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The compartmentalization of the plasma membrane is essential

for cells to perform specialized biochemical functions, in

particular those responsible for intracellular and intercellular

signaling pathways. Study of membrane compartmentalization

requires state-of-the-art imaging tools that can reveal

dynamics of individual molecules with high spatial and

temporal resolution. In addition, quantitative analyses are

employed to identify transient changes in molecule dynamics.

In this review, membrane compartments are classified as

stable domains, transient compartments, or nanodomains

where proteins aggregate. Interestingly, in most cases, the

cortical cytoskeleton plays important roles. Recent studies of

the membrane–cytoskeleton interface are providing new

insights about membrane organization involving a scale-free

self-similar fractal structure and cytoskeleton active processes

coupled to membrane dynamics.
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The organization of the plasma membrane is essential for

many physiological processes. Importantly, the cell surface

is organized into specific domains that are responsible for

diverse functions such as cell-to-cell communication, ini-

tiation of intracellular signals, and transmission of electri-

cal impulses. Furthermore, by concentrating membrane

components into nanodomains, it is possible to surpass

density thresholds needed for cooperative activity and,

conversely, by segregating membrane components, cells

can hinder reactions unless triggered by a specific signal.

As a consequence, the compartmentalization of the cell

membrane allows for highly specific biochemical func-

tions. This review focuses on our current understanding of

the mechanisms governing the compartmentalization of
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the plasma membrane and the tools employed to study the

segregation of cell surface components.

Advances in imaging techniques and tools to
identify compartmentalization
The last decade has witnessed tremendous progress in

our understanding of the compartmentalization of the

plasma membrane. This progress was mostly enabled

by advances in imaging tools that allowed the observation

of structures and dynamics within cells with unprece-

dented detail. In this section, I survey a non-exhaustive

list of the tools employed in the study of membrane

compartmentalization with the goal of placing these

studies in perspective. The key techniques used to

unravel the plasma membrane compartmentalization

are single-particle tracking [1–3], fluorescence correlation

spectroscopy (FCS [4–6]), and super-resolution imaging

[7,8]. Single-particle tracking has long been a valuable

tool to extract information on individual molecule dynam-

ics with nanometer precision, where the molecule of

interest is labeled with either gold nanoparticles [9],

quantum dots (which enable particularly large signal-

to-noise ratios) [10,11], fluorescent dyes, or fluorescent

proteins. Complementary approaches include imaging

the underlying cytoskeleton, which can introduce barriers

to the motion of membrane molecules. These measure-

ments are performed via electron microscopy [12,13] or,

more recently, via super-resolution imaging [14–16]. Fur-

ther, as imaging tools continue to progress, super-resolu-

tion imaging is pushing previous boundaries and is allow-

ing investigations within living cells, providing

experimental data with minimal processing of the cell

[17]. An imaging frontier lies in the simultaneous combi-

nation of different techniques where, for example, super-

resolution imaging in live cells can visualize underlying

structures while single-particle tracking provides

dynamic information of membrane molecules [18��].

One of the challenges to study membrane compartmen-

talization lies in the identification of changes in the

diffusive behavior that can enable the reliable recognition

of clustering and transient confinement within single-

particle trajectories. Therefore, considerable efforts have

been committed to these analyses. A few notable

approaches used in the identification of diffusion changes

include (i) system-level maximum-likelihood methods

[19,20], (ii) classification parameters such as anomalous

exponent [21] and convex hull [22] obtained using a

temporal sliding window, (iii) recurrence analysis [23],

(iv) fluctuation analysis of the time-averaged mean square

displacement (MSD) [24], and (v) hidden Markov models

[25,26]. In addition, variations of single-particle tracking
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and super-resolution tools have been employed to probe

diffusivity landscapes with high lateral spatial resolution

[27–31].

Stable membrane domains
Stable membrane domains are typical in polarized cells

where different cell regions are characterized by distinct

functions. Examples of two such cells are spermatozoa

and neurons. The former cells are comprised of a head

and a flagellum, with the flagellum being divided into

midpiece, principal piece and end piece (Figure 1a). The

plasma membrane in each of these compartments has its

own set of protein and lipid components. The membrane

of the head is also subdivided into three compartments,

known as anterior acrosome, equatorial segment, and

postacrosome. Many proteins have been found to be

sequestered to specific domains but the mechanisms

by which membrane components are segregated remain

elusive. The most appealing candidate mechanisms that

govern segregation are physical barriers to diffusion and

scaffolds that interact with specific proteins. Note that in

spermatozoa, active protein trafficking is silent and the

cells are devoid of organelles involved in protein delivery

and synthesis, thus protein domains cannot be maintained

by active delivery and retrieval at the membrane. Exper-

imental evidence points to the existence of diffusion

barriers. In particular, the principal piece and the mid-

piece are separated by the annulus, a ring-shaped septin

cytoskeletal structure. Septins are GTP-binding proteins

that form hetero-oligomeric complexes, filaments, bun-

dles, and rings. Septin ring structures also appear to form

membrane diffusion barriers in other eukaryotic cells.

The most studied and well understood of these structures

takes place in budding yeast where a barrier between

mother cell and bud is formed at the neck (Figure 1b). In

addition to yeast, septin rings are thought to be involved

as diffusion barriers in at the base of primary cilia in

mammalian cells (Figure 1c) and at the base of dendritic

spines in neurons. In dendritic spines, cilia, and sperm

flagella, it is becoming apparent that the restriction of

membrane protein motion by septin cytoskeletal struc-

tures has important physiological roles. Mice null for

septin SEPT4 lack the sperm annulus, the sperm mem-

brane does not compartmentalize, and these mice are

infertile [32]. In neurons, septins are required in dendritic

spine morphology and AMPA receptor compartmentali-

zation, where abnormalities are associated with neuropsy-

chiatric disorders [33,34]. Thus, the biochemical compart-

mentalization of dendritic spines is essential for synaptic

function and likely regulates human behavior [35].

Another membrane domain in neurons, the axon initial

segment (AIS), separates the neuron body (i.e., the soma)

and the axon. These two compartments have very differ-

ent cell functions, with the soma being responsible for the

integration of electrical inputs and the axon transmitting

information in the form of action potentials, that is,
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electrical impulses, to downstream neurons. The genera-

tion and propagation of these impulses is controlled by

ion channels on the cell surface. So it is not surprising that

the composition of the axonal membrane is completely

different from the somatic membrane. Since the AIS is

where action potentials are initiated [36], this region must

maintain specialized membrane components. Three

mechanisms act in concert to compartmentalize the soma

and axon membranes, but substantial work yet needs to

be done to properly understand them. On one level, a

diffusion barrier exists at the AIS to block exchange

between the soma and axon. Single-molecule tracking

experiments suggest a barrier to the diffusion of both

proteins and lipids is established in neurons at 7–10 days

in vitro by the anchoring of a large number of membrane

proteins to the cortical actin cytoskeleton [37]. A second

level of membrane compartmentalization is provided by

scaffolding proteins such as ankyrinG that have a high

affinity for specific ion channels and can, thus, directly

cluster molecules within the AIS, even before a diffusion

barrier is formed [38,39]. At a third level, it has been

recently shown that Nav1.6 sodium channel localization

to the AIS is additionally achieved by direct vesicular

delivery, where it is then immediately immobilized via

interactions with ankyrinG [40�].

Actin-based compartmentalization
Many independent measurements have confirmed that

the actin cytoskeleton modulates membrane dynamics

and introduces barriers to the diffusion of membrane

proteins (Figure 2a). Stimulated emission depletion

(STED)-FCS measurements with a spatial resolution

of 40 nm showed that the plasma membrane components

in fibroblasts are transiently constrained to compartments

with a mean compartment size of 80–150 nm, depending

on cell type [6]. This compartmentalization was no longer

observed upon treating the cells with CK-666, an inhibi-

tor of the complex responsible for actin filament branch-

ing, Arp2/3 [41]. Pharmacological inhibition of actin

polymerization with latrunculin B also disrupted this

compartmentalization but in a milder way than CK-666

treatment. Similarly, several groups have reported that

inhibition of actin polymerization with different drugs

increased the mobility of membrane proteins and chan-

ged compartment sizes, as measured by single-molecule

tracking [9,13,42–45].

The visualization of the cortical actin cytoskeleton in live

cells while simultaneously tracking membrane proteins

has provided the most direct evidence for interactions of

the actin cytoskeleton with membrane components.

Quantum dot-tagged high-affinity IgE receptors were

tracked while proximal actin bundles were imaged in live

cells stably transfected with GFP-actin [42]. These mea-

surements show that actin bundles create micrometer-

sized compartments and that receptor motion remains

limited to actin-poor regions. These actin-delimited
www.sciencedirect.com
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Membrane domains in cells. Often domains are delimited by a septin ring structure. (a) A septin ring separates the midpiece from the principal

piece in the flagellum of sperm cells. (b) A septin ring forms in budding yeast at the neck between mother and bud. Two different phases in a

dividing cell are shown. The lower sketch shows a mitotic cell at an earlier stage and the upper sketch shows a later stage in the cell cycle where

the nucleus has migrated to the neck. (c) A septin ring at the base of a primary cilium.

Figure 2
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Compartmentalization of the plasma membrane by the cortical actin. (a) Sketch of the actin cortex adjacent to the plasma membrane. Membrane

molecules perform random walks in the membrane but their motion is transiently confined by the actin cytoskeleton. (b) Superresolution STORM

image of the cortical actin in a HEK cell [18��]. The actin meshwork is clearly visible. Note the multiple aster-like structures, like the ones marked

by orange arrows. Scale bar is 2 mm.
regions are highly dynamic and actin is observed to

reorganize over time scales of 1–10 s. Using a toolset of

particle tracking, nanocluster imaging via STED, and

fluorescent imaging of the cortical actin, Garcia-Parajo

and coworkers have recently reported striking effects on

the regulation of CD1 nanoclusters in the membrane of

antigen presenting cells by the actin cytoskeleton [46��], a

mechanism employed by these cells to prevent autoim-

munity. In these experiments, the actin cytoskeleton was

found to segregate CD1 nanoclusters away from each
www.sciencedirect.com 
other and, in turn, to limit their coalescence. As a conse-

quence, upon pharmacological disruption of the actin

cytoskeleton with cytochalasin D, more molecules

became trapped into nanoclusters and, in turn, the mobil-

ity of CD1 decreased, in contrast to other compartmen-

talized membrane components. Control measurements

with exactly the same pharmacological treatment showed

an enhancement of CD71 mobility in THP-1 cells. A

similar effect to that of CD1 nanoclusters upon disruption

of the actin cytoskeleton was observed for Kv2.1 clusters
Current Opinion in Cell Biology 2018, 53:15–21
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in transfected human embryonic kidney (HEK) cells [47].

In cells treated with latrunculin A, Kv2.1 clusters become

more mobile and they coalesce into larger domains.

By imaging hemagglutinin and actin using two-color

photo-activated localization microscopy (PALM), it was

shown that hemagglutinin localize to actin-rich mem-

brane regions. Further analysis of individual trajectories

revealed that the mobility of hemagglutinin was nega-

tively correlated to the cortical actin density [48]. A

striking revelation by stochastic optical reconstruction

microscopy (STORM) imaging was the fact that the

axonal actin-spectrin cytoskeleton in neurons organizes

in ring-shaped structures wrapping around the circumfer-

ence of the axon, evenly spaced with a periodicity of 180–

190 nm [14]. Recently, single-particle tracking of lipid-

anchored molecules was analyzed in the AIS and the

mobility was correlated to the periodic submembrane

cytoskeleton [49��]. This elegant correlative microscopy

was performed in several steps: first single-particle track-

ing was implemented by uPAINT (universal point accu-

mulation for imaging in nanoscale topography) using

labeled antibodies against specific GPI constructs in

transfected neurons plated on gridded coverslips. Then

the neurons were fixed and immunostained against bII-
spectrin or actin. At this point STORM super-resolution

images were obtained in the same cells. The single-

particle tracking data were registered with the super-

resolution cytoskeleton images using fiducials on the

coverslip. These experiments showed that actin rings

in the AIS behave as diffusion barriers to GPI-anchored

molecules, thus confining molecules to equidistant

stripes.

In a recent study, we employed simultaneous single-

particle tracking of quantum dot-tagged ion channels

and dynamic PALM super-resolution imaging of actin

in live HEK cells to elucidate the interactions of these

molecules with the cortical cytoskeleton [18��]. Further,

the details of the cortical actin cytoskeleton structure

were found with high resolution after cell fixation using

STORM (Figure 2b). As expected, the actin cytoskeleton

was observed to delineate dynamic compartments that

transiently confined the motion of ion channels. How-

ever, the proteins exhibited scale-free dynamics with

correlations that were independent of lag time. Scale-free

dynamics were shown to be caused by an actin cytoskele-

ton with self-similar fractal topology. These observations

have direct consequences on our interpretation of the

membrane compartmentalization by the actin cytoskele-

ton. On one side, the measured averaged compartment

size is not enough to characterize protein motion. For a

narrow compartment size distribution, molecules would

exhibit ‘normal’ Brownian dynamics both at times shorter

than the time required to explore an individual domain

(with a large diffusion coefficient) and at times longer

than the characteristic time to hop between
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compartments (with an apparent reduced diffusion coef-

ficient). However, a fractal cytoskeleton structure causes

the protein motion to display subdiffusion behavior for

very long times. On the other side, a fractal structure

suggests a hierarchical membrane organization where

molecules are confined over multiple time and length

scales. These findings bridge small actin-delimited com-

partment sizes found for small residence times [5] and

large compartment sizes characterized by anomalous dif-

fusion at long times [42].

Active processes
Active cellular processes can play important roles in

segregating membrane components. As discussed above,

delivery and retrieval of membrane molecules, that is,

exocytosis and endocytosis, at specific membrane loca-

tions can influence the formation of membrane domains

[40�,50]. In addition, membrane clustering and local

composition can be modulated by cytoskeleton-driven

flows. The actin cortex is currently understood to form a

dynamic network, composed of at least two filament

subpopulations with different turnover rates, one popu-

lation with free barbed ends and fast turnover dynamics

and another population of longer and more static fila-

ments associated to formins [51]. The existence of

dynamic actin filaments in conjunction with myosin

motor activity led to a theoretical framework for the

appearance of tangential active stresses and membrane

currents [52]. Such stresses and membrane currents affect

local membrane composition and transiently cluster

molecules into actin nodes. Experimental observations

of GPI-anchored proteins have verified that the motion of

membrane molecules depend on actomyosin activity

[52,53]. Furthermore, actin nodes, also known as asters,

have been shown to self-organize into nanoscale struc-

tures containing formins and actin crosslinkers [54]. A

fundamental part of this framework is the coupling of the

plasma membrane to a dynamic actin cytoskeleton via

motifs that bind either actin filaments or actin-binding

proteins. Molecules in the plasma membrane can then be

actively driven to reaction sites via interactions either

directly with actin or indirectly via actin-associated

proteins.

Some of the most convincing evidence for the role of

actomyosin dynamics in the organization of the mem-

brane comes from in vitro measurements in reconstituted

model membranes. By linking a minimal actin cortex to a

model membrane, it was found that actin alters the

organization of the membrane [55] and that actomyosin

contraction mediates membrane compartmentalization

[56�]. Of special relevance, by employing a minimal

system of a supported lipid bilayer with actin-binding

components, actin filaments, and myosin motors, Mayor

and coworkers have provided experimental evidence for

membrane clustering governed by actomyosin contractil-

ity in a fashion that strongly resembles clustering
www.sciencedirect.com
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observed in live cells [57��]. In particular, in this system, it

was shown that contractile actomyosin flows advect mem-

brane components and that this advection requires spe-

cific interactions between the membrane and F-actin.

These experiments show that actomyosin contractility

directly alters the segregation behavior of membrane

domains.

Conclusions and outlook
The compartmentalization of the plasma membrane

appears to be ubiquitous in cell biology. Interestingly,

the mechanisms responsible for compartmentalization are

much more complex than originally suspected. There are

two different ways by which cells segregate membrane

components: the formation of barriers that passively

hinder free motion and the active delivery of membrane

components to specific locations. These two mechanisms

act jointly in order to adjust local membrane composition.

The last few years have seen significant progress in

deciphering the organization of the plasma membrane.

Recent studies have demonstrated the feasibility of

employing Drosophila and C. elegans embryos to study

the effect of active actin processes on the plasma mem-

brane compartmentalization [58,59]. However, a thor-

ough understanding is still lacking and many questions

remain unanswered. As imaging tools for live cell imaging

continuous to progress toward higher spatial and temporal

resolution and better theoretical biophysical models are

developed, it is foreseen we will see the answer to many

of these questions in the near future. Future studies may

provide answers regarding the coupling of the membrane

to the cytoskeleton and the roles of active cytoskeleton

processes in membrane organization. Particularly, under-

standing the plasma membrane compartmentalization

will enable a deeper understanding of intracellular and

intercellular signaling pathways.
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