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ABSTRACT: The detection of multilayer clouds in the atmosphere can be particularly challenging from passive visible
and infrared imaging radiometers since cloud boundary information is limited primarily to the topmost cloud layer. Yet
detection of low clouds in the atmosphere is important for a number of applications, including aviation nowcasting and
general weather forecasting. In this work, we develop pixel-based machine learning–based methods of detecting low
clouds, with a focus on improving detection in multilayer cloud situations and specific attention given to improving the
Cloud Cover Layers (CCL) product, which assigns cloudiness in a scene into vertical bins. The random forest (RF) and
neural network (NN) implementations use inputs from a variety of sources, including GOES Advanced Baseline Imager
(ABI) visible radiances, infrared brightness temperatures, auxiliary information about the underlying surface, and relative
humidity (which holds some utility as a cloud proxy). Training and independent validation enlists near-global, actively
sensed cloud boundaries from the radar and lidar systems on board the CloudSat and CALIPSO satellites. We find that
the RF and NN models have similar performances. The probability of detection (PoD) of low cloud increases from 0.685
to 0.815 when using the RF technique instead of the CCL methodology, while the false alarm ratio decreases. The
improved PoD of low cloud is particularly notable for scenes that appear to be cirrus from an ABI perspective, increasing
from 0.183 to 0.686. Various extensions of the model are discussed, including a nighttime-only algorithm and expansion to
other satellite sensors.

SIGNIFICANCE STATEMENT: Using satellites to detect the heights of clouds in the atmosphere is important for a
variety of weather applications, including aviation weather forecasting. However, detecting low clouds can be challeng-
ing if there are other clouds above them. To address this, we have developed machine learning–based models that can
be used with passive satellite instruments. These models use satellite observations at visible and infrared wavelengths,
an estimate of relative humidity in the atmosphere, and geographic and surface-type information to predict whether
low clouds are present. Our results show that these models have significant skill at predicting low clouds, even in the
presence of higher cloud layers.

KEYWORDS: Clouds; Cloud retrieval; Lidars/Lidar observations; Radars/Radar observations; Remote sensing;
Satellite observations; Nowcasting; Machine learning

1. Introduction

Passive remote sensing instruments, like the Advanced
Baseline Imager (ABI; Schmit et al. 2017) on the Geosta-
tionary Operational Environmental Satellite (GOES), are
particularly effective at revealing attributes of the topmost
layer of clouds, such as cloud-top height, particle size, and
water phase. However, these instruments lack the ability to
reliably observe below the top cloud layer in multilayer
scenes, causing information on lower layers to be limited or
nonexistent. Accurately identifying low cloud presence has
important aviation and meteorological implications. Low
clouds can be hazardous for aviation, as they reduce visibil-
ity and can contain supercooled water that freezes on air-
craft control surfaces. Additionally, accurate low cloud
identification would provide more accurate sky conditions
to improve weather forecasts, to aid boundary layer cloud

studies, and to more accurately assess the role of these
clouds in Earth’s radiation budget.

While there is a rich body of literature on cloud detection
using satellite data, a focus on low cloud detection from satel-
lites is significantly more limited, much of which is focused on
polar-orbiting satellites (e.g., Platnick et al. 2017; Wang et al.
2016; Wind et al. 2010). Most recent work on cloud masking
has focused on identifying cloud types at any vertical level
(e.g., Qin et al. 2019; Shang et al. 2018; Stöckli et al. 2019);
however, there are two notable exceptions. First, Leinonen
et al. (2019) used a conditional generative adversarial network
(CGAN) to assess cloud vertical structure from Moderate
Resolution Imaging Spectroradiometer (MODIS), producing
a wide range of realistic-looking vertical cloud structures,
including low clouds. Second, Andersen and Cermak (2018)
used geostationary satellite data to predict fog and low cloud
in the Namib. Using infrared channels only from the Spinning
Enhanced Visible and Infrared Imager on board the Meteo-
sat-11 satellite, they classified scenes using a decision tree
algorithm with sequential applications of spectral thresholds.Corresponding author: John Haynes, john.haynes@colostate.edu
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Evaluating this algorithm against net radiation measurements
from a station network revealed an overall correctness of clas-
sification of 97% for the region.

The continuous high-resolution spatial images from the
ABI, updated as frequently as every 30 s over the mesoscale
sectors and every 10–15 min for the full disk, opens doors to
developing new methods of detecting low clouds. The Cloud
Cover Layers (CCL) product provides a vertical depiction of
the presence of cloud layers and fractional cloud cover for
each layer. CCL is an official cloud product for the GOES-R
ABI1 and Visible Infrared Imaging Radiometer Suite
(VIIRS;2 Hillger et al. 2013) on board the Joint Polar Satellite
System (JPSS) satellites. The intent of CCL is to classify
clouds in a given scene by their vertical extent, using a variety
of prescribed thresholds based on pressure levels, or at flight
levels for aviation community users. It is the only official
ABI/VIIRS product that focuses on quantifying the vertical
distribution of cloud cover.

As originally formulated, CCL was primarily a function of
the retrieved cloud-top height (CTH), and included limited
information on cloud vertical extent. Adding statistically
based retrievals of cloud geometric thickness (CGT) has since
allowed clouds to span multiple vertical levels between CTH
and an inferred base, improving the representation of lower
cloud layers (Noh et al. 2017). Leveraging CGT has allowed
CCL to include three additional layer designations: L1M,
H1M, and H1M1L, where L = low cloud, M = middle
cloud, and H = high cloud. All references to CCL that follow
refer to this updated CCL algorithm that accounts for CGT.
This CCL algorithm is applicable to both ABI and VIIRS,
and has been implemented in the Clouds from AVHRR
Extended (CLAVR-x) system, which forms NOAA’s opera-
tional cloud algorithm processing framework (Heidinger and
Straka 2013). In this paper, we use a recent version of CCL
that assigns pressure-based layer cutoffs of 631 and 350 hPa to
differentiate between the L/M and M/H layers.

Figure 1 shows the occurrence of clouds in these various
CCL categories from the combined perspective of two space-
borne active sensors, the CloudSat radar and the CALIPSO
lidar (details of the specific datasets used and how they are com-
bined to derive cloud boundaries are provided in section 2).
The combined radar and lidar designations of cloud height are
available in 240 m bins, suffering far less ambiguity than ABI in
resolving multiple cloud layers. These cloud profiles are com-
pared against GOES-16 ABI-based CCL designations of cloud
height that have been matched in space and time (also per sec-
tion 2). It is clear from Fig. 1 that CCL is biased against low
clouds when high clouds are present, and it is noteworthy that
the CCL algorithm cannot produce the high-over-low (H1L)
designation, since it assumes a single, vertically contiguous
cloud layer. As a result, many scenes that are H1L or H1M1L
are instead placed into the coalesced H1M category, which
CCL overpopulates relative to the radar/lidar observations.
While geostationary and polar-orbiting satellites with passive

sensors (like ABI and VIIRS) are the gold standard for near-
real-time cloud detection, it is clear from Fig. 1 that their ability
to characterize the three-dimensional cloud scene is limited.
Forecasters, therefore, will often rely on numerical weather pre-
diction (NWP) or cloud proxies [like layer relative humidity
(RH)] when determining whether low or midlevel cloud may
be present in a scene that is obscured by higher cloud layers.

In this study, we hypothesize that supervised machine
learning (ML) can be applied to this problem and used to
infer the presence of low clouds in multilayered scenes
directly from passive instruments. Training data for the models
we develop consist of passive sensor data (GOES-16 ABI)
matched to active radar and lidar data (CloudSat andCALIPSO),
supplemented by column relative humidity data. Specifically, we
demonstrate the following:

• Relative humidity holds utility as a predictor for low cloud
when used in an ML algorithm, and as such NWP input
produces a substantial enough contribution to warrant
inclusion in an otherwise observation-driven product.

• Random forests and neural networks can be successfully
applied to this detection problem on a pixel-by-pixel basis.

• Both of these ML models outperform the current ABI
CCL product in predicting the presence of low clouds,
especially when multiple layers are present.

• These methods can be extended to work in nighttime mode
and should be extendable to other sensors besides ABI.

This paper is organized as follows. Section 2 discusses the
data used in the study. Section 3 describes the methodology,
including the required preprocessing, and describes the ML
approach as well as the motivation for using RH as an input
feature. Section 4 shows the results, provides examples of the
improved algorithm, and illustrates the implications of our

FIG. 1. Occurrence of clouds in the various CCL categories (hor-
izontal axis), as observed by a combination of CloudSat radar and
CALIPSO lidar (blue bars) that was matched in space and time to
the ABI CCL designations (orange bars). This analysis was per-
formed over the multimonth testing period described in section 2.

1 https://www.goes-r.gov/products/opt2-cloud-layers-height.html.
2 https://www.star.nesdis.noaa.gov/jpss/clouds.php.
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proposed approach. Section 5 concludes the paper and out-
lines future work.

2. Data and analysis metrics

a. Data used in study

The data used in this study consist of space-and-time matched
observations from 1) the ABI on GOES-16, 2) the radar and
lidar on board CloudSat and CALIPSO, respectively, and 3)
auxiliary data from an NWP model, as described below. Time
periods of analysis and the process by which they are matched
together are described in the following subsection.

1)GOES-16

The GOES-16 ABI is positioned over the equator at
approximately 758W and provides continuous coverage over
the Americas and the Atlantic. The ABI detects both
reflected solar radiation and emitted infrared radiation in 16
bands whose centers vary from 0.47 to 13.3 mm. The ABI per-
forms full disk scans at a time interval of 10–15 min, depend-
ing on operating mode, and the data are collected at spatial
resolutions varying from 0.5 to 2 km as measured at the equa-
tor (Schmit et al. 2017). Here, we use level 2 data where all
channels are averaged to the same 2 km grid. Additionally,
we make use of the ground latitude and solar and sensor
zenith angles.

For comparisons against the current operational approach,
we obtain the existing CCL cloud classifications from local
runs of CLAVR-x that are already matched in space and time
to the 2 km ABI grid. Additionally, we make use of the exist-
ing CLAVR-x land–ocean mask.

2) CLOUDSAT AND CALIPSO

To evaluate low cloud presence, we use the active sensors on
board two polar-orbiting satellites, CloudSat and CALIPSO.
These sensors flew in formation [∼1330 local time at ascending
node (LTAN)] during the period of analysis for this study
allowing joint observations of vertical cloud structure in over-
lapping regions of the atmosphere (Stephens et al. 2018; Mace
et al. 2009). CloudSat carries the 94 GHz Cloud Profiling Radar
(CPR) designed for the vertical profiling of clouds and hydro-
meteors (Stephens et al. 2008), and CALIPSO carries the Clou-
d–Aerosol Lidar with Orthogonal Polarization (CALIOP)
instrument, which is a dual-wavelength polarization lidar pro-
viding high resolution vertical profiles of clouds and aerosols
(Winker et al. 2007).

This study uses the 2B-GEOPROF (Marchand et al. 2008)
and 2B-GEOPROF-lidar (Mace and Zhang 2014) products to
provide a best estimate of actual low cloud presence in the
240 m resolution vertical bins provided in the products. To
create a vertical cloud mask for a given radar profile, we start
with the cloud mask from 2B-GEOPROF, considering cloud
to be present in any radar bin where the mask has a value of
20 or greater (which represents clouds with a relatively low
chance of being a false detection). This is supplemented with
volume cloud fractions from 2B-GEOPROF-lidar, which are

provided in bins matched to the radar footprint. Lidar-derived
cloud is considered to be present in radar range bins contain-
ing 50% or greater lidar cloud coverage. In this way, cloud is
flagged as occurring in those range bins where either the radar
or lidar identifies a cloud return.

The final step is to convert this height-resolved cloud mask
to one defined by the three broad pressure-based levels out-
put by CCL (i.e., separated by the 631 and 350 hPa pressure
levels); the CloudSat ECMWF-AUX product (Cronk and
Partain 2017) provides for this translation. If there is cloud
detected in any of the height bins with pressures exceeding
631 hPa, then the profile is considered to have low cloud. Fur-
ther, midlevel clouds are clouds in the layers with pressures
between 631 and 350 hPa, and high clouds have pressures
below 350 hPa.

The advantage of this approach is that CPR and CALIOP
together provide high-quality, complementary observations of
the vertical structure of near-global cloudiness. For example,
the lidar observes thin cirrus missed by the radar, whereas the
radar penetrates deep into optically thick cloud layers, while
the lidar attenuates in these situations. Even so, there are
some notable limitations to this combination. First, extremely
low-topped clouds (under 1 km) will be missed if heavily
attenuating upper-level cloud is also present. This is because
the CPR cannot reliably detect clouds in the bins comprising
approximately the lowest 1 km above Earth’s surface (e.g.,
Tanelli et al. 2008), and CALIOP will also miss these clouds if
there is significant attenuation above the low-topped cloud.
Second, the analysis is restricted to daytime-only since Cloud-
Sat suffered a battery anomaly in 2011 (Nayak 2012) that pre-
cluded operation of the radar at night. Finally, the analysis is
subject to any biases introduced by the orbital characteristic
of the A-Train satellites, namely, their ∼1330 LTAN.

3) RELATIVE HUMIDITY AND SURFACE CHARACTERISTICS

This study uses RH, snow equivalent water depth, and ice
fraction obtained from the operational 0.58, 6 hourly Global
Forecasting System (GFS) 12 h forecast data.3 Although we
recognize that more up-to-date surface-state information can
be obtained directly from retrievals using sensors designed for
this purpose, this study aims to produce a product suitable for
operational use and instead utilizes information that is readily
available for CLAVR-x ingest. To match the GFS variables in
space and time to the ABI full disk grid, we temporally inter-
polate between two bounding 12 h forecasts (following the
procedure used by CLAVR-x), and then apply bilinear spatial
interpolation.

RH data from GFS are collected at 150, 650, 750, 850, 950,
and 1000 hPa, and is adjusted to always be relative to liquid
water. Using these data, we calculate the maximum RH
between 650 and 1000 (RHmax). For the surface information,
we combine the snow equivalent water depth and ice fraction
to create a flag (Flagsnow/ice) that indicates whether snow or
ice is present.

3 https://www.ncdc.noaa.gov/data-access/model-data/model-
datasets/global-forcast-system-gfs.
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b. Data matching and preprocessing

The time periods selected for analysis in this study are
driven by data availability, most notably that of CloudSat/
CALIPSO, since these data are not processed in real time.
The data are separated into “training” and “testing” subsets
using continuous month-long periods separated by breaks of
at least one month, in order to obtain a spread of seasonal
coverage and avoid bias between training and testing. In
developing our detection algorithm, the training dataset is
used for model training and hyperparameter tuning, while the
testing dataset is used only for evaluation of final model per-
formance. Before applying the filtering described in the next
paragraph, the full training period consists of 12.2 million
radar profiles from October and December of 2018; as well as
February, April, and June of 2019; and the full testing period
consists of 9.4 million radar profiles from November of 2018
and March and May of 2019.

To match the CloudSat/CALIPSO data to the 2 km ABI
full-disk grid, we loop through the radar profiles in a given
time period and find the closest matching set of ABI (and
CCL) observations. Since CloudSat/CALIPSO view near
nadir while the ABI viewing angle increases with distance
from the subsatellite point, a parallax correction is applied
based on the top of the highest cloud observed in each profile
by the radar/lidar. To be considered, the postcorrection match
is required to occur within 7.5 km and 10 min of the time of
the CPR profile. Since the radar footprint is approximately
1.4 km while the ABI box is at least 2 km on a side (and much
larger at higher latitudes), several consecutive radar profiles
may match to the same ABI information. This “mismatch” is
purposefully retained to better represent the variability in
ABI data for a given vertical cloud scenario. To prevent con-
tamination by large parallax uncertainties at higher sensor
zenith angles, we restrict data analysis to sensor zenith angles
of less than approximately 708, corresponding to the maxi-
mum angle at which CCL retrievals were performed. Further-
more, we consider only daylight pixels with a solar zenith
angle not exceeding 828; both of these thresholds were chosen
for consistency with the version of CLAVR-x that we com-
pare against. After applying these restrictions and any remov-
ing bad CCL retrievals from the testing data, the training and
testing datasets have 6.8 and 4.8 million profiles, respectively.

c. Analysis metrics

A number of metrics of algorithm performance are used,
defined in terms of standard contingency table nomenclature
using true positives (TP), true negatives (TN), false positives
(FP), and false negatives (FN); all vary between 0 and 1 unless
otherwise noted:

• Probability of detection (PoD) is given by TP/(TP 1 FN); 1
is the best score.

• False alarm ratio (FAR) is given by FP/(TP 1 FP); 0 is the
best score.

• Critical success index (CSI), or threat score, is a combina-
tion of PoD and FAR, and is given by TP/(TP 1 FN 1

FP); 1 is the best score.

• F1 score, often used in computer science, is closely related
to the CSI and is given by TP/[TP 1 0.5 3 (FN 1 FP)]; 1 is
the best score.

• Accuracy is defined as (TP 1 TN)/(TP 1 TN 1 FP 1 FN);
1 is the best score.

• Frequency bias is defined as (TP 1 FP)/(TP 1 FN); 1 is the
best score, and it can take any value greater than or equal
to zero.

3. Methodology

This section describes the models used for prediction of low
cloud and how they are implemented using the training and
validation datasets described above.

a. Relative humidity as a low cloud proxy

Before describing the ML models, we motivate the inclu-
sion of information beyond what is observable by the ABI,
specifically relative humidity. Cloud formation and mainte-
nance requires a number of supporting conditions, including
sufficient moisture, a source of uplift or diabatic cooling to
produce supersaturation, and (in most cases) aerosol par-
ticles to serve as cloud condensation nuclei (Seinfeld and
Pandis 2006). ABI observations alone cannot sense any of
these parameters directly in cloud scenes, but RH is a
parameter that addresses saturation in the column. We
hypothesize that high levels of saturation, especially at low
levels, may serve as a useful piece of auxiliary information
in identifying the presence of low clouds, especially in situa-
tions where these clouds are completely obscured by higher
clouds. Therefore, we explore the utility of RH as a proxy
for low cloud.

While there is no guarantee that clouds will form if the RH
is relatively high (e.g., 2 m RH is nearly always high over the
tropical oceans), clouds will not form without local supersatu-
ration. A few past studies have examined this relationship in
terms of observed clouds (Walcek 1994; Tompkins 2003) or
simulated clouds (Groisman et al. 2000), but none to our
knowledge have extensively evaluated this relationship using
the highly vertically resolved cloud mask that CloudSat and
CALIPSO have provided on a near-global scale. Walcek
(1994) find that RH is the strongest predictor of cloud cover
among the various quantities they evaluated; they find a cor-
relation coefficient of 0.6 globally, but the strength of this
relationship varies by region and with height.

To provide additional moisture information to passive sen-
sors to help predict low clouds, we investigate using low-level
relative humidity as a proxy for cloud cover. The purpose of
this is twofold: 1) to determine if RH is actually a useful pre-
dictor of cloud cover, and therefore should be included in our
low cloud prediction scheme, and 2) to establish if RH thresh-
olding is useful for predicting whether cloud is present or not.
Using the full testing dataset, we examine the relationship
between GFS RH thresholds (50%, 60%, 70%, 80%, and
90% with respect to liquid water) at various levels in the
atmosphere and the presence of low cloud from the radar/
lidar as defined earlier. In this experiment, we assign low
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cloud any time the RH exceeds the given threshold on the
given level(s), and we assess the predictive power of RH.

Predictive scores for RH thresholds at two levels are shown
in Fig. 2. First, we choose 850 hPa (RH850), as it lies between
the surface and upper pressure bound of 631 hPa used as the
cutoff between the low and midcloud levels in this study. Sec-
ond, we choose the previously defined RHmax, because it
approximately corresponds to the maximum RH in the low
cloud layer. In both cases, the trade-off between using low
and high thresholds is immediately apparent: using a low
threshold of RH results in a relatively high PoD, but also a
relatively high FAR. The plots are broken down between
land and water surfaces, but note that since some latitude
bands are dominated by water, the land results may have low
statistical significance for those locations.

In terms of PoD and RHmax, it is not surprising that the
specific threshold chosen has less effect over land than water;
for example, PoD over water surfaces is nearly uniform for
RH # 80%. This is because, all else being equal, the lower
atmosphere will be moistened more readily over water surfa-
ces than land. It is also noteworthy that RHmax has more
detection utility than RH850, which is probably a reflection of
the fact that validation is not being performed at a specific
level, but over a broad layer that is similar to that given by the
limits of RHmax. For FAR, specific values of RH make less
difference to false alarms than does latitude: the tropics have
more false alarms than higher latitudes. This is, to some
degree, a function of midlatitude versus tropical dynamics; in
the tropics, cloud-free moisture plumes occur more readily in
subsidence regions, whereas midlatitude cloudiness is more
driven by frontal dynamics.

Since it is a function of both PoD and FAR, CSI provides a
useful summary of the utility of RH as a predictor of low-level
cloudiness. It is apparent from Fig. 2 that CSI is largest at
mid- and high latitudes and lowest in the tropics, for the rea-
sons discussed above. Furthermore, the middle ranges of RH
(i.e., between 60% and 80%) provide the highest CSIs on
average. We note that the same analyses performed at 650
and 1000 hPa, (not shown) do not change these general con-
clusions. Given these results, it is apparent that RH has some
predictive utility for low cloud, consistent with the findings of
Walcek (1994), but it is not at all clear that there is a single
threshold that should be used; the threshold would vary with
geographic location and underlying surface type, and most
likely with season as well. Therefore, our strategy is to pro-
vide RH and allow the ML algorithm to learn the best way to
use RH information in terms of a larger low cloud detection
scheme.

b. Machine learning approach

To identify low clouds in a scene on a pixel-by-pixel basis,
we explore two machine learning approaches in this study.
The first is the random forest (RF), a subset of decision tree
methods, and the second is the artificial neural network (NN).
Both models are trained on the training periods, and all
results shown are obtained by running the trained models on

the testing periods, with CloudSat/CALIPSO cloud bound-
aries as the truth.

Before describing the models in detail, we will describe the
training data that are used as inputs to both models. Table 1
describes these training features (nfeat = 21), which includes
data from all 16 ABI channels. Visible reflectances from chan-
nels 1 through 6 are normalized by the cosine of the solar
zenith angle (Lee et al. 2021). In addition to the ABI data, we
also provide three categories of auxiliary data. First, we pro-
vide saturation information via RH: RHmax provides informa-
tion on low-level moisture content, and the RH at 150 hPa
(RH150) is used to provide information that may be relevant
for high-cloud layers. Second, we provide surface information
in terms of both a land mask flag (Flagsfc) and a snow/ice flag
(Flagsnow/ice). Finally, we provide a limited viewing angle
dependency through latitude (lat), though we note that using
sensor zenith angle instead results in virtually no change in
algorithm performance. In section 4, the relative importance
of these variables (and which can be potentially dropped with
minimal performance decrease) will be discussed.

We now provide details on the ML models themselves. The
RF classifier (Breiman 2001) is an ensemble methodology
that uses a “forest” of decision trees to make a binary decision
(low cloud present, or low cloud not present) based on train-
ing data. Decision trees can be visualized as a series of ques-
tions designed to split the data into increasingly distinct
classes; RFs, in turn, are composed of multiple decision trees,
where correlation between trees is reduced by restricting each
tree to a randomly selected subset of the training data. Deci-
sion trees are gaining popularity for cloud type classification
problems (e.g., Yu et al. 2021; Sedlar et al. 2021; Wang et al.
2020), and as one of the easier ML frameworks to interpret,
they are a popular choice for physically explainable artificial
intelligence.

We implement the RF model in Python using Scikit-learn
(Pedregosa et al. 2011). Each leaf in each decision tree has a
probability of low cloud associated with it that is determined
from the distribution of samples in the training data; for a
given input sample, low cloud is determined to be present if
the average low cloud probability over all trees in the forest
(P) is at least 0.5. Tunable hyperparameters include the maxi-
mum depth of trees, the minimum data points required for a
split, the minimum number of samples per leaf node, and
whether or not bootstrapping (sampling with replacement) is
used. All experiments use 125 trees, which provides a balance
between accuracy and training time, but we tuned the other
parameters using a grid search with fivefold cross validation
(Russell et al. 2010). The search space, which was set to opti-
mize the F1 score, and optimized values, are listed in Table 2.

In addition to the RF, we use a fully connected classifica-
tion neural network (Burkov 2019; Géron 2019; Chollet 2018)
to predict low cloud presence. We implement the NN model
in Python using TensorFlow on a Google Colab GPU. For the
NN, we scale all the input features to values between 0 and 1
using unity-based normalization. Since the model predictions
are a binary prediction of the presence of low cloud, we use
the binary cross-entropy loss with a final softmax output layer.
Early stopping is not used during training. To find the optimal
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FIG. 2. (a) (left) PoD, (center) FAR, and (right) CSI for low cloud as predicted by 850 hPa RH exceeding various values (given by
colors) for (top) land and (bottom) water surfaces (as labeled). Time period of analysis is that of the full testing dataset. (b) As in (a),
but for the maximum RH between 1000 and 650 hPa, as defined in the text.
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model architecture and hyperparameter setup, we perform a
guided search using Hyperopt (Bergstra et al. 2013). The
search is conducted using the tree of Parzen estimators (TPE)
algorithm, an optimization approach that sequentially con-
structs models to approximate the performance based on his-
torical measurements (Bergstra et al. 2011). We perform 100
model searches on the training data using threefold cross vali-
dation and select the model with the highest validation bal-
anced accuracy. The NN parameters, search space, and
optimized values are shown in Table 2.

4. Results and discussion

a. Algorithm performance

Following training, low cloud occurrence is predicted for all
points in the testing dataset. Figure 3 shows the PoD of low
cloud as a function of cloud types derived from the CLAVR-x
algorithm. For reference, the frequency of occurrence of each
cloud type, and the frequency of occurrence of low cloud in
each category according to the radar/lidar observations, are
shown in Table 3. The “all” category includes all scenes

without regard to cloud type (including points that CLAVR-x
identifies as clear sky), and “all cloud” includes all such cases
except clear-sky and CLAVR-x’s “probably clear” category.
Different color bars represent the different algorithms; note
that the special case of the CCL 1 RF combination will be
addressed toward the end of this section.

Results for the RF and NN are remarkably similar, with
neither method showing a consistent advantage. Overall, the
PoD of low cloud increases from 0.685 with the original CCL
algorithm, to 0.815 (0.807) for RF (NN) (Fig. 3, “all”). The
increases are most pronounced in three categories: overshoot-
ing tops, overlapping, and cirrus. Low cloud occurring under
cirrus shows the most robust improvements, with PoD
increasing from 0.183 for CCL to 0.686 (0.684) for RF (NN).
There is little change in the supercooled water category, and
decreased performance in the water cloud and fog categories,
since these categories are dominated by single-layer low
cloud, which CCL already captures quite well.

Corresponding values of FAR are shown in Fig. 4. Across
all categories, the FAR decreases from the CCL-only value of
0.210 to 0.147 (0.137) for RF (NN); however, the categories
that show the greatest improvement in PoD come with the

TABLE 1. Variables used in the baseline random forest and neural network experiment.

Variable Description and units Notes

REFL01 through REFL06 ABI channel 1–6 visible reflectances Normalized by cos(solar zenith angle)
TB07–TB16 ABI channel 7–16 brightness

temperature (K)
}

RHmax Maximum RH between 650 and 1000
hPa (%)

}

RH150 RH at 150 hPa (%) }

Lat Latitude (8N) }

Flagsfc 0 indicates land or mix, 1 = water surface Set to 1 where CLAVR-x land_class is 0,
5, 6, 7

Flagsnow/ice 0 indicates snow/ice free land surface,
1 = snow/ice present

Set to 1 if either GFS snow depth or ice
fraction are .0

TABLE 2. Hyperparameters that are tuned and their optimized values.

Variable Search space Optimized value

Random forest
Maximum features to consider per split

������

nfeat
√

2 2,
������

nfeat
√

,
������

nfeat
√

1 2
������

nfeat
√

Maximum tree depth 10, 20, 30, … , 110, 130 30
Minimum number of samples per split 2, 6, 10, 14 10
Minimum number of samples at each leaf node 2, 4, 6 6
Bootstrapping (selection with replacement?) True, false True

Neural network
Number of epochs 30, 45, 60, 75, 100, 120 100
Batch size 10 000, 50 000, 100 000, 150 000 10 000
Optimizer Adam, Nadam Adam
Learning rate 0.0001–0.1 0.001 24
First moment exponential decay rate (b1) 0.8–1.0 0.892
Second moment exponential decay rate (b2) 0.9–1.0 0.925
Number of fully connected layers 2–6 3
Activation type (per layer) Hyperbolic tangent (tanh), rectified linear unit (relu) [tanh, relu, relu]
Dropout rate (per layer) 0–0.4 [0., 0.081, 0.018]
Number of hidden units (per layer) 8–200 [37, 77, 71]
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trade-off of higher FAR values. For example, FAR in the cir-
rus category increases from 0.114 for CCL to 0.219 (0.206) for
RF (NN). We argue that this increase is not particularly sur-
prising, given the way that CCL assigns cloud base and there-
fore layer designations. The only way that CCL can detect
low cloud in a scene with upper-level cirrus is by extending
that cloud layer downward until the base drops below 631
hPa. This would require exceptionally thick cirrus. By con-
trast, RF and NN do not require this. Given the ambiguities
of detecting low cloud signal in a cirrus scene, it is not surpris-
ing that increased detection comes with an increase in false
alarms. By contrast, for the easier-to-retrieve supercooled
water and water cloud categories, FAR is significantly lower
for RF and NN than it is for CCL. CSI, which combines FAR
and POD, is shown in Fig. 5. It is noteworthy that the CSI
score improves across the board relative to CCL (except for

fog, where there is a nearly identical result for RF and a slight
drop for NN).

The geographic distribution of these metrics for RF, NN,
and CCL is shown in Fig. 6. It is first noteworthy that the
results for RF and NN are not only similar in bulk, but in their
geographic distribution as well. There are no notable scenar-
ios where one outperforms the other. We will therefore
address these together as the ML method. Overall, the ML
method of low cloud detection increases PoD and decreases
FAR, resulting in improved CSI score in most geographic
regions. The increased detection ability is most notable in the
middle to high latitudes of both hemispheres, and is reflected
by significant CSI increases in these regions. In the eastern
portions of the South Pacific where stratus are common, it is
no surprise that CCL performs well, and ML provides less
improvement here. However, the adjacent South American
continent has significant detection increases with the ML
method.

b. Assessment of cross sections

To provide another perspective on algorithm performance,
we examine cloud vertical cross sections for selected profiles
in Fig. 7. Although there are millions of such profiles that
could be shown, we focus on cirrus and opaque ice (two of the
CLAVR-x cloud types from Table 3 that showed marked
improvement in low cloud detection relative to CCL), and
choose profiles 1000 through 2000 of the testing dataset for
each cloud type. The reasoning for this is that a width of
approximately 1000 profiles is easily viewable by eye (repre-
senting a horizontal distance of ∼1100 km). For objectivity,
we would have started with the first 1000 profiles of each
cloud type, but for cirrus, these profiles contained relatively
little low cloud, so the starting point was advanced by 1000 for
both cloud types.

For each cloud type, the cross sections show equivalent
radar reflectivity from the CloudSat CPR (displayed in rain-
bow colors), supplemented by locations where the CALIOP
instrument on CALIPSO observed clouds but the CPR did
not (purple colors). Each of the plots consist of sequential
profiles in time from left to right and contain one CLAVR-x
cloud type. Since cloud type changes from profile to profile
(and since the CPR and CALIOP pass into or out of the
GOES-16 field of view regularly), this means that there are

FIG. 3. Probability of detection of low cloud as a function of
CLAVR-x cloud type (vertical axis) for CCL, RF, NN, and com-
bined CCL 1 RF. The “all” category includes all scenes without
regard to cloud type (including points that CLAVR-x identifies as
clear sky), and “all cloud” includes all such cases except clear-sky
and CLAVR-x’s “probably clear” category.

TABLE 3. Cloud types from CLAVR-x, their frequency of occurrence, and the frequency of occurrence of low clouds observed by
the radar/lidar in each category. “All” and “all cloud” are defined in the text.

ABI/CLAVR-x cloud type Occurrence fraction Low cloud occurrence from radar/lidar

All 1.000 0.418
All cloud 0.643 0.090
Overshooting tops 0.004 0.070
Overlapping 0.076 0.088
Cirrus 0.130 0.088
Opaque ice 0.056 0.082
Supercooled water 0.137 0.094
Water cloud 0.161 0.090
Fog 0.078 0.090
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“breaks” in these plots (represented by gray dashed lines in
the top row) where adjacently plotted profiles are actually
nonadjacent in time.

The left panels of Fig. 7 are for scenes that CLAVR-x iden-
tifies as cirrus. Figure 7c adds a black background where CCL
identified cloud in one of three pressure-based bins for H, M,
and L layers. It is noteworthy that while the high (H) and
middle (M) categories do in fact largely occur in regions
where the radar/lidar identify cloud, CCL predicts very little
low cloud occurrence, as evidenced by the lack of cloud iden-
tification in the lowest 5 km (no black shading) even when the
radar/lidar show low clouds. This is especially true for the
radar-identified low clouds near profile 1200, and the lidar
identified low clouds (the thin purple lines, representing the
top of these cloud layers, below which the lidar is completely
attenuated) near profile 1350, and between profiles 1800 and
2000.

Figures 7e and 7g retain the same H and M predictions for
CCL, but supplement CCL’s low (L) layer cloud prediction
with a black background when RHmax exceeds 60% and 80%,
respectively. As discussed in section 3a, RH can be a useful
predictor of low cloud occurrence, but the threshold required
varies widely. In fact, RHmax exceeding 60% is obviously too
low, as this would predict low cloud throughout the entire
scene. Setting RHmax to 80% produces a much better result,
albeit with significant false alarms in profiles less than about
1400.

A much better low cloud prediction is produced by our
ML-based RF model, as depicted in Fig. 7i, where the CCL
prediction is supplemented by positive RF predictions (here-
after referred to as CCL 1 RF; since NN performance is so
similar, only RF is shown here). As discussed earlier, RF uses
RHmax as one of its inputs, but does not require specification
of a threshold. In this panel, it is clear that RF largely captures

the profiles where low cloud is present, while producing rela-
tively little cloud in regions where it is not present in the
observations.

The right panels of Fig. 7 show the same progression of
results, but this time for the CLAVR-x opaque ice category.
Many of the segments featured in this cross section are both
optically and geometrically deep, especially between profiles
1200 and 2000. The bright band is clearly visible in the equiva-
lent radar reflectivity, with reflectivity decreasing toward the
surface (a sign of strong attenuation for the millimeter wave-
length CPR), revealing these clouds to contain significant
stratiform precipitation. These deep segments are mixed with
relatively thick cirrus, generally without underlying cloud. As
in the cirrus case, Fig. 7d reveals that the original CCL misses
most of the low cloud occurrence for these cases, due to
blocking by the higher ice clouds. Using RH thresholds
(Figs. 7f,h) has little utility in these cases, as both the 60%
and 80% thresholds are met even in clear areas. By compari-
son, the RF solution, Fig. 7j, presents a better balance
between detections and false alarms. It correctly detects the
low cloud starting at profile 1000, the group of low clouds
near profile 1100, and the heavily precipitating areas between
profiles 1200 and 2000, while only missing the low clouds
around profile 1200 and with minimal false alarms in the brief
break of low cloud just prior to profile 1600 and again just
prior to profile 1900.

c. Algorithm explainability: Feature importance

The RF and NN implementations have proven to be near
equals in terms of the solutions they provide. One factor that
can be considered in choosing an ML model is the ability to
“look under the hood” (e.g., McGovern et al. 2019; Vilone
and Longo 2020), and this might give a slight edge to the RF
model since it is possible to view the individual decisions trees

FIG. 4. As in Fig. 3, but for false alarm ratio. FIG. 5. As in Fig. 3, but for critical success index.
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and analyze which input features were most heavily used in
the decision-making process, and whether these features were
most influential near the base of the trees versus in the
branches. A particularly useful way to evaluate the impor-
tance of the features used by a model is by calculation of the
permutation importance (Breiman 2001). To do so, each fea-
ture is randomly shuffled, one at a time, and the performance
of the algorithm is reevaluated in terms of some scoring met-
ric. This has the advantage of retaining the distribution of a

given feature, while preventing the feature from contributing
to the final model in a meaningful way.

We calculated the permutation feature importance of
the trained RF model using the mean accuracy and show the
results in Fig. 8. The most important information for the
trained model originated in the 0.47 mm visible channel, fol-
lowed by the 2.2 mm “cloud particle size” near-infrared
channel, the 1.37 mm “cirrus band,” and then the low-level
RH given by RHmax. There are numerous pathways by

FIG. 6. Maps of (left) PoD, (center) FAR, and (right) CSI for (top) RF, (middle) NN, and (bottom) CCL.
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which the trained RF model might use the information from
these bands, but one physical scenario stands out: the
0.47 mm radiance is related to the column-integrated cloud
water, the 1.37 mm band is sensitive to high clouds, and the
2.2 mm band includes information that can be used to dis-
criminate between large ice particles and small water drops.
It is therefore possible that these bands are used by the
algorithm to discriminate scenes containing thin high clouds
with underlying low clouds, from similar scenes without low
clouds. For example, a scene with thin cirrus overlying thick
water cloud might have relatively high radiance in all three
of these bands, but the same scene without the lower cloud
would feature only an elevated 1.37 mm radiance (and

RHmax would possibly be low as well). By contrast, the least
important features used by the trained RF model are those
that characterize surface type. They were initially included
in hopes that they would assist the algorithm in identifying
between bright surfaces due to cloudiness and those due to
snow or ice. It appears that this is of minimal importance to
the trained algorithm. It is notable that five of the six visible
bands appear before any infrared band in terms of permuta-
tion-based feature importance.

A shortcoming of permutation feature importance is that it
is difficult to interpret when significant correlation is present
between input features. This is because, when permutating
only one feature at a time as we did to create Fig. 8, a feature

FIG. 7. Example radar and lidar profiles for CLAVR-x cloud types (left) “cirrus” and (right) “opaque ice.” Rain-
bow colors are equivalent radar reflectivity (dBZ) and purple shading is lidar cloud mask where there is no radar
return. (a),(b) The radar and lidar profile, with vertical gray dashed lines indicating a break between consecutive pro-
files. (c),(d) Cloud-layer detection by the CCL algorithm with a black background; recall that detection applies across
a broad H, M, or L layer. The remaining plots supplement CCL cloud detection below 631 hPa with (e),(f) RHmax .

60%, (g),(h) RHmax . 80%, and (i),(j) the new RF prediction.
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may be deemed unimportant because (i) it is redundant, i.e.,
its information is important but already contained in the
remaining features; (ii) it is irrelevant, i.e., its information
would not be helpful even if none of the other features are
included; or (iii) a combination of the two. Disentangling
these cases for each feature is fairly complex as it requires
testing the effect of simultaneous permutation (or other
removal) of a large number of combinations of features. Com-
mon methods include sequential forward/backward selection
(McGovern et al. 2019) and causal discovery (Ebert-Uphoff
and Deng 2012). However, here we take a simpler approach
only requiring few tests that nevertheless provides powerful
insights. Namely, we successively drop features and train new
RF models, starting from the least important feature and pro-
ceeding until only the most important feature remains. The
CSI score for low cloud detection as a function of number of
features dropped is shown in Fig. 9. Consistent with the above
findings, all of the infrared-only channels can be dropped with
only minimal impact on model performance (corresponding
to a CSI decrease from 0.715 to 0.697 with 14 features
dropped). However, as more important features are dropped,
performance quickly deteriorates. For example, the effect of
dropping any one feature from the sixteenth onward is greater
than the cumulative effect of removing the 12 least important
features simultaneously.

d. Algorithm implementation and variations

There are several ways that this algorithm can be imple-
mented on near-real-time data. First, for operational
implementation, Fig. 9 suggests that the algorithm can
operate with a much smaller feature subset, which would
lessen calculation time; the ideal algorithm would seek a
balance between calculation time and required accuracy.
Next, we note that the ML-based low cloud determination
stands on its own, requiring only the satellite and GFS

inputs described in Table 1. Since it uses a completely dif-
ferent approach than the CLAVR-x CCL product, it stands
to reason that it can be combined with CCL by supple-
menting the CCL-based low cloud mask with the RF-based
mask. In doing so, we do not allow clear pixels to be reclas-
sified by RF as cloudy, for consistency with the original
method. This combination methodology (CCL 1 RF) was
already demonstrated in Figs. 7i and 7j. The overall perfor-
mance is shown statistically by the light blue bars in
Figs. 3–5. In general, it allows detection capabilities similar
to RF, but at the expense of increased false alarms relative
to RF (and dominated by values for CCL alone for those
cloud types where CCL already has a large number of false
alarms).

An example implementation of the RF 1 CCL combination
on a full disk GOES-16 ABI image is shown in Fig. 10. A large
number of clouds previously classified as H1M have been
reclassified as H1M1L. Two notable examples are the mid-
latitude cyclone over central North America, and the frontal
system over the Southern Ocean in the lower left of the image.
In other locations, M pixels have been reclassified as L1M.
The pink colors mark the appearance of the new H1L cate-
gory, which was not possible with CCL alone.

Although the focus of this work is daytime low cloud identi-
fication, the general methodology can be extended to other
inputs, targets, and times of day. To demonstrate this, we cre-
ated RF models with slightly different inputs and conducted
some additional “toy experiments.” The results of these
experiments, in addition to those of the main work (the “full”
algorithm), are shown on the performance diagram in Fig. 11.
This diagram shows success ratio (1 2 FAR) versus PoD,
with CSI in curved contours and frequency bias as diagonal
lines.

The results from the full algorithm are shown as orange
dots; each orange dot represents a result corresponding to a

FIG. 8. Permutation-based feature importance for the RF model,
shown as the difference in mean accuracy caused by the shuffling
of each feature. See Table 1 for variable names; numbers in paren-
thesis are band centers in micrometers.

FIG. 9. CSI score for low cloud detection of RF model as features
are successively dropped. Features are dropped in order from least
important to most important as given in Fig. 8. The dashed line rep-
resents CCL.
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probability of low cloud (P) between 0.1 and 0.9. As discussed
earlier, a value of P = 0.5 has been used in all results until pre-
sent; that point is represented by the middle orange dot that is
closest to the diagonal line designating a frequency bias of
unity. The spread demonstrates that different thresholds can
be adopted depending on whether one’s goal is to maximize
detections or minimize false alarms.

Next, we note that the results presented in this work are
applicable to daylit portions of Earth, and it has been dem-
onstrated that the infrared channels have little influence on
the trained model when the visible channels are present.
Therefore, we might ask: can a similar model be trained
excluding the visible channels only, and still provide useful
information? Perhaps surprisingly, given the previous state-
ment, the answer is yes. To test the feasibility, we remove
ABI channels 1–7 from the training (the 3.9 mm channel is
also excluded, as it responds to both reflected sunlight and
emitted thermal radiation). The resulting model performs
as shown by the solid blue dots (labeled “nighttime”) in
Fig. 11. Though the overall CSI decreases from 0.715 for
the full algorithm to 0.656 for the IR-only algorithm (for
P = 0.5), this still represents an improvement over CCL,
whose CSI is 0.579 and which has a frequency bias farther
from unity. Therefore, we find that an accompanying night-
time algorithm can be implemented with only a minor
decrease in detection and corresponding modest increase in
false alarms.

Oftentimes ML model performance can be enhanced by
filtering the input data in ways that we expect may be use-
ful for the problem at hand. For example, we can train our
model with ABI channel ratios and differences that we sus-
pect may be relevant for low cloud detection. We created

three additional “toy” experiments to investigate such
combinations. Experiment R161 3 uses all inputs as the
full model, plus 1) the 10.3–12.3 mm brightness tempera-
ture difference, which is commonly used in cloud classifica-
tion algorithms (e.g., Purbantoro et al. 2018); 2) the
3.9–11.2 mm brightness temperature difference, often used
for fog and low cloud detection; and 3) the 1.37 to 0.64 mm
reflectance ratio. Since 1.37 mm is in a water vapor absorp-
tion band, its sensitivity to clouds will depend on their
height, with relatively low sensitivity to lower-level clouds
compared to 0.64 mm in a moist atmosphere. Experiment
R161 5 adds two more features, the 4) 6.9–7.3 and
5) 7.3–13.3 mm brightness temperature differences. The 6.9
and 7.3 mm channels are in water vapor absorption bands,
with peak weighting functions in the middle and lower tro-
posphere, respectively; the difference becomes small when
a relatively dry mid- to upper troposphere overlies opti-
cally thick clouds extending up to the midlevels (Hirose
et al. 2019). Finally, experiment Rmixed is the same as
R161 5 except that ABI channels that form differences or
ratios are excluded from also serving as independent
inputs. Results of these three experiments are shown in
Fig. 11, again for P = 0.5. Remarkably, the overall perfor-
mance of each of these experiments is nearly identical to
the full algorithm. We therefore find that, for our applica-
tion, providing the ABI channel data directly performs
approximately the same as when we also (or alternately)
providing some key ratios and differences.

It is also noteworthy that the full model can be used for
mid- or high-level cloud detection (or any other combina-
tion of vertical levels) by simply adjusting the cloud height
level used as “truth” during training. With this simple

FIG. 10. Spatial comparison of low cloud detection between (left) CCL and (right) CCL1 RF
from full-disk ABI scan at 1700 UTC 8 May 2019.
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change, the resulting performance for mid- (M) and high-
level (H) cloud is shown in Fig. 11 for P = 0.5. For both
cases, CSI is increased relative to the low cloud algorithm
(though with a degraded frequency bias for midlevel cloud).
It is not surprising that the algorithm would perform better
at higher levels in the atmosphere, since the probability of
obscuration by upper-level clouds is decreased, and recent
works have already established the general utility of ML-
based decision tree and neural network methodologies for
cloud masking (e.g., White et al. 2021; McCandless and
Jiménez 2020; Kilpatrick et al. 2019; Hollstein et al. 2016).

Finally, although this work has focused on ABI, it has been
demonstrated that using subsets of the full set of channels still
results in a low cloud retrieval that improves upon the base-
line CCL in multilayer scenes. It should therefore be possible
to apply the same methodology to other sensors, like VIIRS,
MODIS, or other ABI-like sensors in geostationary orbit, by
either training the algorithm with the specific channels appli-
cable to those instruments, or by using similar channels. Most
ABI bands share overlap with the bands on VIIRS, but there
are some notable exceptions in the infrared: bands 8–10
(6.2–7.3 mm water vapor bands), 12 (9.6 mm ozone band), 14
(11.2 mm infrared window band), and 16 (13.3 mm CO2 band).
None of these bands appear in the top half of most significant
features in Fig. 8, with the exception of band 16. However,
band 16 is highly correlated with band 15, and removing band
16 while retaining 15 results in virtually no change in perfor-
mance (CSI decrease of 0.0001).

5. Conclusions

The detection of low-level clouds in the atmosphere has
proved particularly challenging from satellite-based sensors

when multiple cloud layers are present. The machine learn-
ing methods described in this work have shown skill in
detecting low cloud in multilayer scenes. Inputs include
visible reflectances, infrared brightness temperatures, esti-
mates of relative humidity at multiple levels in the atmo-
sphere, and information about the underlying surface.
These methods can be used in a “stand-alone” mode, or
they can be combined with the existing CCL representa-
tion of three-dimensional cloudiness, providing significant
improvement in the overall characterization of vertical
cloud structure.

It has been demonstrated that these machine learning
methods can be applied in either daytime or nighttime
mode and are likely to be applicable to a variety of other
sensors besides ABI. They are also applicable to other lev-
els in the atmosphere besides just low clouds, although
these clouds were the focus of this work due to their opera-
tional forecasting significance. As such, one could envision
that a complete three-dimensional retrieval, independent
of the existing CCL algorithm, could be developed using
the principals outlined in this work. Such a retrieval would
likely need to be more than a simple “stacking” of the ML-
based methods applied independently to multiple levels, as
cloudiness at one vertical level is likely to be highly corre-
lated with cloudiness in adjacent levels. In particular, it
would be beneficial for such an algorithm to learn and
predict the cloud mask for the entire column, rather than
for just one level in the column. This use of multioutput
learning is a fairly straightforward extension of the
method described in this paper, and would expand predic-
tion capabilities beyond just low clouds. Finally, we note
that by using regression instead of classification models, it
should be possible for the ML algorithm to predict cloud
fraction in these vertical levels, instead of a simple cloud
mask.

The CCL products for ABI and VIIRS are currently dis-
played in the Satellite Loop Interactive Data Explorer in
Real Time (SLIDER; Micke 2018) web application.4 As
SLIDER serves as something of a test bed for products in
transition to operations, we plan to display the machine
learning–based enhancement described in this paper as an
experimental product in the future.
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FIG. 11. Performance diagram summarizing performance of RF
models discussed in the text as evaluated on the testing dataset.
The solid dots show performance of the full (daytime) and night-
time algorithms for probabilities of low cloud (P) varying from 0.1
to 0.9 in 0.1 increments (the “topmost” dots represent 0.1, and the
“bottommost” represent 0.9). CCL shown by red diamond; other
symbols show performance of various models for P = 0.5. CSI is
displayed as dotted curved contours, and frequency bias as dashed
lines.

4 https://rammb-slider.cira.colostate.edu.
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rithms for hyper-parameter optimization. 24th Int. Conf. on
Neural Information Processing Systems, Granada, Spain,
NeurIPS, 2546–2554, https://proceedings.neurips.cc/paper/
2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf.

}}, D. Yamins, and D. Cox, 2013: Making a science of model
search: Hyperparameter optimization in hundreds of dimen-
sions for vision architectures. Proc. 30th Int. Conf. on
Machine Learning, Atlanta, GA, PMLR, 115–123, http://
proceedings.mlr.press/v28/bergstra13.html.

Breiman, L., 2001: Random forests. Mach. Learn., 45, 5–32,
https://doi.org/10.1023/A:1010933404324.

Burkov, A., 2019: The Hundred-Page Machine Learning Book.
Burkov, 141 pp.

Chollet, F., 2018: Deep Learning With Python. Manning, 361 pp.
Cronk, H., and P. Partain, 2017: CloudSat ECMWF-AUX auxil-

iary data product process description and interface control
document. Cooperative Institute for Research in the Atmo-
sphere Doc., 11 pp., https://www.cloudsat.cira.colostate.edu/
cloudsat-static/info/dl/ecmwf-aux/ECMWF-AUX_PDICD.
P_R04.20070718.pdf.

Ebert-Uphoff, I., and Y. Deng, 2012: Causal discovery for climate
research using graphical models. J. Climate, 25, 5648–5665,
https://doi.org/10.1175/JCLI-D-11-00387.1.
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