) gives after integration

o
dX u, 1
il ) el g 2 n (@K M
dt  «x l:ocf(lfa)_[ N A (#Kst)
0
I (2fe)
+ B(PE )Y ———= — (Inzq + BLo) |, 21
PR LD~ (nzo+ )|, @D
o5t
\\__
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Fig. 1. Variation of x (1 +p) [I'2/(1 +p))/ T'(1/(1 +p))]*+? with p.
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where 7, is a dummy variable. The integral on the right-hand side is the first derivative
of the Gamma function and may be written as

jmzle‘“z}f“'l dt; =T (o) Y (1/a), (22)
0

where /(1/«) is Gauss’ y-function. On substituting this and the expression for Z from
Equation (17) in Equation (21), we have

ar - us. (T(1/1 + p) 1 1
5_u(2)+?ln{i"(2!1+p)exp[l+pw(i +p)}}' @l

The second term on the right-hand side represents the error involved in assumin g an
equality between the average horizontal velocity of a particle and the average wind
velocity at its mean position Z. The latter is always in excess by an amount which lies
between u, and 2u, for extreme values of p (Figure 2). Interestingly, the error has a

2o &
dt
\_
=1.0u,+
=0.5u,+
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L 1 1 1
-03 S0z o 0 0T 0% 03
(NEUTRAL)
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Fig.2. dX/d:—i(Z) as a function of p.

tendency to increase with increasing instability. Because of its small magnitude, the
error is significant only near the point of release and hence the assumption

u

X ¥ ons
SAID="rO-r) eD

K

is reasonable when considering diffusion at large distances.

4. Comparison with Observation

We will now test how well the function ¢,((), suggested in the Equation (20), repre-
sents the effect of stratification on the average vertical spread of particle Z by compari-
son with the experimental data used earlier by Pasquill (1966). An approximate
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relation between X and Z is obtained from Equations (20) and (24) by eliminating 7 :

{
2L [rO-r@raoa @)
Lo

In Section 2 we used an approximate form for ¢,() in order to investigate analytically
the extension of Lagrangian similarity to the case of stratified flow. However, for
practical application of the results of this analysis, it is more appropriate to use obser-
vational data on ¢,(() and f({). Their determination from field experiments involves
measurement of vertical transport of momentum and sensible heat. In most micro-
meteorological studies these fluxes have been obtained indirectly from velocity and
temperature profiles to test these profiles. A complete set of data on ¢,({) and f({) has

recently been reported by Businger ez al. (1971) which is based on measured values of
fluxes. According to their data for stable conditions

FQ)=Inl+47¢
$r({) =074 +47¢

[}
e} 0 ot o i0* i

Hpa

Fig. 3. Variation of dimensionless mean height Z/zo with dimensionless distance from the release
point X /zo for various stability conditions.
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and for unstable conditions

fQ)=—tan ' (1—15¢) "* —2tanh™ (1~ 150)7"*
¢, (0)=0.74(1 -9 ).

A value of 0.74 (and not 1.0) for ¢,(0) results from their suggestion that the value of
x is 0.35 (and not 0.41). This controversy need not concern us because Equation (25)
is insensitive to this distinction. (¢,(0)/x* in the two conventions is the same, i.e.,
1/(0.41)*~0.742/(0.35)%). Equation (25) has been integrated numerically using the
above empirical functions and the results are presented in Figure 3 for both stable and
unstable conditions of the atmosphere.

Pasquill (1966) demonstrated that Z measured at a fixed distance, i.e., Z(x), is
virtually identical with Z(X ) as computed above so that such data can be used to
test the predictions which are in the latter form. The O’Neill experimental data on
vertical spread at 100 m from the source are presented in Table I in a slightly different
manner than that of Pasquill. Following Elliot’s analysis of concentration distribu-
tions, o,[ = | z*¢(z) dz/{ ¢(z) dz] has been converted to Z, and R, has been expressed

TABLE 1
O’ Neill data on Z for various stability conditions

Run Z (m) 1/L Run Z(m) 1/L
number at100m number at 100 m

14 1:1 3) 0.130 41 2.6 0.021
15 5.9(2) —0.16 42 3.2 (2) 0.011
16 78 (4 —0.355 43 3.4 (4) —0.088
17 2.8 0.018 44 4.8 (3) —0.036
18 2.1 0.043 45 35(2) —0.013
19 53(3) —0.076 46 2.5 0.013
20 45 (3) —0.023 48 4.5 (2) —0.021
21 3.2(2) 0.009 49 3.5 (3) —0.036
22 3.5 0.006 50 4.5 (2) —-0.03
24 35 0.005 51 3.7 —0.029
25 6.9 (5) —0.18 52 7.7 (2) —0.115
26 4.4 (3) —0.083 54 3.0 0.025
27 45 —0.027 55 34 0.007
29 2.6 0.048 56 3.4 0.014
30 4.3 (4) —0.028 57 3.8(3) —0.006
31 5.0 —0.016 58 1.2 0.004
32 1.2 0.043 59 1:5 0.050
33 39 (2 —0.023 60 3.0 0.019
34 4.1(2) —0.018 61 3.7(3) —0.026
35-5 2.6 0.027 62 53(2) —0.026
36 15 0.054 63 2.6 0.018
37 3.5(2 0.011 66 1.6 (2) 0.031
38 29 0.008 67 2.5 0.011
40 2.6 (2) 0.087 68 1.5 0.036

Z and 1/L values obtained from data on ¢z and R; in Table III of Pasquill
(1966) as explained in text. Numbers in parentheses are numbers of vertical
distributions used.
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Fig. 4. Comparison of the O’Neill experimental data on mean height Z at 100 m from the source
with the prediction of this paper for various stability conditions.

in terms of 1/L using the relationship suggested by Businger e al. (1971). These data
have been plotted in Figure 4 along with the predictions from Figure 3 (evaluated in
Table II) and from curves of Monin (1959) and Gifford (1962). The effect of stratifica-
tion on the vertical spread Z predicted by the present analysis agrees with the experi-
mental data much more closely than Monin’s and Gifford’s. An improved comparison
on the stable side and a complete comparison on the unstable one, strengthens the
conclusion reached analytically that

dZ/dt = xu,d; (D).
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