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. Abstract

Two dimensional airflow over a square obstacle in a stratified
atmosphere is studied both numerically and experimentally as a part of.
a program to examine the response of stratified shear layers to non-
homogeneous surface features. A wind tunnel was designed and constructed
thch provides the necessary very small velocities and strong stratifi-
cation to simulate atmospheric lee waves. Numerical experiments show
that an upstream difference scheme is not suitable to simulate strong
lee wave phenomena windward of an obstacle. Its failing appear: -0 be

its large numerically generated pseudo viscosity. An improved ::cond-

order finite-difference approximation produced gravity wave motions.

‘The numerical scheme appears to be singularity free, does not ---uuce
unwarranted interior perturbations, and realistically models st:-::mwise
boundary behavior. The details of the improved analysis were cenZirmed

by measurements in the thermal wind tunnel.

Al. Introduction

The subject of a fluid motion over obsfacles has been of continuing
interest to fluid dynamicists and meteorologists because it relates to
such important phenomena as separation, wakes (rotors), hydraulic jumps,
and mountain lee-waves.

At least four recent reviews are available for airflows over
mountainous terrains (Corby, 1954; W.M.O., 1960; Krishnamurti, .264; Lin
and Cermak, 1969). Early analytical models for airflow over mountains
were all based on a linear perturbation method. Queney, Lyra, Scorer
and others made important contributions to develop the linear theﬁry.

Long suggested a class of stratified flows for which the nonlinear



equations could be exactly transformed into a solvable set of linear

. equations in 1953. Primary contributions to Long's model are found,

jn addition to Long's own works (Long, 1953, 1955), in Yiﬂ'(lgﬁo,
1965), Drazin and Moore (1967) , Miles (1968a, 1968b), Davis (1969), and
Pao (1969).

Common characteristics of both linearfized and nonlinear models are
the assumption of two dimensionality and stationarity. The latter
assumption introduces the possibility of non-unique solutions. In order
to assure uniqueness, Rayleigh introduced Rayleigh friction terms in
his system of equations. An alternative way to establish uniqueness is
to treat the problem as an initial value problem rather than a stationary
one (Krishnamurti, 1964, p. 594). However, if the problem is treated
as an initial value problem, then the convenient transformation of
variables which transforms the original nonlinear equation to a linear
one is no longer possible (Yih, 1965). This limitation explains why
research programs since the 1950's are primarily based on numerical
integrations utilizing a digital computer.

Foldvik and Wurtele (1967) constructed a numerical model of an
airflow over a rectangular shape mountain. They used the Boussinesq
approximation to derive the vorticity equation, but friction terms were
not }ncluded. Their solution developed computational instabilities from
the lateral boundaries and from the obstacle; however, the instability
magnitudes were small so that the majority of the field was apparently
not affected. Lin and Apelt (1970) conducted numerical experiments of
fluid motion over a thin barrier. Two cases were computed -- one for
Re = 397, Pr = 10 and Ri = 1.58, and another for Re = 5000, Pr = 1,

and Ri = 1.58, where Re, Pr, and Ri indicate Reynolds, Prandtl, and



REE@§£dson numbers respectively. The two results dld not dlsplay
considerable differences primarily because the amplltude of the lee
waves generated were so small. Strong damping or diffusing effects
were evident due to the finite difference scheme they used. Their
upstream difference scheme has a very large pseudo (coﬁputational)
viscosity which cén elimihate otherwise wavy motion.behind an obstacle.
This study reports a systematic Investigation combining the best

features of lahoratory simulation and numerical modeling of the lee-
wave motions arising from flows of :-ratified fluids over an obstacle.

All nonlinear and dissipative effect: :re retained, and deviations from

Long's model and linear theories are discussed.

2. Laboratory Simulation

The accuracy of a numerical ex- ~iment, depends on many factofs,
such_as the particular differencing scheme used, the magnitude of grid
and time increments, the boundary conditions imposed, the size of the
computational area, etc. Therefore, it is necessary to investigate the
reliability of numerical results By sther means. If the problem is
simple enough; a comparison with a known analytical solution might be
possible. This is not normally the case, however, for such nonlinear
problems as are described here. A . .-oratory experiment is extremely
useful in determining the reliabilit: of numerical results. Very few
experimental results are available on stratified flow over an obstacle.
Long (1955) and Davis (1969) obtained results in a water channel. Lin
and Binder's (1967) experlments are the only ones available from wind
tunnel experlments, although their flow characteristics were strongly

limited (0.02<Fr<0.03, where Fr is the Froude number based on the wind



tunnel height). Model experiments in wind tunnel are very difficult,
(Scorer; 1953; Cermak et.al., 1966), since similarity law requires a
very strong temperature-gradient and a very small velocity. Fortunately
it is not impossible to have a vertical temperature gradient of 1%/cm
and horizontal velocity of 10 cm/sec in the present wind tunnel

facility. The experimental results discussed herein were specifically
generated to verify any numerical scheme proposed.

Once confidence is established in numerical procedﬁres through
laboratory simulation, ke the direct application of the numerical
program to the atmosphere is reasonable. In a numerical approach it is
subsequently possible to extend or change meteorological variables easily.

In this study Davis' measurements (1969) in a water channel were
uséd to provide physical guidance in numerical analogue construction,
after which the method was compared independently with wind tunnel lee-
wave data produced by the authors.

Dimensions of the test section of the proposed wind tumnel are 50
cm height x 60 cm width x 450 cm length. Temperature stratification is
provided by electriclheafers at entrance section-and along the ceiling?
‘and by cooling panels along the wind tunnel floor. Velocities were
measured utilizing a smoke-wire technique developed at the Fluid
Dynamics and Diffusion Laboratory, Colorado State’ University.
Thermocouples were used for the temperature measurements (See Yamada
and Meréney (1971) for the detailed description of the wind tunnel

facility and instrumentation).

3. Formulation of Problem
The formulation of the problem is initially based on the assumptions

of two-dimensionality and incompressibility of the fluid. X and z



coordinates are to be taken in the direction perpendicular to the

. obstacle and vertical, respectively. Then the equation of continuity is

\.

written as
du 3w _ 1)
ax ¥ ¥ A 0

where u and w are velocity components in x and z direction, respectively.

Vorticity transport equation is as follows

DL _ o2y + & T
TR S (2)

where z is a vorticity component in the y direction (which is parallel

tc :he obstacle)

aw 3u
s i it (3)

T is absolute temperature, and K is a total eddy viscosity.

2_ is the Eulerian operator which is expressed as

PR .
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V2 is the Laplacian operator in two dimensional space v2 = %—2-+ %—z .
;2r

The continuity equation of incompressible fluid (1) permifs the

e- :tence of a stream function ¥ such that

5 = 20 . A
U= = and w = TR 4)

Introduction of a stream function ¢ guarantees that the continuity
equation (1) is always satisfied. Substituting the stream function into
Eq. (3) we obtain a relation between the vorticity ¢ and the stream

function ¢ as



2y = ¢ (S)

The equation of energy in this case is given as

— = K'V2T (6)

where K' is a total heat diffusivity.
The set of equations (2), (5) and (6) with the definition of the
stream function (4) are to be integrated numerically with appropriate

boundary and initial conditions.

4. Numerical Procedure
The primary difficulty associated with the approximation of a
partial differential equation by a finite difference equation is due tc

the existence of nonlinear inertial terms such as u%% or w%% . If

one uses a forward difference for a time derivative and a centered
difference for a space derivative then the difference equation for a
_differential equation 3z/3t + u 3z/3x = 0 is unconditionally unstable
(Richtmyer and Mortonm, 1967, p; 292). Hence, no matter how small- a time
step is chosen, small errors introduced in the computation grow without
limit.

A solution to this instability has been provided by a "forward-

backward'" molecule which replaces convection terms, for example u%%, b
P ok
9z N _ n j:ﬂ' j‘l,l when un >0
L3, T Y 3x j 8=
3%
n n
T - .
1 j*l,8 o4 n .0
= uj,z i when uj’z s

where §x is the space increment in x direction. This relation states

that when the velocity u? 2 is positive then the space derivative
3



is approximated by a backward difference, and when u?’z is negative a
forward difference is used. In this way the direction of the convection
is always the same as that of the local felocity components. All -“
variables are transported from the upstream side of the point in a local

th

sense, where subscript j and £ are j and Zth grid points in

x and z direction, respectively. In the same manner, the superscript

n stands for the th

time step of integration. n = 1 is an initial
time. The final form of a finite difference approximation of the
vorticity transport equation (2) is obtained by replacing the diffusion
terms by centered differences while the nonlinear terms are approximated
by the upstream numerical system.

The magnitude of the stream function is obtained by solving the
Poisson equation with known vorticity values. Herein a successive over-

relaxation (S.0.R.) method was utilized. The convergence criterion of

the iteration procedure was:

T+l §

[v°*F - 97| max ©
ji.e., if the absolute value of the maximum difference between the
tr#l]st jteration and the previous r th iteration is less than 8
then the iteration is stopped. & should be determined by numerical
experiments and here we adjusted & £from 0.01 to 0.10 depending on the
magn;tude of the stream function at the top boundary. The finite
difference expression for the energy equation has a very similar
appearance to that of the voiticity transport equation.

The condition which should be satisfied in order to maintain

stability in the finite difference expression of the vorticity equation

(2) is
R o8
max max = 2k 2k (7N
ax 5z 4 ?

§x2  8z2



where &t is a time increment in the finite-difference equation; and
the constant value C is 0<C<l, and Iu]ma* and [w]ﬁa¥ are the
magnitudes of the maximum velocity components u and w , respectively,
in the entire computation region. The stability criterion is thus a
variable éépending upon the magnitude of each set of newly calculated
velocity components. In practice Iu'max and |w|max were calculated
at each time step and &t was selected such that it satisfied the
stability condition (7).

It is desirable to choose &t as larz: is possible within the
computational stability criterion in order :: save computation time.
If a larger time step is chosen, however, more iterations may be
required in the solution of the Poisson eguc:zion because the source
terms (vorticities) vary by larger steps a.:c. Since the associated
iteration technique is a time consuming ca_::lation, a larger time
increment does not necessarily save computational time as one might
expect.

It is necessary to specify both boundarr and initial conditions

to obtain a set of unique solutions. Boundary conditions for the

vorticity transport equation cannot be given directly. Hoﬁever, they
are closely related to interior values of vorticit} and stream functions
by means of a Taylor's series expansion. - - rigid boundaries this
relaiiou is very simple and may be derived znalytically from the known
boundary conditions of velocities and strezn functionms.

In this study both the upper and the lower boundaries are rigid

and a no-slip velocity condition 1is used. 1i.e.,

u=w=0 at z=0 and z=H



where H .is the height of the top boundary. The stream function is
A e
- assigned a zero value aleng the bottom boundary and a constant value 15‘5:;

i P S

N = R
maintained along the top boundary. The final expression for the

boundary values of vorticities along rigid boundaries is:

iy 3¢ 1
° bound " (62)% (win lpl:'ounc}.) 7 %int

3

where Chound and ¢bound are the boundary values of vorticity and

stream function, respectively. Subscript "int" indicates the values
at one grid inside f;om the boundary.

Boundary conditions at the up-and down-stream boundaries are more
difficult and mgst_be ﬁetermined more or less empirically. Lateral /

boundary conditions were sought which imposed the least severe

restrictions on the solutions in the interior reglon, i.e., such that
6 4

oy -

no distorted valuesdat the boundaries propagate into the interior area.

The following boundary conditions have been determined from numerical ex-
periments to give the least apparent restrictions and the least distortioms.
Linear extrapolation formulae were used for all dependent variables ¥,

z, and T. For example the upstream boundary values of stream functionms,

¥ , are computed from

E Rl |

Y1, = 202,28 - U308

wheré v2 o and Y3 , are the values one and two grid interior the
) L]

region, Tespectively. The physical implication of the above condition

as follows: Streamlines are assumed to change linearly i.e., maintain

constant slopes at the lateral boundaries. Thus,

10



In terms of velocity component W this requires %§-= 0. However,

since this numerical model is formulated in terms of the vorticity
equation one needs boundary conditions for vorticities at the lateral
boundaries. With the assumption that the stream function varies linearly

at the lateral system boundaries one may conclude from

a2c _ a%y 32 3%
3xZ _ 9x¥  0z?% ‘3x~

that
i
xz L]
Boundary ccn.itions for the energy equation at both streamwise
boundaries zre similarly
2T _
aXe 3
To inz:;rate the set of the equations described above, initial

values must e specified to initialize the numerical integration.

Hence, initial velocity components u and w are originally given, to
obey continuity and the vorticities and stream functions are .
jnitialized >y their re#pective definitions.

Numerical integrations and laboratory experiments have been
conducted in such a manner that they may be directly compared.
Therefore, ‘- was convenient to use the same coordinate system in each
case. Win. -unnel test section is 50 cm height x 60 cm width x 450
cm length. Hence, a region of comparable size was utilized in the
_numerical computation (see Fig. 1). The area was divided by a 81 x 16
square mesh whose dimension is 4 x 4 cm. Therefore, a 60 cm height X
320 cm length area is the computational region - about the same size as

the effective wind tunnel test section area.
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5. Test Computation of Airflow over an Obstacle

The first'computation of airflow over an obstacle was conducted
under the same conditions for which the best lee waves are observed in
Davis' paper (1969). In his paper, the characterié%ic parameter is
expressed by k which is the inverse of the Froude number based on the
characteristic length 3/1 , where H is the.chanﬁél height. Since
k = 1.5 gave the strongest lee wave result, we used this value in the
computation, which is equivalent to Fr = 0.2122 in our terminology.

In his paper, dynamic pressure and vertical densitv ;radient at the
far upstream boundary are kept constant (Long's model). “rom these
conditions, an upstream temperature distribution was calculated. The
resulting temperature varies almost linearly except for -2 region
very close to the surface. This temﬁerature distributic: was used as
an initial value. Numerical integrétion was carried ou: .2 150 steps
and'results were plotted. Figure 2 shows very weak first wave
crests somewhéfe near x = 80 cm but compared to Davis' rssult,
(included in the same figure), they are very small.

If a comparison, however, ié made with a result obtained in a
neutral atmogphere (no stratification) which is also included in
Fig. 2, we can see definite effects of stratification. In the
stratified case, streamlines over the obstacle have bec: :isplaced
downward because of the negative buoyancy forces introduced by the
density difference between a particle and its surroundings. This force
together with the requirement of continuity bends streamlines downward
behind the obstacle. Because of its inertia, a particle drops down

"beyond its equilibrium position and encounters a positive buoyancy

12



force which again would 1ift the particle beyond its equilibrium.if no
. dissipation of energy exists. The initial calculations obtained
displayed some interestesting aspects o% stratified airflow over an
obstacle. However, they did not generate lee waves downwind of the
obstacle.

Several authors have suggeﬁted that the upstream finite-difference
approximation introduces a strong damping effect: which may under
certain circumstances modify or control the solution.

Let us examine how a.computational viscosity is introduced. The one
dimensional, unsteady, and incompressible vorticity transport equation

without a diffusion term is expressed as

@)

when u is not negative and a forward approximation is used for the

time derivative. Substituting the Taylor's series expansions for

n+l

;?_1 and cj about ;? (neglecting higher order terms than 6x3 or

6t3) into the above expression we obtain

n+l n n n
1 =5 el
st §x
_ 3z 3z _usx .. _ ust, 37¢
St N iiie? i) B Ao )
where the relation
32z _ 5 3%t
3tZ = % X7

13



is used from the original equation assuming u is constant. A similar
expression is obtained when u 1is negative. If the finite difference
equation (8) is solved exactly then the differential equation becomes

(from Eq.9),

3 3T _ lu|sx _ Julst, 3%¢
* Bay 2 e 5x ) 3xZ -

3t

where the absolute value of u is used so that this expression is valid
for both positive and non-positive u . The term

e |u[6x (T |u]6t)
P 2 8x

has been called the psceudo viscosity or pseudo diffusivity (Molenkamp,
1968). Molenkamp evaluated. Up for typical thermal convection
situations in the atm::-nere and numerical values were of the order of
35m? sec~! , which i: ::mparable with typical measured turbulent
viscosities ranging -om 0 to 40 m?sec™!. In the previous calculation
(Fig. 2), 6t = 0.0572¢ sec and 6x = 4 cm when t = 8,96 sec.

Therefore, pseudo viscosity Up has a maximum value

8 2 e y
) nax = BT 02729 = 34.91 cn?/sec

when u = 34.91 cm/sec.

_Since the pseudc ‘1scosity appears to be as large as 150 times the

) < 2
actual viscosity, (UP = 29 cm /sec when u = 20 cm/sec), it is in-
appropriate to simulate wind tunnel experiments by the upstream
difference approximation. (For detailed discussions about the concept

of pseudo viscosity see Crowley 1967, 1968; Molenkamp, 1968; and Orville,

1968).

14



One is now led to search for some second order method with a
smaller damping effect. Arakawa's (1966) explicit scheme is one of such
differencing techniques. Molenkamp (1968) showed that Arakawa's scheme
has increased accuracy compared with the upstream difference method
just discussed.

Arakawa's scheme replaces the inertial terms in the vorticity
equation by centered differences to obtain computational stability
incorporating the nonlinear terms. Arakawa (1966) developed his finite
difference scheme for the vorticity transport equation in such a mammer
that it conserves the mean vorticity, the mean kinetic energy, and the
mean square vorticity in a closed domain. Since we found the upstrean
difference approximation system is not appropriate to simulate wave
motions behind an obstacle and Arakawa's scheme has been proven to
often have better accuracy, we reprogrammed using this scheme. The time
derivative is approximated by a cente:e@ difference. Both the diffusion

T X

3%z 3%t g T N
term K(EEZ + SEQg and the buoyancy term — are also approximated
by centered difference moleculesr ‘This scheme was expected fo'é{ve a
better result, and it is computationally stable if an appropriate

integration time step is used.

6. Mixed Scheme with Upstream Differeﬂce

The first computation in Arakawa's scheme produced very short wave
length .(two grid intervals) disturbances in front of the obstacle.
These disturbances appear to propagate béckwards against the mean flow
with time. The speed of propagation was roughly the same as the basic
flow. Such errors are generally considered to be a result produced by

a large truncation error at a sharp discontinuity of the boundary

15



(2 step change obstacle). Foldvik and Wurtele (1967) have observed
the'same kind of perturbations in front of their rectangular obstacle.
To eliminate these computational modes the numerical area was

divided into two regions - one in front of the obstacle and another
over and behind the obstacle. The downwind region was approximated by
Arakawa's scheme and the upstream difference system was used in the
upwind one. It was expected that the upstream scheme could disperse
numerical errors (waves with two grid length) introduced in front of
the obstacle by its large numerical damping.

Fortunately, available laboratory and field observations suggest
that physical waves which actually propagate upstream from an obstacle
have long wave characteristics which are much less affected by the
numerical damping effect in upstream difference approximation. Thus it
is expected that all physical waves are retained under this scheme
while short wave computational modes upstream of the cbstacle will be
damped out quickly.

Another procedure to stabilize the field to numerically generated
instabilities was suggested by the test computation. The numerical
integration must be conducted for a comparatively long time to reach
steady state. There appeared irregular variations with time, however,
which do not actually represent any physical phenomenon. Hence it was
decided to insert, every ten to twenty integration time steps, an
upstream representation for the inertia terms to stabilize the field.
This is a better method than a smoothing done in arbitrary nanners
(such as to take arithmatic means) since here smoothing retains general

character of Navier-Stokes equation.
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The result of a test calculation gives pictures which do not show
any computationally introduced errors. Contour lines of stream
: S
functions at different integration times are shown in Fig. 3. Here we
can clearly perceive the development of lee waves behind the obstacle
with time. Two waves are observed at t = 20.84 sec. The amplitude of
the first wave is ébout the same magnitude as the obstacle height.

However the wave length measured from the picture is about 76 cm which

is much shorter than 100 cm as predicted by

e 2mH
-2 2
-7
T
where A is a wave length, and H is a characteristic lon;zh taken as
a wind tunnel height.
The wave patterns obtained by the present analysis a:-:: with

Long's experimental results (Fig. 8, pp. 351, Long, 1955) where

Fr = 0.20 and the ratio of obstacle height to that of water :hannei

B = 0.2; while in the present computation Fr = 0.21 and 3 = 0.13.
Although Davis' result in Fig. 2-6 appears to have stronger zmplitude
lee waves it should be noted that the figure has about twice as large
a vertical scale as the rest of figures; height of his water channel
was 36 cm while that of present computational region was = :m.
Moreover, dimensionles§ fence height, B, was 0.2 which is zpproximately
double the obstacle height in Fig. 3. The linearized thecrr predicts
that the location of the first wave crests is 3/4 wave length downwind
from the top of the obstacle. In most all laboratory experiments,
however, it has appeared that the first wave crests were very much further

displaced downstream (Long, 1955; Lin and Binder, 1967; Davis, 1969).
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Furthermore, wave lengths were observed to increase with height. Thus
there existed a wave phase shift in the vertical direction. Wind
tunnel experiments by Lin and Binder (1967, Fig. 40) noted a functional
variation of wave length with height and Froude number. The present
numerical model contains both features, increased wave length and phase
shift with height.

Horizontal velocity profiles at various locations at t = 20.84 sec.
are included in Fig. 3-d. 1Initially (t = 0) they were uniformly
distributed.- Very high velocities are obtained over and downstream of
the obstacle which are commonly observed in the field and laboratory.

It is noticed that the velocity profile at the upstream boundary is
modified from the original uniform distribution by the disturbances
propagating upstream from the obstacle. It means that upstream
difference scheme utilized in the front region of the obstacle did not
eliminate long waves traveling upstream from the obstacie, but complete-
ly filtered out short waves associated with computational modes.
Therefore, the present numerical model allows modifications of velocity
and temperature profiles at an upstream boundary, which are caused by the
disturbances travelling upstream generated by the obstacle: All
existing analytical treatments requires pre-specification of the
variable profiles at the upstream boundary and cannot include the
effects of upstream travelling disturbances. Long's model requires
constancy of dynamic pressure and of the vertical density gradient with
height at the far upstream boundary. Consequently Long's model cannot
consider any blocking effect of the obstacle since fhis phenomenon

completely changes the upstream boundary condition. Moreover, the

18



present numerlcal model is more flexible since one can impose arbitrary
upstream 1n1t1a1 values, for example, ground 1nver51on, elevated

inversion, neutral, or lapse condltlon.

7. Control Comparison with Wind Tunnel Result

The present numerical scheme has shown qualitative agreement with
other water channel laboratory investigations and analytical
predictions. It is not, aowever, poésible to conduct a precise
quantitative comparison: towing tank experiments give free-slip
conditions at the bounc.- but atmospheric motion include the shear
effect of a velocity pr-Zile. Therefore, it is desirable to compare
the numerical result with a2 wind tunnel model, where a more rgalistic
shear layer is modéled. . laboratory résult is first discussed, which
exhibits waves behind = ::uare obstacle (8cm x 8cm). Then a numerical
simulation of the same :-_.ow is conducted for quantitative
comparisomn.

Figure 4 displays streamlines obtalned from a smoke visualization
picture. A five-second :xposure time indicated that the flow was very
steady. The smoke was dispersed very rapidly under the first wave
crest by the presence o a turbulent rotor. Such motions were reported
by both prototype (W.} 7., 1960) and previous laboratory observations
(Long, 1955; Lin and Bi...2r, 1967; Davis, 1969).

Temperature contour lines (Fig. 5) have been constructed from the
temperature profiles at various locations. Isotherms taken from
experiments performed on different days show very close agreement, which

indicates good laboratory reproducibility.

19



Since the measured temperature profiles were not linear with height

(see Fig. 6) some difficulty arose to evaluate Froude mumber which is
the characteristic parameter of the flow. Temperature increases
fairly sharply ( %%—r 1.2° C/cm ) from the surface to a certain
height ( ~ 13cm ) and subsequently decreases to the center of the
wind tunnel.

There exists another sharp temperature increase as one approaches
the wind tunnel ceiling where large elctric heaters are mounted. If
there is no flow blowing inside the tunnel linear variation of temper -
ture with height is expected. But basic wind blowing over the surfacs
and ceiling increases heat transfer from the boundaries resulted in
sharper temperature gradients there.

Long (1955) commented on a similar difficulty when computing the

‘Froude number. His density profile showed nearly constant regions clc:z

to both top and bottom boundaries. Long found if an averaged value of
stability was used to compute Froude number then the observed wave
length closely agreed with the predicted value from the theory. Here
a similar idea was used; two stabilities were computed, one for the
lower layer (0 < z < 13cm) and another for the upper layer

(13 cm < z < 40cm). Then the arithmﬁkic mean was taken to evaluate

Froude number.

A numerical experiment was performed for identical flow conditions.
Contour lines of stream function, vdrticity and temperature are shown
in Fig. 7. General agreement with the wind tunnel experiment (Fig. 4,
5) was obtained. The wave amplitude in the numerical model was not as

large.

20



Temperature profiles at various locations for both wind tunnel
and numerical experiments are presented in Fig. 8. The location x = 0
-

corresponds to the upwind edge of the obstacle. A dashed line in the

-fiféé figure indicaﬁes thé-iﬁiiial aistribution-ﬁravided for the
numerical integration. Initial profiles can be arbitrary; however, for
a faster convergence a reasonable initialization is desirable. An
averaged temperature distribution for the clean wind tunnel field was
used as an initializing distribution (Fig. 6). Data at x = - 20 cm in
Fig. 8 show clear evidence of upstream flow modification by the
existence of an obstacle. Numerical temperature distributions at

x = 12, 16, and 20 cm appear to simulate regions of overturning
instability E%E < 0), where the flow was supposed to be very unstable.
According to Long's analysis (1955) this region should correspond to a
reversed flow area.

The existence of turbulent motion under the first wave crest can
be seen from the temperature profiles at x = 48, and 60 cm. Experi-
mental results at these locations show constant values near the ground
as a result of strong turbulent mixing. The numerical model failed to
simulate the phenomena in this region primarily due to insufficient
numbers of grid points near the ground where the temperature varies
rapidly.

" A detailed examination of the flow field immediately behind the
obstacle is shown in Fig. 9. The square obstacle is indicated by a
double hatched area, and the effective mountain is represented by a
single hatched region. A streamline and the observed flow directions

are as indicated. Velocity profiles at x = 12, 40, and 60 cm were
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obtained from smoke wire photographs. The velocity distribution
sketched at x = 12 cm represents an average from two pictures taken
three minutes apart. Both pictures presented similar profiles; there-

fore, the result shown here seems to be reliable.

The motion inside the separated region (or core)'wag quifé dif;
ferent from that observed for neutral density‘flows;‘ Velocity close to
the surface was positive, a negative flcw was observed above it, and
the flow reversed again outside the core ’see Fig. 9). The temperature
distributions at x = 12, 16, and 20 cz .30 exhibit alternative
positive and negative gradients.

This peculiar motion may be explainzd as following: A fluid

particle trapped into the core region :- :inates at some high temperature
level (Fig. 5). The particle is less Z:-:: than the surrounding strata,
and thus buoyancy forces drive a couﬁt;:;.:ckwise circulation.
8. Conclusions on Numerical Simulation :< Strong'Grévity Effects

A simple explicit upstream finite- . i-ference system failed to
produce observed lee waves behind a fir:-: height obstacle piaced in

the wind tunnel. Large pseudo-viscosity introduced by the upstream
difference scheme appears to introduce : arge numerical viscosity.
A Mixed-Arakawa's scheme was tested an. ~und to give reasonable
results.

A sequence of possible models were :xamined to find suitable
boundary conditions at the up and down-stream boundaries. It was
found that when linear extrapolation formulae were used, physically

reasonable results were obtained.
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A wind tunnel facility provided a more realistic simulation of
~ airflow over a mountain compared with a towing tank. The wind tunnel
proved to be a valuable diagnostic tool to justify and analyze the

present numerical model.
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Fig.

Fig.

Fig,

Fig.

Fig,

Fig,

Fig,

Fig,

LIST OF FIGURES

Schematic diagram of the numerical computatioﬁal region, the
grid system, and boundary conditions. _

a) Computed streamlines with upstream finite-difference scheme
under the same conditions in b): b) ﬁxperimental result ob-
tained b& Davis "(1969) when Fr = 2.21; ¢) The same computation
as in a) except a neutral atmosphere,

Development of waves behind an obstacle computed by the improved
scheme (Arakawa's scheme combinec _=h upstream difference) at

a) t=5,74,b) 12,11, ¢) 17.32 :ind d) 20.84 sec. Velocity

profiles are included in d),

Streamlines obtained from a smokc  :ualization picture when
Fr = 0,144,

Experimental isotherms over a squ..: obstacle when Fr = 0,126,
Temperature profiles at various i::ations obtained by wind
tunnel experiments without an obsz::le, Distribution shown by
a solid line was used as an initi: -alue of the numerical
model.

Contour lines of stream function, —»rticity, and temperature at
t = 9.96 sec, The same flow concd -ons (Fr = 0,126) as in Fig,
5 was used in this numerical intc _tiom,

Comparison of temperature profiles it various locations obtained
by win& funnel and numerical experiments (Fr = 0.126), j,
Experimental without an obstacle; 9, Experimental with an
obstacle; ——— , Numerical with anobstaclé; -===, Initial

temperature distribution in the numerical computation,
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Fig. 9 Detailed picture of the flow behind an obstacle (Fr = 0,126).
Double hatched area is the original obstacle, Hatched region
. in addition to the physical obstacle may represent an effective

shape of obstacle. &
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