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Problem Statement

e static scheduling
o single bag-of-tasks

o task assigned to only one machine (task indivisibility)
o machine runs one task at a time

o known deterministic execution times

e large number of heterogeneous tasks and machines
e goal: maximize profit per time
o minimize operating cost (energy)

o minimize makespan: process the next bag-of-tasks after this one




Introduction

e work has been done in minimizing
o execution time

o energy consumption

o reliability
e our focus is on maximizing profit

o Important for businesses

o combines the makespan, energy, and other cost factors
e contributions

o monetary model for provider and client HPC

o algorithm to efficiently find
= maximum profit schedule

= bounds on profit
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Motivation

e software as a service (SaaS) providers maximize profits by increasing
revenue and controlling costs

e example: SaaS web-based video trans-coding
o charges customers per minute of video converted

o task execution time is well known due to repetitive tasks
executed by the provider

e objective: minimize cost of processing workload and process tasks
as fast as possible




Pareto Fronts

A e energy and makespan optimization

e good for system operators

:g | e does not provide a concrete decision

9 5 feasible

@ objective space space for automated schedulers

T O . .

E S e need efficient algorithms for very large-
w

scale systems

Pareto front

energy
smaller is better

5/28




Problem Formulation

e let P be the price (revenue) per bag-of-tasks
e let C be the cost per unit of energy

e let E be the energy consumed

e let MS be the makespan

e profit per bag-of-tasks is p — CE

. o - . PCE _ p _~ E
e profit per unit time (to be maximized) is ™S T VS C VS

o revenue per unit time —C times average power consumption
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Solution Approach

e computationally expensive to compute optimal solutions for
o minimizing makespan

o maximizing profit (function of makespan)

 need scalable and efficient algorithms to find good schedules
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Solution Approach

e computationally expensive to compute optimal solutions for
o minimizing makespan
o maximizing profit (function of makespan)
 need scalable and efficient algorithms to find good schedules

e proposed 3 phase algorithm:
o solve linear optimization problem assuming tasks are divisible

o round the solution

o assign tasks to machines




Preliminaries

e simplifying approximation: each task is divisible among machines
e |; — number of tasks of type |

 M; — number of machines of type |

® ETCij — estimated time to compute for a task of type I running on a
machine of type |

* Mjj — number of tasks of type I assigned to machines of type |
o matrix @t is a resource allocation
o decision variable

> not binary but integer valued (k; » 1)

e finishing time of machine type | is (lower bound)

,
Fj = WJ ZI: M;; ETCU'
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Energy and Power

. APCU — average power consumption for a task of type | running on
a machine of type |

e EpL(p) =2 Zj M ETC; APG;;

e in the paper Ep| includes consideration of idle power

e let Pphax be the maximum average power consumption
o models long running average power consumption

o useful for modeling cooling capacity
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Optimization Problem

. - cE
maximize P oL (#)
#, MSp, MSp..

subject to:
Vi D =T, task constraint

]
Vj Fi < MSp_ machine finishing time constraint
Vi, | M =0 assignments must be non-

EpL . |
<Pmax power constraint (optional)
MSDL
e recall:

o Fj is finishing time

° M;j Is number of tasks
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Conversion to a Linear Program

e objective and power constraint are non-linear

e ratios of decision variables, “ij and MSDL
* constraints can be converted to use ratios of |;; and MSpL

e variable substitution

Mij . e
o Zjj m—S’D—L Is the average tasks per unit time

o I & W%E Is the number of bag-of-tasks per unit time

e average power consumption becomes P = Zi Zj Zj; ETCijAPCij
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Transformed Linear Program

Non-Linear Problem

. - cE
maimize  “—e “
subject to:
vi z Mij = Ti
]
Vj Fj < MSDL
Vi, | Mij =0
EpL

MSDL < PITIE}(
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Transformed Linear Program

Non-Linear Problem

. p — CEpy (1)

m iXhLFST:]ILZB Y SDL
subject to:
V| 2 ”‘Ij = Ti

J
Vj Fj < MSDL
Vi, | Mij =0
E
MSD;L < Pmax
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Linear Problem

maximize pr-cP

4

subject to:
Vi

V)

Vi, |

Z Zjj = Til"
J

1
mj 2 Zj; ETCij <1
i

ZijEO
r=0
P <Py




Algorithm

e solve linear program and compute

“‘ij = Z— and MSDL —-_ —

e rounding algorithm (pertask type)

o rounds the number of tasks of each type assigned to each
machine type

o find nearest integer solution while satisfying constraints

e local assignment algorithm (per machine type)
o assign tasks to individual machines

o greedy algorithm to minimize makespan

e recall:
> Zjj Is average tasks per unit time

o I'is number of bag-of-tasks per unit time
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Bounds

lower bound optimal upper bound
profit per
unit time
feasible solution computationally infeasible: divisible tasks
likely not optimal prohibitive

e Upper bound

o many Pareto efficient solutions to the relaxation of the energy
and makespan optimization problem

o maximum profit of all those solutions
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Alternative Objective Formulation

e collapse P and C into a single intuitive parameter

e let Eqin be the energy of the minimum energy solution

P
EEWM1

e let profit ratioy =
o Y Is unitless
o Y = 0 is realizable

o Y > 1 = positive profit is achievable

e recall:
o P Is price per bag-of-tasks

o C Is cost per unit of energy
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Simulation Setup

 heterogeneous tasks and machines
11,000 tasks each is one of 30 task types

e 360 machines each is one of 9 machine types
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Max Profit Solutions

Sweeping Profit Ratio
150;— ‘ — Pareto front lower

140 bound
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Max Profit Solutions

Sweeping Profit Ratio
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e recall: Y = Is the profit ratio
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— Pareto front lower
bound

[_] profit upper bound
(infeasible)




Max Profit Solutions

Sweeping Profit Ratio
LT - Pareto front lower
@ 140 bound
o |
2 120 .
E | [_] profit upper bound
5 0 (infeasible)
g 80
£ 60 ¢ profit lower bound
il (feasible)
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energy [MJ]
e : — p . . .
recall: Y GE IS the profit ratio
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Max Profit Solutions

Sweeping Profit Ratio
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S
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e recall: Y = cEp- Is the profit ratio
min
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— Pareto front lower
bound

[_] profit upper bound
(infeasible)

+ profit lower bound
(feasible)

| profit per unit time




Max Profit Solutions

Sweeping Profit Ratio
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P
EE%ﬂn

e recall: Y = Is the profit ratio
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— Pareto front lower
bound

[_] profit upper bound
(infeasible)

+ profit lower bound
(feasible)

| profit per unit time

-- power constraint
(55 KW)




Profit Rate vs Makespan
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o profit ratio = 1.2
e 11,000 tasks

e Pareto front generation:
173 ms




Profit Rate vs Makespan

7000 maximum profit e profit ratio = 1.2

6000 " solution

=000t /* ~_ e 11,000 tasks
7] [ T .
;."*‘;;“ 4000 T e Pareto front generation:
S 3000 173 ms

2000 . .

e e single max profit solve:

ob. o 2 ms

60 80 100 120 140 160
makespan [minutes]

23 /28




Profit Rate vs Makespan

7000 maximum profit
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profit ratio = 1.2
11,000 tasks

Pareto front generation:
173 ms

single max profit solve:
2 ms

o If 1 million tasks: 70 ms




Relative Profit Rate vs Number of Tasks

—
on
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relative profit decrease [%]

13.9 138.9 1388.9
average tasks/machine

« 100 Monte Carlo runs sampling over the task types

0 profity —profit;

» relative decrease in profit= 10 Drofit,

e width of glyphs represent the probability density
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Finishing Times

profit ratio = 1.2 profit ratio = 1.5

6ol 50"
E-‘lﬂ EEU_‘
o 30 © [
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= 10 = 10

n-'I’E'a' 7 - 8 g9 ﬂ-I'E'E' 7 - B O

4 5 B 4 5 8
machine type machine type

e machine type 1 and 2 are less power efficient

e use when price is high thus emphasizing makespan minimization
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Applicability

e Millions of tasks and tens of thousands of machines
e scheduler execution times are sub-second

e online batch mode scheduling for uncertain
o execution times

o arrival rates

e schedule to cores instead of machines
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Conclusions

e fast profit maximizing scheduling algorithm
e scalable to very large systems
e provides tight lower and upper bounds on the profit per unit time

e easily applied to online batch mode scheduling
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Questions
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