Computationally Efficient Energy/Makespan Scheduling

Presenter: Kyle M. Tarplee
Collaborator: Ryan Friese
Collaborator: Anthony A. Maciejewski
Collaborator: Howard Jay Siegel

Problem Statement

Outline

Linear Programming Lower Bound

Preliminaries

$$ \newcommand{\ETC}{\mathit{ETC}_{ij}} \newcommand{\APC}{\mathit{APC}_{ij}} \newcommand{\APCIdle}{\mathit{APC}_{\emptyset j}} \newcommand{\MSLB}{\mathit{MS}_\mathit{LB}} \newcommand{\ELB}{E_\mathit{LB}} $$

Linear Programming Lower Bound

Objective Functions

Linear Programming Lower Bound

Bi-Objective Problem

$$ \underset{x_{ij},\,\MSLB}{\text{minimize}} \quad \begin{pmatrix} \ELB\\ \MSLB \end{pmatrix} $$ subject to:

$$\forall i$$$$\sum_j x_{ij} = T_i$$task constraint
$$\forall j$$$$F_j \le \MSLB$$makespan constraint or machine constraint
$$\forall i,j$$$$x_{ij} \ge 0$$assignments must be non-negative

Linear Programming Lower Bound

Lower Bound Generation

Recovering a Feasible Allocation

Phase 1: Round Near

$$ \begin{pmatrix} 3 & 0 & 9 & 11 & 0 & 0 \\ 3 & 0 & \mathbf{9.6} & 11.4 & 0 & 0 \\ 3 & 15.3 & 9.3 & \mathbf{11.4} & 0 & 0 \\ 3 & 15.2 & \textbf{9.9} & \mathbf{11.4} & 2.3 & 4.2 \end{pmatrix} \rightarrow \begin{pmatrix} 3 & 0 & 9 & 11 & 0 & 0 \\ 3 & 0 & 10 & 11 & 0 & 0 \\ 3 & 15 & 9 & 12 & 0 & 0 \\ 3 & 15 & 10 & 12 & 2 & 4 \end{pmatrix} $$

Recovering a Feasible Allocation

Phase 2: Local Assignment

Pareto Front Generation Procedure

Simulation Results

Pareto Fronts

Pareto Fronts

Zoomed into the knee

Lower Bound to Full Allocation

No idle power

Lower Bound to Full Allocation

10% idle power

Effect of Idle Power

Complexity

Impact of the Number of Tasks

Impact of the Number of Task Types

Impact of the Number of Machines

Impact of the Number of Machine Types

Contributions:

Conclusions

/