Energy-Aware Profit Maximizing Scheduling Algorithm for Heterogeneous Computing Systems

Kyle M. Tarplee¹, Anthony A. Maciejewski¹, Howard Jay Siegel^{1,2}

¹Department of Electrical and Computer Engineering ²Department of Computer Science

> Colorado State University Fort Collins, Colorado, USA

Outline

- problem statement
- optimization problem formulation
- algorithm description
- results

Problem Statement

- static scheduling
 - single bag-of-tasks
 - task assigned to only one machine (task indivisibility)
 - machine runs one task at a time
 - known deterministic execution times
- large number of heterogeneous tasks and machines
- goal: maximize profit per time
 - minimize operating cost (energy)
 - minimize makespan: process the next bag-of-tasks after this one

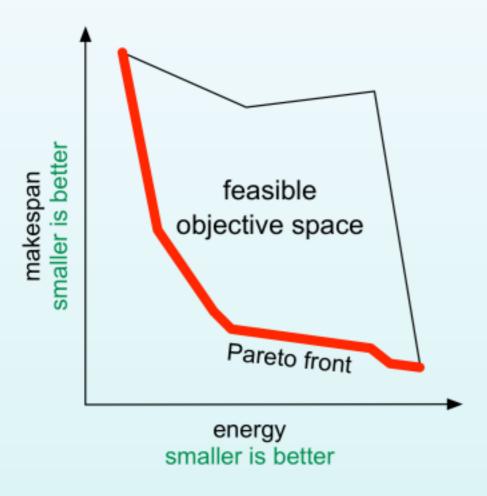
Introduction

- work has been done in minimizing
 - execution time
 - energy consumption
 - reliability
- our focus is on maximizing profit
 - important for businesses
 - combines the makespan, energy, and other cost factors
- contributions
 - monetary model for provider and client HPC
 - algorithm to efficiently find
 - maximum profit schedule
 - bounds on profit

Motivation

- software as a service (SaaS) providers maximize profits by increasing revenue and controlling costs
- example: SaaS web-based video trans-coding
 - charges customers per minute of video converted
 - task execution time is well known due to repetitive tasks executed by the provider
- objective: minimize cost of processing workload and process tasks as fast as possible

Pareto Fronts



- energy and makespan optimization
- good for system operators
- does not provide a concrete decision space for automated schedulers
- need efficient algorithms for very largescale systems

Problem Formulation

- let p be the price (revenue) per bag-of-tasks
- let C be the cost per unit of energy
- let E be the energy consumed
- let MS be the makespan
- profit per bag-of-tasks is p cE
- profit per unit time (to be maximized) is $\frac{p-cE}{MS} = \frac{p}{MS} C \frac{E}{MS}$
 - revenue per unit time –C times average power consumption

Problem Formulation

- let p be the price (revenue) per bag-of-tasks
- let C be the cost per unit of energy
- let E be the energy consumed
- let MS be the makespan
- profit per bag-of-tasks is p cE
- profit per unit time (to be maximized) is $\frac{p-cE}{MS} = \frac{p}{MS} C \frac{E}{MS}$
 - revenue per unit time –C times average power consumption

Problem Formulation

- let p be the price (revenue) per bag-of-tasks
- let C be the cost per unit of energy
- let E be the energy consumed
- let MS be the makespan
- profit per bag-of-tasks is p cE
- profit per unit time (to be maximized) is $\frac{p-cE}{MS} = \frac{p}{MS} C \frac{E}{MS}$
 - revenue per unit time –C times average power consumption

Solution Approach

- computationally expensive to compute optimal solutions for
 - minimizing makespan
 - maximizing profit (function of makespan)
- need scalable and efficient algorithms to find good schedules

Solution Approach

- computationally expensive to compute optimal solutions for
 - minimizing makespan
 - maximizing profit (function of makespan)
- need scalable and efficient algorithms to find good schedules
- proposed 3 phase algorithm:
 - solve linear optimization problem assuming tasks are divisible
 - round the solution
 - assign tasks to machines

Preliminaries

- simplifying approximation: each task is divisible among machines
- T_i number of tasks of type i
- M_j number of machines of type j
- ETC_{ij} estimated time to compute for a task of type i running on a machine of type j
- μ_{ij} number of tasks of type i assigned to machines of type j
 - \circ matrix μ is a resource allocation
 - decision variable
 - ∘ not binary but integer valued (μ_{ij} ≫ 1)
- finishing time of machine type j is (lower bound)

$$F_{j} = \frac{1}{M_{j}} \sum_{i} \mu_{ij} ETC_{ij}$$

Energy and Power

- APC_{ij} average power consumption for a task of type i running on a machine of type j
- $E_{DL}(\mu) = \sum_{i} \sum_{j} \mu_{ij} ETC_{ij} APC_{ij}$
- ullet in the paper E_{DL} includes consideration of idle power
- ullet let P_{max} be the maximum average power consumption
 - models long running average power consumption
 - useful for modeling cooling capacity

Optimization Problem

maximize
$$\mu, MS_{DL}$$
 $\frac{p - c \vdash_{DL}(\mu)}{MS_{DL}}$

subject to:

$$\forall i$$
 $\sum_{j} \mu_{ij} = T_i$ task constraint

$$\forall j$$
 $F_j \leq MS_{DL}$

$$\forall i, j \qquad \qquad \mu_{ij} \geq 0$$

$$\frac{\mathsf{E}_{\mathsf{DL}}}{\mathsf{MS}_{\mathsf{DL}}} \le \mathsf{P}_{\mathsf{max}}$$

machine finishing time constraint assignments must be non-negativ

power constraint (optional)

- recall:
 - \circ F_j is finishing time
 - $\circ~\mu_{ij}$ is number of tasks

Conversion to a Linear Program

- objective and power constraint are non-linear
- ratios of decision variables, μ_{ij} and MS_{DL}
- \bullet constraints can be converted to use ratios of μ_{ij} and MS_{DL}
- variable substitution
 - \circ $z_{ij} \leftarrow \frac{\mu_{ij}}{MS_{DL}}$ is the average tasks per unit time
 - \circ r $\leftarrow \frac{1}{MS_{DL}}$ is the number of bag-of-tasks per unit time
- average power consumption becomes $\bar{P} = \sum_i \sum_j z_{ij} ETC_{ij} APC_{ij}$

Transformed Linear Program

Non-Linear Problem

$$\begin{array}{ll} \underset{\mu, \ MS_{DL}}{\text{maximize}} & \frac{p - cE_{DL}(\mu)}{MS_{DL}} \\ \text{subject to:} \\ \forall i & \sum_{j} \mu_{ij} = T_{i} \\ \forall j & F_{j} \leq MS_{DL} \\ \forall i, j & \mu_{ij} \geq 0 \\ & \frac{E_{DL}}{MS_{DL}} \leq P_{max} \end{array}$$

Transformed Linear Program

Non-Linear Problem

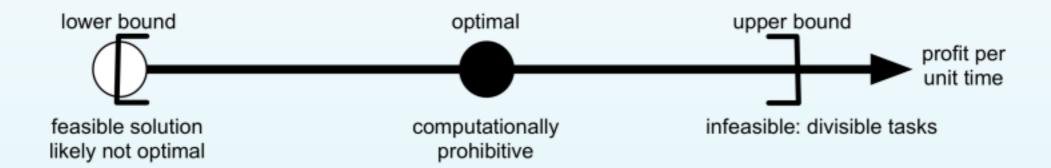
Linear Problem

maximize μ, MS _{DL}	$\frac{p - cE_{DL}(\mu)}{MS_{DL}}$	\Rightarrow maxin z, r	nize pr – cĒ
subject to:		subject to:	
∀i	$\sum_{i} \mu_{ij} = T_i$	∀i	$\sum_{j} z_{ij} = T_i r$
∀j	F _j ≤ MS _{DL}	∀j	$\frac{1}{M_j} \sum_{i} z_{ij} ETC_{ij} \le 1$
∀i, j	μ _{ij} ≥ 0 Ε _{DL}	∀i, j	$z_{ij} \geq 0$
	$\frac{E_{DL}}{MS_{DL}} \le P_{max}$		r ≥ 0
			P ≤ P _{max}

Algorithm

- solve linear program and compute
 - $\mu_{ij} = \frac{z_{ij}}{r}$ and $MS_{DL} = \frac{1}{r}$
- rounding algorithm (per task type)
 - rounds the number of tasks of each type assigned to each machine type
 - find nearest integer solution while satisfying constraints
- local assignment algorithm (per machine type)
 - assign tasks to individual machines
 - greedy algorithm to minimize makespan
- recall:
 - Z_{ii} is average tasks per unit time
 - r is number of bag-of-tasks per unit time

Bounds



- upper bound
 - many Pareto efficient solutions to the relaxation of the energy and makespan optimization problem
 - maximum profit of all those solutions

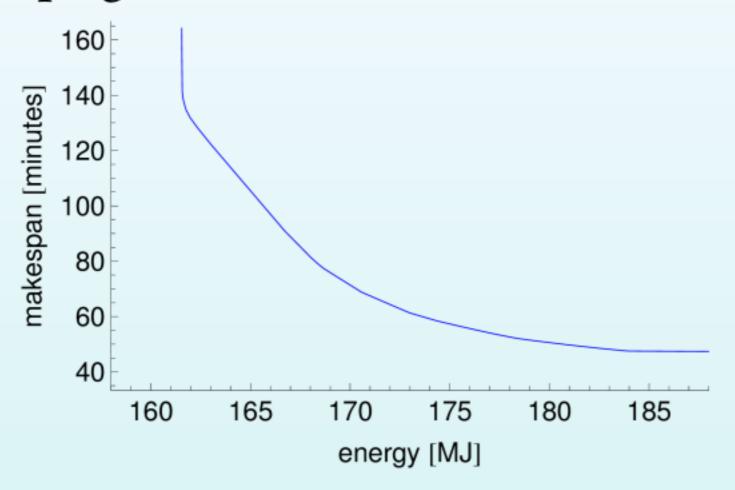
Alternative Objective Formulation

- collapse p and c into a single intuitive parameter
- \bullet let E_{min} be the energy of the minimum energy solution
- let profit ratio $\gamma = \frac{p}{cE_{min}}$
 - γ is unitless
 - ∘ $\gamma \ge 0$ is realizable
 - γ > 1 ⇒ positive profit is achievable
- recall:
 - p is price per bag-of-tasks
 - C is cost per unit of energy

Simulation Setup

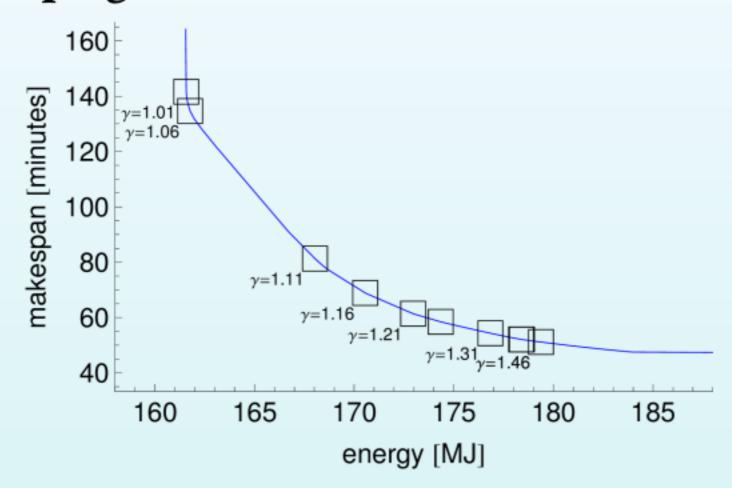
- heterogeneous tasks and machines
- 11,000 tasks each is one of 30 task types
- 360 machines each is one of 9 machine types

Sweeping Profit Ratio



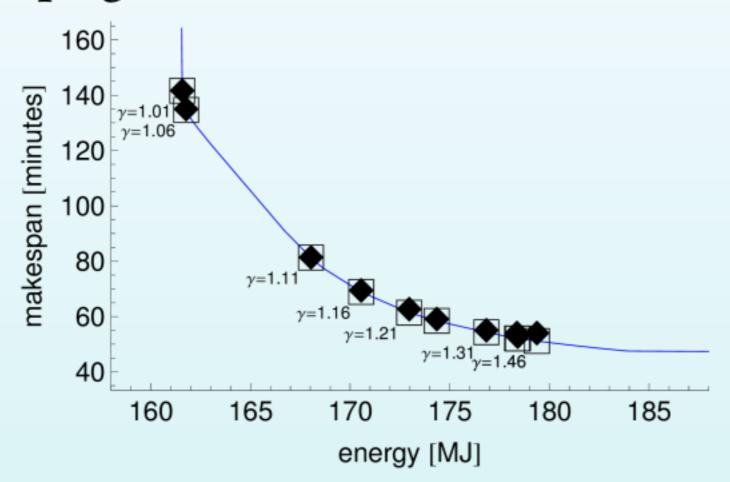
Pareto front lower
 bound

Sweeping Profit Ratio



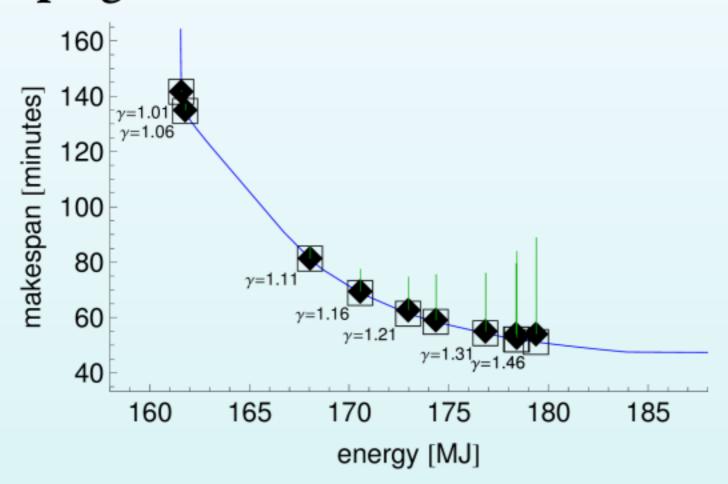
- Pareto front lower bound
- profit upper bound (infeasible)

Sweeping Profit Ratio



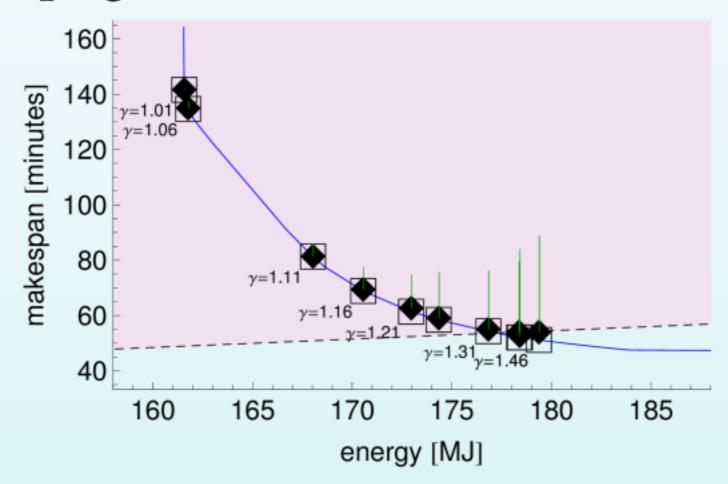
- Pareto front lower bound
- profit upper bound (infeasible)
- profit lower bound (feasible)

Sweeping Profit Ratio



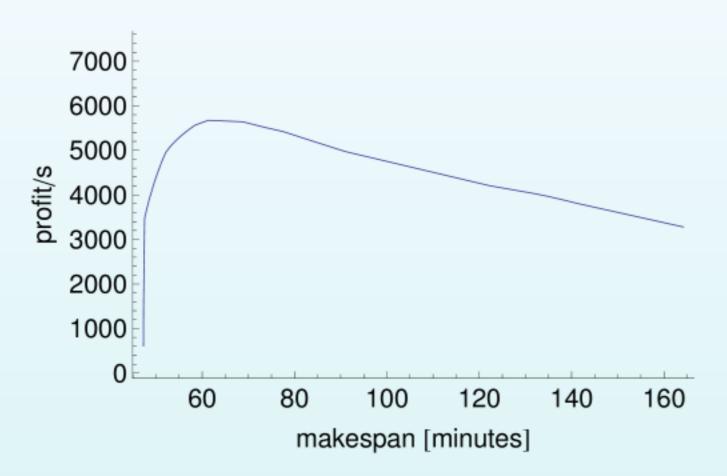
- Pareto front lower bound
- profit upper bound (infeasible)
- profit lower bound (feasible)
- profit per unit time

Sweeping Profit Ratio



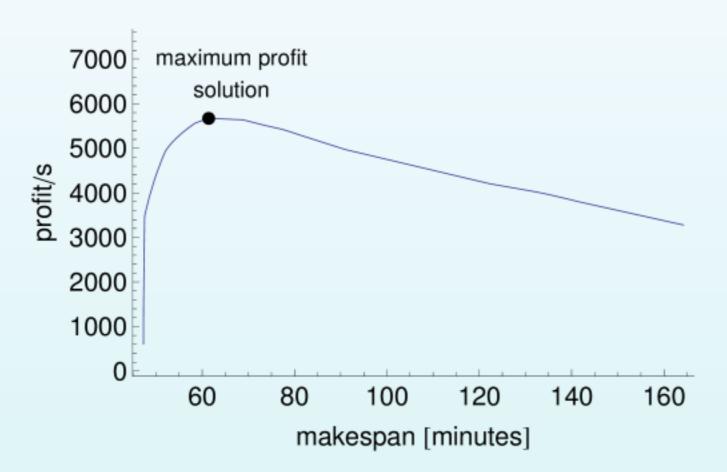
- Pareto front lower bound
- profit upper bound (infeasible)
- profit lower bound (feasible)
- profit per unit time
- power constraint(55 KW)

Profit Rate vs Makespan



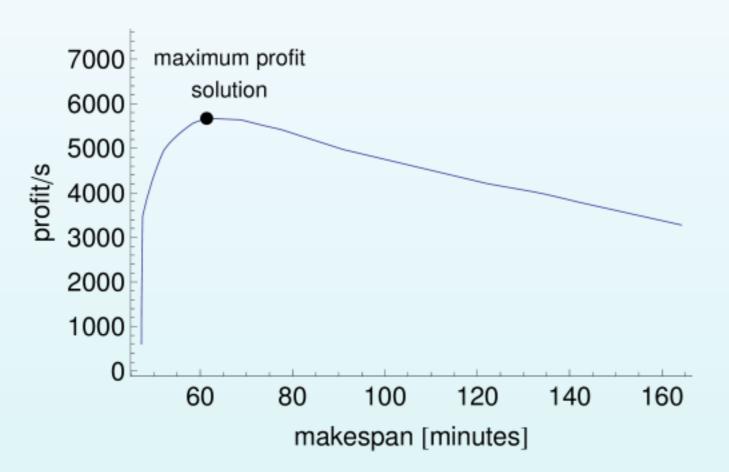
- profit ratio = 1.2
- 11,000 tasks
- Pareto front generation:
 173 ms

Profit Rate vs Makespan



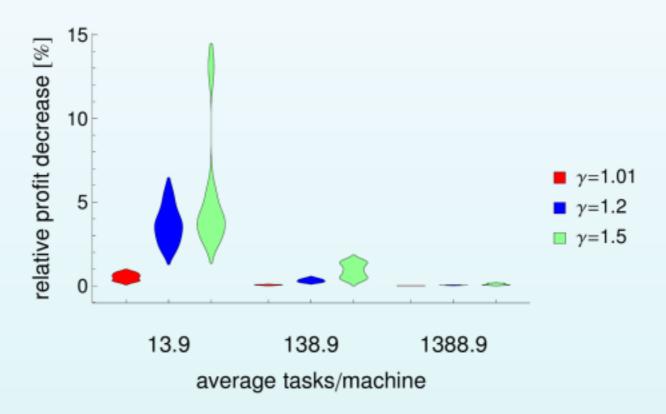
- profit ratio = 1.2
- 11,000 tasks
- Pareto front generation:
 173 ms
- single max profit solve:2 ms

Profit Rate vs Makespan



- profit ratio = 1.2
- 11,000 tasks
- Pareto front generation:
 173 ms
- single max profit solve:2 ms
 - if 1 million tasks: 70 ms

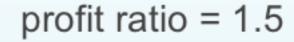
Relative Profit Rate vs Number of Tasks

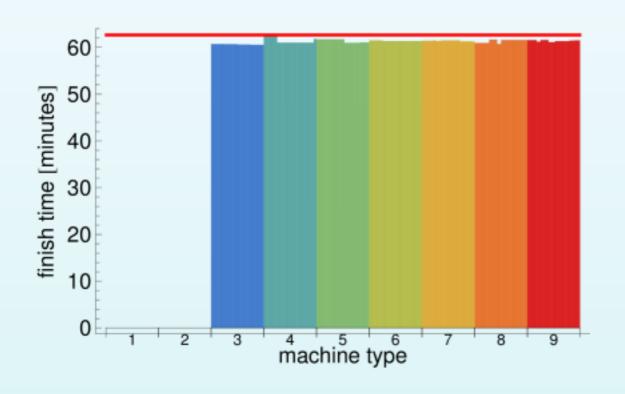


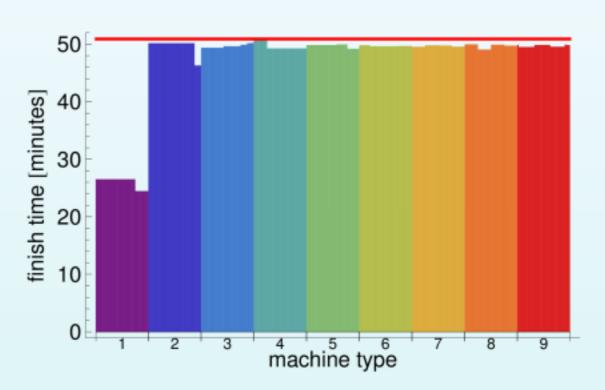
- 100 Monte Carlo runs sampling over the task types
- relative decrease in profit = $\frac{100}{\text{profit}_{DL}-\text{profit}_{DL}}$
- width of glyphs represent the probability density

Finishing Times

profit ratio = 1.2







- machine type 1 and 2 are less power efficient
- use when price is high thus emphasizing makespan minimization

Applicability

- millions of tasks and tens of thousands of machines
- scheduler execution times are sub-second
- online batch mode scheduling for uncertain
 - execution times
 - arrival rates
- schedule to cores instead of machines

Conclusions

- fast profit maximizing scheduling algorithm
- scalable to very large systems
- provides tight lower and upper bounds on the profit per unit time
- easily applied to online batch mode scheduling

Questions

