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We describe a method for the analysis of the distribution of displacements, i.e., the propagators, of single-
particle tracking measurements for the case of obstructed subdiffusion in two-dimensional membranes. The
propagator for the percolation cluster is compared with a two-component mobility model against Monte Carlo
simulations. To account for diffusion in the presence of obstacle concentrations below the percolation threshold, a
propagator that includes the transient motion in finite percolation clusters and hopping between obstacle-induced
compartments is derived. Finally, these models are shown to be effective in the analysis of Kv2.1 channel diffusive
measurements in the membrane of living mammalian cells.
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I. INTRODUCTION

Membrane proteins exhibit complex dynamics, often
accompanied by anomalous diffusion. The complexity in
protein motion lies in the fact that the plasma membrane
is a heterogeneous environment that exhibits microdomain
organization, is densely packed with proteins, and is tethered
to the cytoskeleton through different proteins and lipids
[1]. The diffusion of membrane molecules is studied by a
variety of methods that include fluorescence recovery after
photobleaching [2], fluorescence correlation spectroscopy
[3–5], and single-particle tracking (SPT) [6–8]. In particular,
SPT enables the localization of an individual molecule with
nanometer precision in real time, yielding detailed information
on its molecular motion and the interactions between a protein
or lipid with its environment. The diffusive transport of
membrane proteins has vital biological implications related to
many cellular processes. However, the analysis of anomalous
diffusion in live cells is challenging because it can originate
via different mechanisms: (a) Membrane proteins and lipids
tethered to the cytoskeleton behave as immobile obstacles,
hindering the free diffusive transport [9–17]. The resulting
motion is termed obstructed diffusion. (b) Macromolecular
crowding has been experimentally shown to induce anomalous
subdiffusion in some systems [18–20], but the link between
anomalous diffusion and crowding is still controversial [21].
It was proposed that crowding gives rise to viscoelastic
effects leading to long-time correlations in a particle trajectory
[22,23], which may be modeled by fractional Brownian motion
(FBM) [24,25]. Nevertheless, the physical mechanism by
which crowding can be modeled by FBM is not fully un-
derstood. (c) Transient immobilization achieved by temporary
binding with a heavy tailed distribution of waiting times lead
to subdiffusion and ergodicity breaking [26–28]. This process
is modeled by a continuous time random walk (CTRW) [29].
In general, more than one single physical mechanism may be
simultaneously responsible for anomalous diffusion in living
cells. Recently, we demonstrated that the subdiffusion of Kv2.1
potassium channels in the plasma membrane of mammalian
cells is best characterized as a CTRW coexisting with a

fractional ergodic mechanism such as obstructed diffusion or
FBM [30]. Interestingly, the dynamics of lipid granules in
the cytoplasm of yeast have also recently been shown to be
influenced by similar mechanisms [31].

Even though obstructed diffusion is not the sole cause for
anomalous diffusion in the plasma membrane, it has long been
recognized to be an important factor in the diffusion pattern of
proteins and lipids. Comparison of diffusion in the axon initial
segment (AIS) and blebs shows the relevance of obstruction.
AIS: An unusually high local density of ankyrin-G and actin
forms a region with a large number of immobile obstacles.
This obstruction pattern hinders diffusion to such a point that
long-range motion is not observed and it effectively functions
as a diffusion barrier, a phenomenon that is vital to neuronal
polarization [32]. Blebs: These spherical protrusions that occur
at the periphery of eukaryotic cells [33] lack cytoskeletal
anchoring points and are, thus, practically free from immobile
obstacles. The diffusion coefficient of proteins in blebs is
observed to be dramatically higher than in the rest of the
membrane linking the diffusion pattern to cytoskeleton-bound
molecules [34].

Several reports show via the use of actin depolymerization
drugs that the cytoskeleton is implicated in restricting the
diffusion of membrane proteins [10,35]. Truncation of the
cytoplasmic domain of membrane proteins was also shown
to increase the diffusion coefficient [9,36]. Recently, Andrews
et al. provided evidence that actin forms a dynamic meshwork
involved in forming barriers to free diffusion [12]. In contrast,
the ectodomain of some proteins is the key determinant of their
lateral diffusion suggesting that anomalous subdiffusion in the
plasma membrane can be also induced by interactions with
the extracellular matrix or the ectodomains of neighboring
membrane proteins [36]. Kusumi’s lab has shown that lipids
and proteins in the plasma membrane appear to be temporarily
confined to microdomains 30–800 nm in size. Temporal
confinement seems to be widespread and it was observed in
many different cell types including Chinese hamster ovary,
mouse hepatoma, rat kangaroo, fetal rat skin keratinocyte,
human embryonic kidney (HEK), HeLa, T24, and normal rat
kidney cells [11]. Edidin and co-workers showed that vesicle
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trafficking to and from the plasma membrane in combination
with barriers to lateral diffusion can maintain microdomains
in the cell surface with characteristic lifetimes in the tens
of seconds [37,38]. These observations can be explained by
the existence of clusters of immobile proteins that behave as
discontinued fences in the plasma membrane. In order for a
walker to hop between compartments it needs to find a gap
in the fence. Alternatively, this is achieved by fluctuations in
the position of quasi-immobile obstacles. This mechanism has
been referred to as the anchored-protein picket model [10].
Obstructions to diffusion in the cell membrane were also
observed with optical tweezers. It was shown that as a molecule
is dragged along the plasma membrane it encounters frequent
obstacles in its path [39,40]. Both elastic and inelastic barriers
were found to be present in the cell membrane with the elastic
ones being actin-cytoskeleton dependent [41].

In SPT analysis, the mean square displacement (MSD)
measures the apparent diffusion coefficient and provides
the simplest type of classification of the diffusion pattern.
Brownian motion yields a linear MSD, 〈r2(t)〉 = 2dDt where
D is the diffusion coefficient and d is the substrate dimension
(d = 2 for a membrane). In contrast, anomalous subdiffusion
is characterized by a sublinear MSD, 〈r2(t)〉 ∼ tα , with
α < 1 being the subdiffusive exponent [8]. When α > 1, the
motion is termed superdiffusion. Experimental observations of
anomalous diffusion with values of α between 0.1 and 0.9 have
been reported by different groups [6,42,43]. Unfortunately, the
information obtained from MSD analysis is very limited and, in
practice, many anomalous subdiffusion models yield the same
MSD power law. The problem is that the MSD analysis does
not take advantage of the full probability of displacements
P (r ,t), viz., the propagator, which is naturally available in
SPT measurements [44]. P (r,t)dV gives the probability that
a particle at the origin at time zero is found in an element of
volume dV at r, at time t . The distribution of displacements
for Brownian motion is Gaussian,

P (r,t) = 1

4πDt
e−r2/4Dt . (1)

In order to take advantage of the probability of displace-
ments analysis, without the need to impose bin sizes, the
cumulative distribution function (CDF) is used [14,28,44,45].
The CDF F (r2,t) can be interpreted as the probability that
a particle at the origin at time zero is found within a circle
of radius r at time t . In a two-dimensional (2D) space,
dV = 2πr dr , and thus, F (r2,t) = 2π

∫ r

0 P (r ′,t)r ′ dr ′. This

yields a monoexponential function, F (r2,t) = 1 − e−r2/4Dt ,
for Brownian motion. A two-component mobility model is
often used to distinguish between normal and anomalous
diffusion by comparing the residuals from a monoexponential
CDF fit and a biexponential fit [11,14,30,46–48]. The two-
component cumulative distribution becomes

F (r2,t) = 1 − we−r2/σ 2
1 − (1 − w)e−r2/σ 2

2 , (2)

where σ 2
1 and σ 2

2 are the slow- and fast-mobility mean square
displacements, respectively, i.e., σ 2

i = 4Dit , with weighting
factor w.

The propagators for a CTRW and FBM are well doc-
umented. The particle displacement of a CTRW is given
by a Fox function [49–52] and that of FBM is a Gaussian

distribution with a time-dependent diffusion coefficient [53].
However there is a great deal of confusion in the literature
about the propagators for obstructed diffusion. Obstructed
diffusion can be modeled as a percolation problem. Under
the influence of constant thermal agitation, the motion of
randomly wandering molecules is closely related to a random
walk. Monte Carlo calculations are particularly suitable to
simulate the effect of obstruction in the cell membrane because
a random set of lattice sites can be directly blocked. Diffusion
in a percolation cluster has been extensively studied near
criticality [54,55] and, in a series of seminal papers, Saxton has
simulated diffusion in the presence of both mobile and immo-
bile obstacles with a wide range of obstacle concentrations,
elucidating many of the obstructed diffusion and crowding
theoretical predictions [15,56]. The work presented here builds
on these reports.

In this study, we report Monte Carlo simulations to
characterize the motion of particles in the presence of
immobile objects. We describe a method to analyze the particle
trajectory based on the distribution of displacements taking
into consideration the fractal dimension of the matrix and the
fractal dimension of the walk. The dimension of the walk is
found from the simulated trajectory. The dimension of the
matrix describes the fractal on which the tracer performs a
random walk. This matrix is naturally embedded in a 2D
space. Because of the self-similarity properties of percolation
clusters, obstructed diffusion bears a vast resemblance to FBM.
We apply a recently developed method based on p variation
[57] to evaluate the underlying mechanism of anomalous
diffusion and show that both FBM and obstructed diffusion
give the same results. Finally, we compare simulation results
to recently reported single-particle tracking measurements of
Kv2.1 potassium channels in the membrane of living cells [30].

II. MATERIALS AND METHODS

A. Obstructed diffusion simulations

We implemented random walk simulations on a 2D square
lattice to model obstructed diffusion. Obstacles were randomly
distributed on the lattice at a concentration c. Obstructed
diffusion simulations were implemented in MATLAB using a
“blind ant” algorithm. First, we generated a lattice where each
site was assigned a random number between 0 and 1. All
sites with a number smaller than c are considered obstacles. A
walker is placed in the center of the lattice and it is only allowed
to move into vacancies, which are sites with assigned numbers
bigger than c. The walker attempts to move to one of the four
nearest-neighbor sites with equal probability. If the chosen
site is blocked, the walker remains at the original position.
The clock ticks independent of the outcome of the attempted
jump and the protocol is looped N times. The MATLAB built-in
algorithm used for random number generation is based on
the Mersenne twister algorithm [58]. The results returned
are pseudorandom values drawn from a standard uniform
distribution.

All lattice generated were 2000 × 2000 sites and periodic
boundary conditions were implemented on the random walks.
We created three different lattices for each obstacle concen-
tration and obtained three random walks of 2 × 106 steps,
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per lattice. Each of these nine random walks was then fit
independently according to the text. All results presented here
show the mean ± standard deviation of the distribution of
fitting results.

B. Single-particle tracking in living cells

We have recently reported single-particle tracking mea-
surements of Kv2.1 potassium channels in live cells [30]. In
brief, HEK293 cells were transfected with Kv2.1 channels
containing an extracellular biotin acceptor domain that is the
substrate for BirA biotin ligase. The transfected cells were in-
cubated with streptavidin-conjugated quantum dots (Qdot 655,
Invitrogen, Carlsbad, CA), which bound to the biotinylated
Kv2.1 channels. Quantum dots enabled us to track individual
channels with nanometer accuracy. The basal membrane of the
labeled cells was imaged using a home-built objective-type
total internal reflection fluorescence microscope. Quantum
dots were excited with a 473 nm laser line and the fluorescence
was collected in a back-illuminated electron-multiplied charge
coupled device camera (Andor iXon DU-888). Both the stage
(Bioptechs, Butler, PA) and the objective were maintained at
37 ◦C. Individual particles were localized and tracked by fitting
the intensity image of an appropriate region of interest to a
two-dimensional Gaussian function [30,59].

III. RESULTS

A. Diffusion in an infinite percolation cluster

When the concentration of obstacles is low, small clusters
of connected occupied sites, i.e., fences, are formed. Below
a critical concentration threshold, the cluster size remains
finite but as the concentration increases, so does the mean
cluster size. At criticality, an infinite cluster of obstacles
develops and the system undergoes a percolation transition.
Havlin et al. [55,60] have shown that the propagator for
an infinite percolation cluster can be described by P (r,t) ∼
rdf −df (r/t1/dw ), where dw is the fractal dimension of the walk,
df is the fractal dimension of the cluster, d is the underlying
dimension, and f (u) = exp(−K0u

1.65). A percolation cluster
in a membrane is characterized by a fractal dimension df =
1.896, d = 2, and the subdiffusive exponent is given by dw:
MSD ∼ t2/dw . In a percolation cluster, the propagator gives
the probability density that a particle is found in an element of
volume dV within a random fractal with dimension df , given
by [61]

dV = 2πdf /2

�(df /2)
rdf −1 dr, (3)

where gamma is the Gamma function, �(x) = ∫ ∞
0 e−t t x−1 dt .

Equation (3) yields

P (r,t) = Brdf −d exp[−K(t)r1.65], (4)

B = 1.65�(df /2)

2πdf /2�[(2df − d)/1.65]
K(t)(2df −d)/1.65, (5)

where K(t) = a/t1.65/dw , df − d = −0.104, and B is the
normalization factor. Integrating over the fractal volume, the

cumulative distribution is

F (r2,t) = γ [(2df − d)/1.65,K(t)r1.65]

�[(2df − d)/1.65]
, (6)

where γ (a,x) is the incomplete gamma function defined by
γ (a,x) = ∫ x

0 e−t t a−1 dt . Because df and d are known, the
CDF is defined by a single parameter K(t).

The critical obstacle concentration threshold in a square
lattice is 40.7255 ± 0.0002% [62]. Figure 1(a) shows a CDF
of a simulated trajectory for a walker in a square lattice
at criticality. The fit to the percolation model [Eq. (6)] is
shown together with the fits to simple diffusion (Gaussian
propagator) and to a two-component mobility model [Eq. (2)].
While both simple diffusion and an infinite percolation cluster
model are characterized by a single parameter, the two-
component mobility model is fit to three parameters. Both
the two-component and the percolation cluster fits are of good
quality, with the two-component model being slightly better.
As discussed below, the percolation cluster fitting parameter
reproduces well the predicted power law K(t) = a/t1.65/dw ,
with dw = 2.8. The same value is found from the MSD
subdiffusive exponent.

The cumulative distribution eliminates the dependence on
bin size and it integrates out noise but the displacement
probability is more informative from a qualitative perspective.
In order to compute the displacement distribution P (r ,t), the
number of displacements, i.e., root of square displacements,
between r − �r/2 and r + �r/2 is counted and the occur-
rences are normalized by the bin volume, �V = 2πr�r .
However, this procedure introduces a large degree of error at
small r values. This method also assumes a 2D underlying
space, which is incorrect for diffusion on a fractal structure.
A more suitable procedure involves computing the number of
displacements and renormalizing the propagator in order to
show P (r ,t)�V . Figure 1(b) shows the propagators using the
results from the CDF fits. For diffusion in a percolation cluster,
the normalization volume, as given by Eq. (3), is �Vdf

=
2πdf /2rdf −1�r/�(df /2). Figure 1(c) shows the distribution
of displacements normalized to a 2D space. The comparison
shows that the raw-displacement occurrences [as shown in
Fig. 1(b)] provide better visual results.

B. Diffusion in a deterministic fractal

The percolation cluster at criticality can be described by a
random fractal with dimension df . Thus, it is interesting to
compare this motion with the propagator for diffusion in a
deterministic fractal, which was derived by O’Shaugnessy and
Procaccia [63],

P (r,t) = dw�(df /2)

2πdf /2�(df /dw)

(
1

4DF t

)df /dw

exp

(
− rdw

4DF t

)
.

(7)

Integrating over the fractal volume [14] given by Eq. (2)
yields

F (r2,t) = γ (df /dw,rdw/4DF t)/�(df /dw), (8)

which includes three independent parameters, df , dw, and
DF , that are constrained by the fractal structure: 1 < df � 2
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FIG. 1. (Color online) Propagator analysis of diffusion of a representative trajectory in a percolation cluster close to criticality. The data
were generated from the random walk simulations on a square lattice with an obstacle concentration of 41%, i.e., c/cP = 1.007. (a) CDF at t =
10 000 with fits to percolation cluster as a dashed red line [Eq. (6)], normal diffusion as a solid blue line (Gaussian), and two-component
mobility as a green line [light gray, Eq. (2)]. (b) Histogram of displacements. The continuous lines show the renormalized propagators P (r,t)�V ,
obtained from the fit to the CDF. Each Gaussian of the two-component mobility model is shown as a green line (light gray) independently
for clarity and the sum of the two components is shown as a black dashed line. (c) Probability density function obtained by normalizing the
distribution of displacements for t = 10 000. The distribution is normalized by the volume �V2D = 2πr�r , where �r is the bin size. The
propagators of percolationlike and normal diffusion, as obtained from the fits to the CDF, are shown. Because the propagator of diffusion in
a percolation cluster operates in df dimensions, the curve shown is P (r,t)�Vdf

/�V2D, where �Vdf
is the volume corresponding to a fractal

dimension df , as in the text.

and dw �2. This model has been successfully applied to
obstructed diffusion experimental measurements in supported
lipid bilayers [14]. We have modeled our simulations using this
equation and found a best nonlinear fit when dw = 2.05 ±
0.05. This value disagrees with the value found from the
MSD subdiffusive exponent (dw = 2.8). For comparison, the
residuals for the deterministic fractal model with dw = 2 and
dw = 2.8 are shown together with the two-component model
in Fig. 2(a). Fitting Eq. (8) to the CDF of our simulation also
yields a time-dependent coefficient DF [Fig. 2(b)], which is
not consistent with a deterministic fractal, indicating the failure
of this model to describe obstructed diffusion.
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FIG. 2. (Color online) CDF of simulated obstructed diffusion
with obstacle concentration c = 0.41 at lag time t = 10 000.
(a) The CDF of a representative trajectory is modeled by a deter-
ministic fractal as given by Eq. (6). The best nonlinear fit is found for
dw = 2 and df = 1.6 (dashed red line). Note that the fit is constrained
by dw � 2. For comparison the biexponential fit [Eq. (2)] and the fit
using dw = 2.8 are also shown. (b) The diffusion coefficient DF is
shown as found from fitting to the CDF at different lag times to a
deterministic fractal model [Eq. (8)]. All the CDFs are described by
dw = 2.

C. Obstructed diffusion below the percolation threshold

For the analysis of obstructed diffusion in cellular en-
vironments, it is necessary to consider a wider obstacle
concentration range than that close to the percolation thresh-
old. At criticality, an infinite percolation cluster is formed
and diffusion is anomalous on all time scales [54]. At
concentrations below the percolation threshold, Saxton [15]
has shown that diffusion is anomalous at short times and
becomes normal at long times. The crossover time increases
as the concentration of obstacles approaches the threshold.
The transition from anomalous to normal diffusion can be
observed in plots of log[〈r2〉/t] as a function of log t . Normal
diffusion yields a constant, while subdiffusion yields a power
law with an exponent (2/dw) − 1 [15]. This can be observed
for concentrations below and at the percolation threshold in
Fig. 3. It has been shown [15] that when the data are presented
as a function of c/cP , where c is the obstacle concentration and
cP is the percolation threshold, the results do not depend on the
lattice geometry or obstacle size. For comparison of obstructed
diffusion with fractional Brownian motion, we have applied a
p-variation test (see Supplemental Material and Fig. S1 [64])
on our simulations [57]. However, the obstructed diffusion and
fractional Brownian motion cannot be distinguished within
this test.

We have tested the percolation model on our simulations.
The main result obtained from the percolation propagator
is the parameter K(t) from Eqs. (4) and (6). Results are
presented as a function of lag time in Fig. 4. K(t) clearly
follows a power law K(t) = a/t1.65/dw . Note that while dw

depends on the cluster size, df is universal [54] thus dw is
the only parameter that varies with obstacle concentration.
To obtain a single scalar statistic for the goodness of fit, it
is reasonable to use an aggregate or mean squared residual.
This statistic is common in several standard goodness-of-fit
tests, including the chi-square [65] and Cramér–von Mises [66]
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FIG. 3. (Color online) 〈r2〉/t as a function of t in a log-log
scale for a tracer in the presence of immobile obstacles at different
concentrations. 〈r2〉 is the mean square displacement and t is the
lag time. All nine simulated trajectories are shown together for each
obstacle concentration.

tests. Comparing the mean squared errors of the percolation
model to that of the two-component mobility fit (Fig. 5), it
is observed that at concentrations close to the percolation
threshold, both models give similar results. However, for lower
obstacle concentrations, the results from the two-component
mobility are significantly better.

The slope of log[K(t)] vs log(t) in Fig. 4 is − 1.65/dw,
thus, by means of the percolation cluster model, the fractal
dimension of the walk dw is obtained for each obstacle
concentration. Figure 6 shows dw obtained in this manner
for a wide range of obstacle concentrations. It is seen that dw

increases smoothly from 2 to 2.8, reaching this value when
the obstacle concentration equals the percolation threshold,
i.e., c = cP . This result is not surprising and it is the same
that is obtained by fitting the MSD [15]. However, when the
form of the propagator is known, fitting the propagator bears
the advantage that the whole distribution of displacements is
used instead of only the second moment. Because the whole
distribution is used and the fit has a single unknown parameter,
the accuracy of the obtained dw values is fairly high as seen by
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FIG. 4. (Color online) Percolation fit parameter K(t) in Eq. (6)
as a function of lag time at two moderate obstacle concentrations
and close to criticality. The parameter exhibits a power law K(t) =
a/t1.65/dw .
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FIG. 5. (Color online) Mean squared errors of the fits to the ob-
structed diffusion simulations with different obstacle concentrations
using the two-component mobility and the percolation cluster models.

the small error in dw at each concentration. This reduces the
need for averaging over many trajectories and also allows the
study of shorter paths.

As expected, the MSD of the fast mobility in the two-
component mobility model follows a similar trend as the
percolation model with σ 2

2 ∼ t2/dw . Results of σi
2 versus lag

time are presented in Fig. 7(a) showing that σ 2
2 follows a

power law. The time dependence of σ 2
2 yields 2/dw [shown in

Fig. 7(b)]. At concentrations close to criticality this empirical
model gives robust results but it becomes very unreliable
for lower concentrations. Thus for lower concentrations the
error bars in 2/dw cover a large range from subdiffusion to
superdiffusion, rendering this model useless unless a very large
amount of data is available.
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2

2.2

2.4

2.6

2.8

d w

c/c
P

FIG. 6. (Color online) Fractal dimension of the walk dw as a
function of relative obstacle concentration. dw is obtained from
the fit to the percolation model as shown in Fig. 4. The red
line is a least square fit to dw as performed in Ref. [15]: dw =
(2 − 3.630x + 1.758x2)/(1 − 1.806x + 0.850x2), where x = c/cP , c
is the obstacle concentration, and cP is the concentration at criticality.
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FIG. 7. (Color online) Two-component mobility model. (a) MSD
of each of the two mobilities. Full symbols: fast component. Hollow
symbols: slow component. (b) Subdiffusion exponent as a function
of relative obstacle concentration. The red line is the function found
from the least square fit in Fig. 6.

D. Derivation of a propagator for obstructed diffusion
below the percolation threshold

The exact propagator of this problem combines perco-
lationlike diffusion at short distances and normal diffusion
at long distances. The difficulty in this model is that the
two parts operate on different dimensions. Percolationlike
short-distance diffusion acts on df dimensions but long-range
normal diffusion is performed in two dimensions. Thus, we
cannot integrate this function in a straightforward way because
both parts have different Jacobians, i.e., different differential
volumes. If we allow a percolation part P1dV1 according to
Eqs. (3) and (4), and a normal diffusion part P2dV2 according
to Eq. (1), we obtain P (r,t)dV = ωP1 dV1 + (1 − ω)P2 dV2.
Then,

P (r,t)dV =
[

1.65ω

�
( 2df −d

1.65

)K(t)(2df −d)/1.65r2df −d−1

× exp (−K(t)r1.65) + (1−ω)
2r

σ 2
1

exp

(
− r2

σ 2
1

)]
dr,

(9)

where ω, K(t), and σ1 are defined previously. All three
parameters are time dependent. The cumulative distribution
function is

F (r2,t) = ω
γ [(2df − d)/1.65,K(t)r1.65]

�[(2df − d)/1.65]

+ (1 − ω)
(
1 − e−r2/σ 2

1
)
. (10)

These equations give the accurate distribution of displace-
ments for obstructed diffusion with any obstacle concentration
below the percolation threshold. However, as in the two-
mobility model they involve three different fitting parameters,
which means that more data is needed to fit this function than
the simple percolation approximation.

E. Comparison to experimental data

It is possible to use the percolation model to obtain
information on the obstacle concentration for diffusion in an
obstructed environment. Kv2.1 potassium channels are best
modeled by a nonergodic CTRW on a percolation cluster [30].
However, when cells are treated with actin polymerization
inhibitors, such as swinholide A, the CTRW is eliminated and
ergodicity is recovered. After treatment with swinholide A, the
diffusion is still anomalous over lag times of more than two
decades [Fig. 8(a)]. We have previously proposed [30] that the
reason for this anomaly is the presence of immobile obstacles
in the plasma membrane which obstruct the path of the Kv2.1
channels. While in three dimensions a particle easily finds a
path to escape from obstacle-induced compartments, in 2D
the confinement within finite percolationlike compartments is
enhanced because there are fewer escape paths [67].
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FIG. 8. (Color online) Analysis of experimental Kv2.1 single-
particle tracking in the plasma membrane of living HEK cells. All
error bars indicate standard error of the mean. (a) 〈r2〉/t as a function
of t in a log-log scale. A negative slope between 0.1 and 20 s is
evident indicating anomalous subdiffusion across this time scale.
(b) Mean squared errors from fitting the CDF at different lag times
to three different models as described in the text: two-component
mobility, percolation cluster, and obstructed diffusion. (c) K(t) values
as a function of t , obtained from fitting the experimental data to the
percolation cluster and obstructed diffusion. A power law dependence
is obtained from which dw is found. (d) Mean square displacements
obtained by modeling the experimental data with two-component
mobility [σ 2

1 and σ 2
2 in Eq. (2)], and with obstructed diffusion [σ 2

1 in
Eq. (10)]. The slow-mobility component MSDs from the two different
models coincide.
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Figure 8(b) shows the mean squared errors obtained from
fitting the CDF of Kv2.1 channels in cells treated with swin-
holide A to a percolation cluster [Eq. (6)], to a two-component
mobility model [Eq. (2)], and to the subcritical obstructed
diffusion propagator derived in Eq. (10). The obstructed
diffusion propagator gives the smallest mean squared errors
over all lag times. These results correspond to the mean
from 158 trajectories. A mixed propagator result is shown in
Fig. S2 together with the plots for ω = 0 and ω = 1 [64]. The
percolation cluster and the obstructed diffusion models yield
values of K(t) that scale as a power law in the same fashion
as the obstructed diffusion simulations [Fig. 8(c)]. From these
fits, the fractal dimension of the walk is obtained, dw = 2.12 ±
0.08. It is also observed in Fig. 8(c) that both models yield very
similar values for dw. Using the empirical fit in Fig. 6, dw =
(2 − 3.630x + 1.758x2)/(1 − 1.806x + 0.850x2), where x =
c/cP , we can calculate the relative obstacle concentration.
A range between 0.62 and 0.79 is obtained for c/cP .
Figure 8(d) shows the results of the fast- and slow-mobility
MSDs from the two-component model and the slow-mobility
(long-range) MSD from the obstructed diffusion model.
The long-range MSDs for the two models match satisfac-
torily but the values obtained with the obstructed diffusion
propagator are less prone to errors, particularly at large
lag times.

IV. DISCUSSION

Analysis of the CDF at different lag times provides
important information. The simulations presented here show
that, independent of the obstacle concentration, the CDF can
be approximated to either a two-component mobility model
or a percolation cluster. One could always argue that the two-
component mobility model introduces two additional fitting
parameters and thus the model fits better to the simulation
in the trivial way, regardless of the actual process. However,
the two-component model actually approaches the propagator
of obstructed diffusion because the obstacles form fences
which in turn compartmentalize the cell membrane. Thus,
for short distances, the particle moves according to a fast
mobility within a single compartment. For long distances,
the particle traverses several compartments and it resembles
a tracer that diffuses with a slow mobility. The reason this
model is not exact is that at short distances the motion is
performed within a finite percolation cluster, thus the substrate
is a random fractal of dimension df , but at long distances
the motion is normal according to a substrate with dimension
d = 2.

The percolation propagator gives excellent results close to
the percolation threshold. At small obstacle concentrations,
this model fits worse than the two-component mobility. The
cause for the deterioration of the fit quality is that the
percolation model does not account for the transition to
normal diffusion. In spite of this shortcoming, the percolation
model can be used to obtain information on the membrane
structure without the need for extensive data. We observe
that this model is more robust than the two-component
model.

The analysis presented here suggests Kv2.1 channels in
cells treated with swinholide A undergo anomalous diffusion
due to an intermediate concentration of immobile obstacles
leading to transient percolationlike motion. The presence
of anchored proteins has been proposed by Kusumi and
co-workers to be partially responsible for the diffusion
anomaly seen in the plasma membrane [68]. Complexity in
cell membranes is also enhanced by the presence of fast-
and slow-moving obstacles. Experimental evidence shows
that the diffusion of streptavidin in solutions crowded with
bovine serum albumin (BSA) is anomalous [18]. Diffusion
of proteins in solutions of random-coil polymers at high
concentrations is significantly more anomalous than in BSA
solutions [18,19]. It was proposed that subdiffusion induced
by rapidly moving obstacles may be grounded in a FBM
process [19]. Whether anomalous diffusion in the nucleus
and cytoplasm is percolationlike or FBM is still under debate
[69]. Scaling similarities between the two models further
complicates the discrimination. In the plasma membrane of a
living cell, it is likely that both mobile (fast- and slow-moving)
and immobile obstacles are present and maybe both FBM
and percolation are responsible for the diffusion anomaly.
This problem may be addressed in the future by studying
supported lipid bilayers under controlled conditions in order
to discriminate between these two processes. Equations (9)
and (10) derived here provide a good platform for the analysis
of the obstructed diffusion component.

V. CONCLUSIONS

In conclusion, we have provided a method for the analysis
of propagators of obstructed subdiffusion in single-particle
tracking data. The propagator for the percolation cluster at
criticality is explicitly given and is shown against Monte Carlo
simulations, in order to eliminate confusion and disagreement
commonly found in the literature. We have also derived the
propagator for obstructed diffusion at obstacle concentrations
below the percolation threshold by combining a percolation
model with hop diffusion between obstacle-induced compart-
ments. By analyzing the time dependence of the propagator,
it is possible to obtain information on the concentration of
immobile obstacles. Experimental data from Kv2.1 channels
in live mammalian cells treated with an actin polymerization
inhibitor were analyzed using the derived obstructed diffusion
propagator. The obstructed diffusion propagator provided good
agreement with the experimental data. The discrimination
between percolation and fractional Brownian motion is shown
to be highly complex, even with the use of advanced tests such
as the p-variation method. The propagators of the two models
are qualitatively different, but a non-Gaussian propagator as
seen here is not enough to exclude the combination of both
obstructed diffusion and FBM.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grant No. 0956714.

041924-7



WEIGEL, RAGI, REID, CHONG, TAMKUN, AND KRAPF PHYSICAL REVIEW E 85, 041924 (2012)

[1] D. M. Engelman, Nature (London) 438, 578 (2005).
[2] D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W.

Webb, Biophys. J. 16, 1055 (1976).
[3] S. Maiti, U. Haupts, and W. W. Webb, Proc. Natl. Acad. Sci.

USA 94, 11753 (1997).
[4] E. Haustein and P. Schwille, Methods 29, 153 (2003).
[5] O. Krichevsky and G. Bonnet, Rep. Prog. Phys. 65, 251 (2002).
[6] R. N. Ghosh and W. W. Webb, Biophys. J. 66, 1301 (1994).
[7] H. Bannai, S. Levi, C. Schweizer, M. Dahan, and A. Triller, Nat.

Protoc. 1, 2628 (2006).
[8] M. J. Saxton and K. Jacobson, Annu. Rev. Biophys. Biomol.

Struct. 26, 373 (1997).
[9] M. Edidin, M. C. Zuniga, and M. P. Sheetz, Proc. Natl. Acad.

Sci. USA 91, 3378 (1994).
[10] T. Fujiwara, K. Ritchie, H. Murakoshi, K. Jacobson, and

A. Kusumi, J. Cell Biol. 157, 1071 (2002).
[11] K. Murase et al., Biophys. J. 86, 4075 (2004).
[12] N. L. Andrews, K. A. Lidke, J. R. Pfeiffer, A. R. Burns, B. S.

Wilson, J. M. Oliver, and D. S. Lidke, Nat. Cell Biol. 10, 955
(2008).

[13] P. H. Lommerse, G. A. Blab, L. Cognet, G. S. Harms, B. E.
Snaar-Jagalska, H. P. Spaink, and T. Schmidt, Biophys. J. 86,
609 (2004).

[14] M. A. Deverall, E. Gindl, E. K. Sinner, H. Besir, J. Ruehe, M. J.
Saxton, and C. A. Naumann, Biophys. J. 88, 1875 (2005).

[15] M. J. Saxton, Biophys. J. 66, 394 (1994).
[16] B. J. Sung and A. Yethiraj, Phys. Rev. Lett. 96, 228103 (2006).
[17] M. R. Horton, F. Hofling, J. O. Radler, and T. Franosch, Soft

Matter 6, 2648 (2010).
[18] D. S. Banks and C. Fradin, Biophys. J. 89, 2960 (2005).
[19] J. Szymanski and M. Weiss, Phys. Rev. Lett. 103, 038102 (2009).
[20] M. Weiss, M. Elsner, F. Kartberg, and T. Nilsson, Biophys. J.

87, 3518 (2004).
[21] J. A. Dix and A. S. Verkman, Annu. Rev. Biophys. 37, 247

(2008).
[22] M. Weiss, G. Guigas, and C. Kalla, Biophys. J. 93, 316 (2007).
[23] W. C. Pan, L. Filobelo, N. D. Q. Pham, O. Galkin, V. V. Uzunova,

and P. G. Vekilov, Phys. Rev. Lett. 102, 058101 (2009).
[24] B. Mandelbrot and J. W. Van Ness, SIAM Rev. 10, 422 (1968).
[25] M. J. Saxton, Biophys. J. 81, 2226 (2001).
[26] T. J. Feder, I. Brust-Mascher, J. P. Slattery, B. Baird, and W. W.

Webb, Biophys. J. 70, 2767 (1996).
[27] M. J. Saxton, Biophys. J. 70, 1250 (1996).
[28] S. J. Sahl, M. Leutenegger, M. Hilbert, S. W. Hell, and

C. Eggeling, Proc. Natl. Acad. Sci. USA 107, 6829 (2010).
[29] H. Scher and E. W. Montroll, Phys. Rev. B 12, 2455 (1975).
[30] A. V. Weigel, B. Simon, M. M. Tamkun, and D. Krapf, Proc.

Natl. Acad. Sci. USA 108, 6438 (2011).
[31] J. H. Jeon, V. Tejedor, S. Burov, E. Barkai, C. Selhuber-Unkel,

K. Berg-Sorensen, L. Oddershede, and R. Metzler, Phys. Rev.
Lett. 106, 048103 (2011).

[32] C. Nakada, K. Ritchie, Y. Oba, M. Nakamura, Y. Hotta, R. Iino,
R. S. Kasai, K. Yamaguchi, T. Fujiwara, and A. Kusumi, Nat.
Cell Biol. 5, 626 (2003).

[33] C. C. Cunningham, J. Cell Biol. 129, 1589 (1995).
[34] D. W. Tank, E. S. Wu, and W. W. Webb, J. Cell Biol. 92, 207

(1982).
[35] Y. M. Umemura, M. Vrljic, S. Y. Nishimura, T. K. Fujiwara,

K. G. N. Suzuki, and A. Kusumi, Biophys. J. 95, 435 (2008).

[36] F. Zhang, G. M. Lee, and K. Jacobson, Bioessays 15, 579 (1993).
[37] L. A. Gheber and M. Edidin, Biophys. J. 77, 3163 (1999).
[38] Y. Lavi, M. A. Edidin, and L. A. Gheber, Biophys. J. 93, L35

(2007).
[39] M. Edidin, S. C. Kuo, and M. P. Sheetz, Science 254, 1379

(1991).
[40] Y. Sako and A. Kusumi, J. Cell. Biol. 129, 1559 (1995).
[41] K. Suzuki, R. E. Sterba, and M. P. Sheetz, Biophys. J. 79, 448

(2000).
[42] R. Simson, B. Yang, S. E. Moore, P. Doherty, F. S. Walsh, and

K. A. Jacobson, Biophys. J. 74, 297 (1998).
[43] P. R. Smith, I. E. G. Morrison, K. M. Wilson, N. Fernandez, and

R. J. Cherry, Biophys. J. 76, 3331 (1999).
[44] G. J. Schutz, H. Schindler, and T. Schmidt, Biophys. J. 73, 1073

(1997).
[45] M. Vrljic, S. Y. Nishimura, S. Brasselet, W. E. Moerner, and

H. M. McConnell, Biophys. J. 83, 2681 (2002).
[46] J. M. Crane and A. S. Verkman, Biophys. J. 94, 702 (2008).
[47] M. J. M. Schaaf, W. J. A. Koopmans, T. Meckel, J. van Noort,

B. E. Snaar-Jagalska, T. S. Schmidt, and H. P. Spaink, Biophys.
J. 97, 1206 (2009).

[48] S. Wieser and G. J. Schutz, Methods 46, 131 (2008).
[49] W. R. Schneider and W. Wyss, J. Math. Phys. 30, 134 (1989).
[50] S. Khan, A. M. Reynolds, I. E. G. Morrison, and R. J. Cherry,

Phys. Rev. E 71, 041915 (2005).
[51] A. M. Reynolds, Phys. Lett. A 342, 439 (2005).
[52] R. Metzler and J. Klafter, Phys. Rep. 339, 1 (2000).
[53] R. Metzler and J. Klafter, J. Phys. A 37, R161 (2004).
[54] D. Ben-Avraham and S. Havlin, Diffusion and Reactions in

Fractals and Disordered Systems (Cambridge University Press,
Cambridge, 2000).

[55] S. Havlin, D. Movshovitz, B. Trus, and G. H. Weiss, J. Phys. A
18, L719 (1985).

[56] M. J. Saxton, Biophys. J. 52, 989 (1987).
[57] M. Magdziarz, A. Weron, K. Burnecki, and J. Klafter, Phys. Rev.

Lett. 103, 180602 (2009).
[58] M. Matsumoto and T. Nishimura, ACM Trans. Model. Comput.

Simul. 8, 3 (1998).
[59] M. K. Cheezum, W. F. Walker, and W. H. Guilford, Biophys. J.

81, 2378 (2001).
[60] S. Havlin and D. Ben-Avraham, Adv. Phys. 36, 695 (1987).
[61] A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev, Integrals

and Series (Gordon and Breach Science, Amsterdam, 1986),
Vol. 1, p. 585.

[62] R. M. Ziff and B. Sapoval, J. Phys. A 19, L1169 (1986).
[63] B. O’Shaughnessy and I. Procaccia, Phys. Rev. Lett. 54, 455

(1985).
[64] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevE.85.041924 for the p-variation test methods,
p-variation results, and mixed propagator results.

[65] J. R. Taylor, An Introduction to Error Analysis: The Study of
Uncertainties in Physical Measurements (University Science
Books, Sausalito, CA, 1996), p. 268.

[66] T. W. Anderson, Ann. Math. Stat. 33, 1148 (1962).
[67] B. J. Sung and A. Yethiraj, J. Phys. Chem. B 112, 143 (2008).
[68] K. Ritchie, R. Iino, T. Fujiwara, K. Murase, and A. Kusumi,

Mol. Membr. Biol. 20, 13 (2003).
[69] E. Kepten, I. Bronshtein, and Y. Garini, Phys. Rev. E 83, 041919

(2011).

041924-8

http://dx.doi.org/10.1038/nature04394
http://dx.doi.org/10.1016/S0006-3495(76)85755-4
http://dx.doi.org/10.1073/pnas.94.22.11753
http://dx.doi.org/10.1073/pnas.94.22.11753
http://dx.doi.org/10.1016/S1046-2023(02)00306-7
http://dx.doi.org/10.1088/0034-4885/65/2/203
http://dx.doi.org/10.1016/S0006-3495(94)80939-7
http://dx.doi.org/10.1038/nprot.2006.429
http://dx.doi.org/10.1038/nprot.2006.429
http://dx.doi.org/10.1146/annurev.biophys.26.1.373
http://dx.doi.org/10.1146/annurev.biophys.26.1.373
http://dx.doi.org/10.1073/pnas.91.8.3378
http://dx.doi.org/10.1073/pnas.91.8.3378
http://dx.doi.org/10.1083/jcb.200202050
http://dx.doi.org/10.1529/biophysj.103.035717
http://dx.doi.org/10.1038/ncb1755
http://dx.doi.org/10.1038/ncb1755
http://dx.doi.org/10.1016/S0006-3495(04)74139-9
http://dx.doi.org/10.1016/S0006-3495(04)74139-9
http://dx.doi.org/10.1529/biophysj.104.050559
http://dx.doi.org/10.1016/S0006-3495(94)80789-1
http://dx.doi.org/10.1103/PhysRevLett.96.228103
http://dx.doi.org/10.1039/b924149c
http://dx.doi.org/10.1039/b924149c
http://dx.doi.org/10.1529/biophysj.104.051078
http://dx.doi.org/10.1103/PhysRevLett.103.038102
http://dx.doi.org/10.1529/biophysj.104.044263
http://dx.doi.org/10.1529/biophysj.104.044263
http://dx.doi.org/10.1146/annurev.biophys.37.032807.125824
http://dx.doi.org/10.1146/annurev.biophys.37.032807.125824
http://dx.doi.org/10.1529/biophysj.106.099267
http://dx.doi.org/10.1103/PhysRevLett.102.058101
http://dx.doi.org/10.1137/1010093
http://dx.doi.org/10.1016/S0006-3495(01)75870-5
http://dx.doi.org/10.1016/S0006-3495(96)79846-6
http://dx.doi.org/10.1016/S0006-3495(96)79682-0
http://dx.doi.org/10.1073/pnas.0912894107
http://dx.doi.org/10.1103/PhysRevB.12.2455
http://dx.doi.org/10.1073/pnas.1016325108
http://dx.doi.org/10.1073/pnas.1016325108
http://dx.doi.org/10.1103/PhysRevLett.106.048103
http://dx.doi.org/10.1103/PhysRevLett.106.048103
http://dx.doi.org/10.1038/ncb1009
http://dx.doi.org/10.1038/ncb1009
http://dx.doi.org/10.1083/jcb.129.6.1589
http://dx.doi.org/10.1083/jcb.92.1.207
http://dx.doi.org/10.1083/jcb.92.1.207
http://dx.doi.org/10.1529/biophysj.107.123018
http://dx.doi.org/10.1002/bies.950150903
http://dx.doi.org/10.1016/S0006-3495(99)77147-X
http://dx.doi.org/10.1529/biophysj.107.111567
http://dx.doi.org/10.1529/biophysj.107.111567
http://dx.doi.org/10.1126/science.1835798
http://dx.doi.org/10.1126/science.1835798
http://dx.doi.org/10.1083/jcb.129.6.1559
http://dx.doi.org/10.1016/S0006-3495(00)76306-5
http://dx.doi.org/10.1016/S0006-3495(00)76306-5
http://dx.doi.org/10.1016/S0006-3495(98)77787-2
http://dx.doi.org/10.1016/S0006-3495(99)77486-2
http://dx.doi.org/10.1016/S0006-3495(97)78139-6
http://dx.doi.org/10.1016/S0006-3495(97)78139-6
http://dx.doi.org/10.1016/S0006-3495(02)75277-6
http://dx.doi.org/10.1529/biophysj.107.115121
http://dx.doi.org/10.1016/j.bpj.2009.05.044
http://dx.doi.org/10.1016/j.bpj.2009.05.044
http://dx.doi.org/10.1016/j.ymeth.2008.06.010
http://dx.doi.org/10.1063/1.528578
http://dx.doi.org/10.1103/PhysRevE.71.041915
http://dx.doi.org/10.1016/j.physleta.2005.05.086
http://dx.doi.org/10.1016/S0370-1573(00)00070-3
http://dx.doi.org/10.1088/0305-4470/37/31/R01
http://dx.doi.org/10.1088/0305-4470/18/12/006
http://dx.doi.org/10.1088/0305-4470/18/12/006
http://dx.doi.org/10.1016/S0006-3495(87)83291-5
http://dx.doi.org/10.1103/PhysRevLett.103.180602
http://dx.doi.org/10.1103/PhysRevLett.103.180602
http://dx.doi.org/10.1145/272991.272995
http://dx.doi.org/10.1145/272991.272995
http://dx.doi.org/10.1016/S0006-3495(01)75884-5
http://dx.doi.org/10.1016/S0006-3495(01)75884-5
http://dx.doi.org/10.1080/00018738700101072
http://dx.doi.org/10.1088/0305-4470/19/18/010
http://dx.doi.org/10.1103/PhysRevLett.54.455
http://dx.doi.org/10.1103/PhysRevLett.54.455
http://link.aps.org/supplemental/10.1103/PhysRevE.85.041924
http://link.aps.org/supplemental/10.1103/PhysRevE.85.041924
http://dx.doi.org/10.1214/aoms/1177704477
http://dx.doi.org/10.1021/jp0772068
http://dx.doi.org/10.1080/0968768021000055698
http://dx.doi.org/10.1103/PhysRevE.83.041919
http://dx.doi.org/10.1103/PhysRevE.83.041919

