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ABSTRACT 
 
 

SECURE CAN LOGGING AND DATA ANALYSIS 
 
 

Controller Area Network (CAN) communications are an essential element of modern 

vehicles, particularly heavy trucks. However, CAN protocols are vulnerable from a cybersecurity 

perspective in that they have no mechanism for authentication or authorization. Attacks on 

vehicle CAN systems present a risk to driver privacy and possibly driver safety. Therefore, 

developing new tools and techniques to detect cybersecurity threats within CAN networks is a 

critical research topic. A key component of this research is compiling a large database of 

representative CAN data from operational vehicles on the road. This database will be used to 

develop methods for detecting intrusions or other potential threats. In this paper, an open source 

CAN logger was developed that used hardware and software following the industry security 

standards to securely log and transmit heavy vehicle CAN data. A hardware prototype 

demonstrated the ability to encrypt data at over 6 Megabits per second (Mbps) and successfully 

log all data at 100% bus load on a 1 Mbps baud CAN network in a laboratory setting. An AES-

128 Cipher Block Chaining (CBC) encryption mode was chosen. A Hardware Security Module 

(HSM) was used to generate and securely store asymmetric key pairs for cryptographic 

communication with a third-party cloud database. It also implemented Elliptic-Curve 

Cryptography (ECC) algorithms to perform key exchange and sign the data for integrity 

verification. This solution ensures secure data collection and transmission because only 

encrypted data is ever stored or transmitted, and communication with the third-party cloud server 

uses shared, asymmetric secret keys as well as Transport Layer Security (TLS). 
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Chapter 1. Introduction 

A. Background 

Historically, heavy trucks have been made of various mechanical and thermal systems 

that convert energy from fuel to kinetic energy. However, modern heavy trucks incorporate 

many Electronic Control Units (ECU) communicating over an internal vehicle network called the 

Controller Area Network (CAN). These ECUs carry commands, such as testing the brakes, 

produce more torque, etc. or sharing sensor data, such as vehicle speed, engine speed, fuel levels, 

etc. While the additional electronic control systems have enabled increases in fuel efficiency, 

vehicle reliability, and business effectiveness, the added systems create new levels of 

complexity. Figure 1-1 illustrates a generic picture of an electronic control system by listing and 

identifying the major ECUs, such as the anti-lock braking system, electronic stability control, 

engine control module, etc. within a heavy truck. 
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Figure 1-1. A heavy truck system [1] 

The National Motor Freight Traffic Association (NMFTA) has published a whitepaper 

regarding the heavy vehicle cybersecurity [1]. The paper describes why the technologies on these 

vehicles has progressed (the good), the flaws inherent with such architectures (the bad), and how 

those flaws can be easily exploited (the ugly). 

With so many interconnected ECUs and integrated sensors available in a modern vehicle, 

safety and comfort features are more robust and well-implemented. Most vehicles now have 

Anti-lock Braking System, Traction Control System, Roll-over Stability Control, and Electronic 

Stability Control as standard safety features that significantly improve the driver ability to gain 

back vehicle control during times when accidents are likely to happen. In addition, some heavy 
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vehicles even include an integrated airbag module to minimize impacting damage on the driver if 

accidents do occur. The safety of vehicles has been greatly improved over the years, and 

automotive companies continue to design and optimize these systems. In addition to safety, 

comfort is an important design consideration. Depending on the consumer’s desires, different 

models or trims now possess some features. Some basic features include door ajar indicator, 

infotainment sound level adjustment based on vehicle speed, automatic headlights, etc. Higher 

levels of automation available today include complex systems such as Adaptive Cruise Control, 

Lane Departure Warning, Lane Keeping Assist, Automated Parking Assist, etc. The automotive 

industry is heading toward connected vehicles where Vehicle-to-Vehicle, Vehicle-to-

Infrastructure, or self-driving vehicles are being developed and tested. As a result, safety, 

comfort, and automation are the key elements in successful vehicle design, and the evolution in 

computerization within vehicles has provided a big leap in the industry. 

Heavy trucks and passenger cars use CAN for internal network communications. 

Developed by Bosch in the early 1980s, CAN has been used by the automotive industry 

progressively since then. The most common implementations of CAN versions used are CAN 

2.0A with 11-bit device identifiers for passenger cars, and CAN 2.0B with 29-bit device 

identifiers often found on heavy trucks, as specified by J1939-21 Data Link Layer [2]. The CAN 

bus is made up of multiple nodes, primarily ECUs, that communicate with differential signaling 

through two wires: CAN high (CANH) and CAN low (CANL). The CAN protocol is 

fundamentally flawed from a data security perspective and has been heavily researched. The 

NMFTA whitepaper [1] lists some vulnerabilities associated with the architecture of CAN 

protocol: 
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• Any node can listen, and any node can talk. There is no order or permission required for a 

node to start communicating, provided it is on the CAN bus.  

• Any node can assert priority. CAN protocol handles message collision with arbitration, in 

which the message with highest priority wins. 

• There is no encryption or validation within the CAN bus communication. The messages are 

sent in clear text; all received messages are assumed to have been sent from an authorized 

sender. 

• The limit of 8 bytes per CAN frame eliminates the use of any modern block cipher to encrypt 

the data to ensure confidentiality. 

CAN is a high speed, robust communication protocol; however, it was made in the time 

where cybersecurity was not in the mindset and the vehicle connectivity was not considered. The 

only security in the CAN messages is through obscurity which means each manufacturer designs 

its own proprietary message IDs and data fields without publishing it. Nevertheless, as seen by 

the mentioned characteristics above, data availability, integrity, and confidentiality can be easily 

exploited. If the network or a node is compromised by an attack, the vehicle safety mechanisms 

can malfunction. Figure 1-2 shows the CAN protocol and its vulnerability if any CAN node is 

attacked. 
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Figure 1-2. Abstracted CAN bus with vulnerabilities 

There are a few common attacks that have been done, either by actual hackers or in lab 

testing, as described in the NMFTA whitepaper: 

• Denial of Service – sending messages with the highest priority as fast as possible will 

overtake other legitimate messages with arbitration and hence, overwhelm the CAN bus. This 

leads to ECUs being unable to communicate with each other; as a result, the vehicle can 

behave unpredictably and/or cannot function at all. This is a typical basic attack that affects 

data availability. 

• Middleperson or Man-In-The-Middle (MITM) – a malicious device is inserted between two 

or more communicating parties where it can observe and modify messages transmitting in 

between them. Moreover, a CAN bus node can be taken over and become the middleperson, 

where it sends out modified messages to drown out the original sender. Data integrity and 

confidentiality can be exploited, and commands can be changed. 
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• Diagnostic Packets – if attackers have access to the CAN bus, they may also be able to access 

the diagnostic functions that automotive technicians use for troubleshooting. These functions 

are mainly intended to be run in a controlled environment and may involve important safety 

features. If they are exploited and used incorrectly, they will do more harm than good. 

• ECUs Firmware – the firmware is the memory and commands for the brain of the vehicle 

operation. Sometimes, it needs to be updated or debugged by the manufacturer, and this 

process usually takes place through the diagnostic port, which involves the CAN bus. 

Hackers can download, reverse-engineer the firmware to assembly level or a C-Code 

representation, and determine the proprietary data structure designed by the manufacturers. 

They may have enough information to creatively exploit the vehicle or even rewrite their 

modified firmware back to the ECUs.  

• Fuzzing – this is a method where messages are injected randomly into the CAN bus to 

determine how the vehicle behaves. Different functions can be identified and tied to what 

message parameters using fuzzing techniques. Therefore, proprietary information is at risk of 

being exposed. Fuzzing and also lead to unintended cyber-physical reactions and even 

physical damage. 

A good model against cybersecurity threats can be measured by the CIA Triad: 

confidentiality, integrity, and availability. Confidentiality means sensitive information should be 

protected against unauthorized access. Enforcing confidentiality usually involves cryptographic 

methods. Integrity means that the data has not been altered by unauthorized users and the 

originator of the data can be verified. Current methods to protect data integrity use cryptographic 

hashing and digital signatures. Lastly, availability means authorized users can freely access the 

data. Protecting data availability depends on the system infrastructure and model that can quickly 
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detect threats or failures and be resilient when such circumstances occur. For CAN network 

systems, any additional cryptographic implementations could be pursued to increase the CIA 

Triad benchmark.  

B. Objective 

Automobiles have cybersecurity concerns based on the characteristics of the CAN 

protocol as there are many attack vectors and methods that can be implemented to exploit 

automotive systems. However, heavy trucks or commercial vehicles are exposed to cybersecurity 

risks differently comparing to passenger vehicles due to some major factors. The primary 

distinguishing feature is that heavy trucks follow the SAE J1939 standard [3], which is a 

recommended practice for communication and diagnostics among vehicle components. The 

manufacturers are not obligated to abide by the standard; however, they do implement many 

parts of SAE J1939 on a heavy vehicle network. The second difference is that heavy trucks are 

built with accommodations for horizontal integration to allow customers to customize the 

vehicles based on their needs. This means that customers have many options from which to 

choose for various components, including engines, brake controllers, transmissions, telematics 

units, infotainment systems. An unified communications standard, such as SAE J1939, is 

necessary to support interoperability and “plug and play” functionality between these disparate 

hardware systems. However, with open standards, heavy vehicles are easy targets because 

hackers can easily look for weaknesses within the network structure from the publicly available 

information. The CAN protocol security through obscurity strategy will continue to fail on top of 

its existing vulnerability to some attacks.  

The last difference between passenger vehicles and heavy trucks is the prevalent use of 

third-party telematics devices. These telematics companies provide equipment that is installed on 
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the vehicle network to keep track of information such as location, speed, fuel status, diagnostic 

trouble codes, etc. Telematics units can be seen in big fleets where monitoring hundreds or 

thousands of trucks is essential for business operations and compliance with regulations. A 

cybersecurity challenge is these telematics units are connected wirelessly, which introduces a 

new attack vector to the previously air-gapped vehicle network. 

With these threats, heavy vehicles may be at high risk of being exposed to cyber-attacks. 

Therefore, the heavy vehicle industries should realize that increasing cybersecurity posture and 

mitigating risk and potential threats are important objectives in not only designing and building 

new commercial vehicles, but also maintaining current trucks on the road. Preventing attacks 

from occurring is always preferable to mitigating an attack once it takes place. Thus, intrusion 

and anomaly detection mechanisms need to be developed and deployed in the CAN bus system. 

A large pool of data from heavy vehicle CAN buses in the form of log files from normally 

operating trucks is essential for development and testing of vehicle network based cybersecurity 

controls. This data will consist of various types of CAN messages that take place on the bus, 

which can be periodic from normal operation or aperiodic from responding to special events.  

The purpose of this thesis is to find a solution to build such a data pool securely and efficiently. 

In addition, the data collected will also be made available by request for references; therefore, it 

will be beneficial for use by the trucking industry. 

C. Motivation 

According to the latest Federal Motor Carrier Safety Administration (FMCSA) 2019 

Large Truck and Bus Statistics [4], there were approximately 12.2 million registered heavy 

vehicles in the U.S alone in 2017 and approximately 730,000 new trucks on the road each year. 

Moreover, commercial vehicles often carry high-risk or high-value cargo. These transportation 
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and freight services play an important role in the national and global economy. A mass cyber-

attack on commercial vehicles nationwide will lead to devastating consequences: economic 

recession, shortage of supplies, public endangerment, lack of essential services, etc. As an 

engineer, the safety of the public is paramount. Such disasters are not tolerable and need to be 

prevented. As a result, the motivation for this thesis lies on the responsibilities and ethics of an 

engineer. 

This thesis is one part of a two-part project funded by the National Science Foundation 

(NSF), with the support of the National Motor Freight Traffic Association, Inc. (NMFTA), who 

has been providing access to trucks from many volunteering companies. The title of the funded 

project is “SaTC: CORE: Small: Collaborative: GOALI: Detecting and Reconstructing Network 

Anomalies and Intrusions in Heavy Duty Vehicles” with the grant number of 1715409 from the 

National Science Foundation. The industry has taken the matter of cybersecurity seriously by 

providing resources to achieve the objective of detecting threats rather than responding to 

damage. Given such support, this is a great and unique opportunity to reach the objective.  

D. Related Research 

There are many public papers regarding different vehicle hacking techniques that exploit 

the CAN security posture. One of them is the infamous Jeep hack back in 2015, performed by 

Charlie Miller and Chris Valasek [5]. Charlie and Chris were able to find a way to gain access to 

deep level networks where sensitive signals are transmitted via the infotainment system. The 

firmware of this head unit was modified to execute malicious commands to critical ECUs. The 

result was that the vehicle was disabled. Data integrity and confidentiality have been exploited 

with this technique. In another paper, Subhojeet Mukherjee described how he made a denial of 

service attack on embedded networks in commercial vehicles [6]. With his testbed consisting of 
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a single, high-speed CAN bus of 250 kbps, he has successfully shown that by sending a large 

number of request messages for a specific parameter, the number of regular messages dropped 

significantly due to the high computational load. Understanding of the limit of the system 

performance, Subhojeet exploited data availability here. In a different paper, Kyong-Tak Cho 

and Kang Shin took advantage of the error handling feature of the CAN protocol to shutdown 

ECU nodes from the network [7]. When an ECU tried to communicate, they injected attack 

messages to trigger the error flag to increase the victim Transmit Error Counter (TEC). When the 

TEC is above 255, the node is forced to shut down, hence the so-called bus-off mode. They can 

then send messages with forged ID and data to impersonate the node. Again, data integrity has 

been violated using the CAN data protocol. These attacks are no longer hard to implement, 

especially with the current publicly available information and technology. The question is how 

well we mitigate risk and potential threats to prevent cyber-attacks. 

Several CAN projects to gather or monitor vehicle data have been pursued. A group of 

students from the University of Michigan have attempted to build a standalone embedded system 

to collect CAN messages, while filtering important ones with the purpose of warning drivers [8]. 

Adnan Shaout, Dhanush Mysuru, and Karthik Raghupathy described in the paper that their setup 

consisted of Vector software CANoe and Vector 1610 CAN hardware for CAN simulation, an 

Arduino UNO with ATMega328p processor and a CAN Shield hardware for CAN interface, a 

display for warning driver, and a Teensy 3.6 with SD card slot for memory storage. During the 

experiment, the Arduino UNO sniffed all the CAN messages with the help of the CAN Shield. 

This processor filtered out the messages with appropriate addresses and sent a copy of the data to 

the Teensy 3.6 for storage on the SD card. The display showed error messages if the messages 

contain undesired sensor values. The design functioned as intended but encountered computing 
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power problems that caused the system to drop messages with an interval less than 50ms. 

Progress has been made on this problem, as stated in the paper, where the modified system can 

handle up to inter message time of 5ms. However, when a vehicle is under denial of service 

attack, the messages can be injected at a much faster rate, which can pose a challenging issue. If 

the system cannot capture all messages, it will not meet the requirements of a CAN monitoring 

design. The system cybersecurity was deemed to be out of scope and thus not addressed in the 

paper. However, if there is any cybersecurity threat happens to the vehicle, this system will not 

likely to detect such attack and even fail to operate. 

In another project, Manthias Johanson and Lennart Karlsson discussed their wireless 

diagnostic system, where CAN messages are captured and monitored over an Internet connection 

[9]. This is interesting because the project involved the Internet of Things (IoT), which led to 

more complications in the system. The design was a wireless Diagnostic Read-out (DRO) 

system, which consisted of the Vehicle Information and Diagnostic for Aftersales (VIDA) device 

as a DRO system, a custom-built Dynamically Linked Library (DLL) for tunneling CAN frames 

over the Internet, a mobile unit equipped with an embedded Linux OS computer for CAN 

interface, an Internet connection through a General Packet Radio Services (GPRS) modem, and a 

server for dispatching requests. The DRO process involved a manual initiation with a button on 

the mobile device. An encrypted Transmission Control Protocol (TCP) connection was 

established on the server, with a public IP address reachable from the mobile unit. After that, 

specific diagnostic CAN messages were sent to the mobile unit from the server, where they were 

relayed onto the CAN bus. The responses were captured and sent back to the server. Due to the 

bandwidth limitation, the system could not relay all messages on the CAN bus and, therefore, 

only filtered out important ones. However, the paper did touch on the concerns of data integrity 
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and confidentiality because an Internet connection was used by employing encrypted TCP 

connection along with RSA-based authentication mechanism. 

Capturing all CAN data, particularly at high speeds, was a common problem that 

impacted both referenced CAN monitoring projects above. This is even harder to achieve when 

cybersecurity measures and wireless connection are implemented, because processing power and 

transmission bandwidth are limited, respectively.  

E. Approach 

Due to the complexity and high cost of integrating a new embedded system into the 

existed heavy truck network components, the best approach to collect CAN data is to design and 

build an affordable standalone device that can be easily connected to the vehicle CAN bus. 

Because the device is standalone, the data should be stored on an external memory storage, such 

as SD cards for simple management. The device must be able to capture all the data because 

missing abnormal messages will defeat the purpose of the project. To do so, the device needs to 

have a direct connection to the vehicle instead of wireless, even though the wireless feature can 

be beneficial for other applications, such as transferring existing data to a computer. Data can 

grow enormously, and thus, a cloud platform may be useful to store and manage the logs from 

many different uploading devices. Using third-party servers accessed over the Internet poses a 

risk from a cybersecurity aspect. Moreover, data integrity and confidentiality are two important 

factors that need to be protected. The reasons for encrypting the data are that altered data is 

useless and some vehicle owners do not wish to publish their data due. As a result, security 

measures such as cryptographic algorithms are utilized to encrypt, sign, and verify the data.  

F. Contribution 

In addition to the large data pool for references, this thesis should contribute: 
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1. Detailed documentation regarding the design of the CAN logging device, such that some of its 

applications are available and can be applied to the vehicle model with the purpose of increasing 

cybersecurity posture.  

2. Use cases of logged data in a digital forensic context. 

3. Aggregated CAN data from many different trucks. 

4. Experiences and skills learned through this project are very valuable for protecting heavy 

vehicles and, thus, protecting the public. 

G. Organization of Thesis 

The thesis is divided into six chapters: 

• Chapter 1 provides a basic introduction to the project regarding the trucking industry 

background, objective of the project, motivation, literature review of related researches, 

an approach to achieve the objective, and the contribution. 

• Chapter 2 provides the hardware design which lists the project requirements, system 

block diagram, different design alternatives for consideration, detailed component 

schematics showing how the electrical components are connected to each other, Printed 

Circuit Board (PCB) layout displaying the placement of those components on the device, 

Bill of Materials (BOM) listing all required components, how the device is manufactured 

and assembled, and results from functional tests.  

• Chapter 3 provides the software design, which consists of the process overview 

indicating the interactions between the all system components, the two-part processes of 

provisioning and normal operation, and the example transcripts. The chapter also dives 
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into the embedded firmware of the device, the code of the local computer application, and 

the interface of the cloud services for each of the operation modes. 

• Chapter 4 discusses the experiences of visiting different field locations for testing and 

data collection. The data is decoded for some important vehicle parameters for analysis. 

• Chapter 5 introduces the device’s different applications in the cybersecurity aspect to 

help retrieve and reverse-engineer Cummins ECU data for forensics purposes. An SAE 

technical paper was written and submitted on this subject, with the title of “Chip and 

Board Level Digital Forensics of Cummins Heavy Vehicle Event Data Recorders” [10]. 

• Chapter 6 concludes the thesis with restatement of abstract, contribution, and lists some 

future works for project improvement.  
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Chapter 2. Hardware Design 

A. Requirements 

To carry out the objective, the CAN logger device must securely capture all CAN data 

under both normal and abnormal operating conditions. Secondly, the data must be securely 

stored and organized for easy retrieval and decoding by the data owner. Lastly, the design and 

source code should be made available to the public. A list of requirements for fulfilling the 

desired goals follows. While some requirements have not been vetted against industry standards, 

they have worked for laboratory uses. The pinout requirements are depicted in Figure 2-1 and 

summarized below.  

1. The logger must support multiple CAN channels following the J1939 Deutsch 9-pin 

connector standards. This configuration is as follows: 

a. CAN0: J1939 has CAN-H on pin C and CAN-L on pin D.  

b. CAN1: OEM Specific has CAN-H on pin H and CAN-L on pin J.  

c. CAN2: Pins F and G should be multiplexed to have CAN-H/J1708-H and CAN-

L/J1708-L, respectively. 

 

Figure 2-1. SAE standard 9-pin Deutsch connector for heavy truck [11] 

CAN0 

J1708/CAN2 

CAN1 
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Most vehicles have J1939 as the main CAN channel; however, many vehicles on 

the road still have the legacy J1708 network, which is an old serial 

communication protocol that is currently being replaced by J1939. Newer 

vehicles now also have CAN1 channel and for some PACCAR engines, J1708 has 

been replaced with CAN2. As a result, the design must have a multiplexing 

function to switch between J1708 and CAN2, depending on the vehicle. The 

connector is also known as the vehicle diagnostic port. A typical pin out for the 

connector is illustrated in Figure 2-1. Vehicles with 250kbps bus bitrate carry 

black connectors. New vehicles with 500kbps bus bitrate carry type-2 green 

connectors for easy indication. Figure 2-2 shows a type-1 to type-2 adapter cable. 

 

Figure 2-2. SAE J1939 type-1 (black) to type-2 (green) adapter cable [12] 

2. The logger needs to be inexpensive and easy to manufacture because a large number of 

devices is essential for efficiently collecting data from many different locations. The 

desired cost per device should not exceed $200.  
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3. The logger must be able to capture all CAN messages, even at 100% bus load. This 

ensures the device’s reliable functionality to prevent losing any information that can be 

critical for data analysis. 

4. In addition to the normal CAN messages, the logger must also capture error frames in 

order to help detect abnormal activity on the CAN bus. 

5. The logger must use the vehicle battery line from the connector as a source for power to 

minimize cost associated with adding extra self-power components.  

6. The logger must withstand power failure without losing current logging session. Power 

failures could occur if the device is disconnected from the port or if vehicle loses power 

from the battery or alternator.  

7. The logger must handle typical voltages associated with vehicle system up to 24V. 

However, these transients may go up to 30V or more because there are load dumps and 

reversals associated with inductive loads and starters that create spikes. It is vital the 

device operation is sustainable and resilient in such conditions. Therefore, a maximum 

design system voltage of 36 V was chosen to mitigate the risk of system power failure 

that may occur. If the voltage exceeds the maximum specification, the device must also 

have an inexpensive way to protect critical components from permanent damage.  

8. The logger must automatically detect different CAN bus speeds. Due to different CAN 

bitrates used on different vehicles, the device should be able to automatically detect the 

current bitrate on the bus. The most common ones on heavy trucks are 250 kbps and 500 

kbps. Other bitrates that may be used are: 125 kbps, 666 kbps, and 1 Mbps. This feature 
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helps eliminate manual bitrate input from the user, and thus, making the operation 

quicker and more convenient.  

9.  The logger should have removable external storage for keeping the log data. 

10. The logger must employ standard cryptographic implementations to protect data integrity 

and confidentiality. Asymmetric keys can be utilized for signing, verifying, and safely 

exchanging symmetric keys which are used for data encryption. Because the design and 

source code are going to be public, the objective is to achieve security through the use of 

open standards. 

11. The backend storage system needs to enable secure and a scalable access to the data. 

12. Users need a friendly and easy-to-navigate interface to upload and download files from 

the server. This application must be a secure gateway for the system to authenticate users 

and monitor their activities. Users should not have permission to directly access files 

stored on the server.  

B. Design Alternatives 

There are several CAN hardware devices on the market that can be used to log data for 

the project. For example, some common CAN analyzing tools are PEAK PCAN series, Vector 

CANlog, Intrepid ValueCAN, as shown in Figure 2-3. Diagnostic CAN tools, such as DG DPA5, 

Nexiq USB Link 2, Cummins Inline 7, also have features to capture data through their PC 

interface. Figure 2-4 shows examples of the diagnostic tools.  
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Figure 2-3. CAN analyzing tools: PEAK PCAN-USB [13] (left), Intrepid ValueCAN [14] 

(middle), and Vector CANlog [15] (right) 

 

Figure 2-4. Diagnostic tools: DG DPA5 [16] (left), Nexiq USB-Link 2 [17] (middle), and 

Cummins Inline 7 [18] (right) 

These tools, however, have other unnecessary features that significantly increase the cost, 

which ranges from at least a couple of hundreds to thousands of dollars. Moreover, these devices 

require a computer to interact with during operation, which can be inconvenient for logging 

purposes in some cases. They are closed source and as a result, it is hard for industry engineers to 

modify and develop functions for their needs. And more importantly, security measures, such as 

data authentication and encryption, have not been implemented by some.  
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The closest hardware design alternative, in the aspect of functionality, is the CSS 

CANedge2, as seen in Figure 2-5.  

 

Figure 2-5. CSS CANedge2 [19] 

The CANedge2 supports dual CAN channels, SD card storage with encrypted credentials, 

WiFi capability with secure HTTPS, and a cloud platform for data management. These features 

nearly satisfy the requirements of the CAN Logger 3. Nevertheless, the cost for the device, 

including SD card and cable adapter, of 539 EUR (~$589) is, again, the main factor that makes it 

unfeasible for the project.  

Before this thesis was part of the project, different CAN Logger versions have been 

developed. The NMFTA CAN Logger, developed in 2017, was the first design. Figure 2-6 shows 

the image of a NMFTA CAN Logger. The information and source code of the device can be 

found on this GitHub repository [20].  
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Figure 2-6. NMFTA CAN Logger [21] 

The device utilized the Teensy 3.2 with a 32-bit ARM Cortex-M4 K20 Sub-family 

processor, which has a speed of 72MHz and a built-in CAN controller for one CAN channel. A 

CAN controller and a SD card slot were added for a second CAN channel capability and data 

storage, respectively. A custom PCB was made for the Teensy 3.2 and the mentioned 

components were wrapped in a heat-shrink protective layer. Two LEDs were used to indicate 

different operational modes. A universal J1939 Deutsch 9-pin connector was used to connect the 

device to the vehicle network through the diagnostic port. The cost for each NMFTA CAN 

Logger is around $90, which was inexpensive comparing to others on the market. It was a good 

foundation for simply logging one CAN channel. However, the device did not meet the majority 

of the listed requirements, including the number of CAN channels, high voltage protection, data 

integrity and confidentiality protection, cloud storage, and user interface. Therefore, CAN 
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Logger 2 was developed, as seen in Figure 2-7. The device information can be found on GitHub 

at [22].  

 

Figure 2-7. CAN Logger 2 

The CAN Logger 2 utilized the Teensy 3.6 with a 32-bit ARM Cortex-M4F K66 sub-

family processor. With a clock speed of 180MHz, the Teensy 3.6 is more than twice as fast as 

the teensy 3.2. A special component in the Teensy 3.6 is the Memory-Mapped Crypto 

Acceleration Unit (mmCAU) which can quickly perform cryptographic algorithms. Equipped 

with dual built-in CAN controllers, the CAN Logger 2 can support at least two CAN channels. A 

third CAN channel was added into the design using the MCP2515 CAN controller, which 

communicates with the Teensy 3.6 via Serial Peripheral Interface (SPI). A J1708 circuit was also 

added to the design using the SN75VD12 transceiver and the SN74AHCT inverter. Because the 

Deutsch 9-pin connector only supports up to three channels, the third CAN channel and the 

J1708 network was selected during operation by a programmable multiplexing switch 

ADG1634BCPZ. Moreover, Local Interconnect Network (LIN) with MCP2003A driver, Single-

wire CAN (SWCAN) with NCV7356D1R2G chip, and WiFi capability with ATWINC1500 
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were added as optional features for future use. The device is protected from high voltage with a 

Transient Voltage Suppressor (TVS) and high current discharge with a Resettable Fuse (PTC) 

and reverse polarity with a Schottky diode. Three LEDs, instead of two, and a push button were 

built into the design to create more interactions for the user. The biggest difference was the 

Hardware Security Module (HSM) added for asymmetric cryptographic operations. The printed 

circuit board (PCB) is protected by a Bud HH-3642 enclosure. The total cost of the device is 

approximately $250. The CAN Logger 2 was able to satisfy all the stated hardware requirements; 

however, there were some details that needed to be improved during the development, and 

producing the device required significant specialized labor and customization, contributing to the 

higher device cost. Because of the high production costs, the CAN Logger 3 was developed as 

the next improved version from the CAN Logger 2, as seen in Figure 2-8. The details of the 

CAN Logger 3 hardware is available on GitHub [23].  

 

Figure 2-8. The first version of CAN Logger 3 
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The enclosure was changed to the BUD HP-3651-B for simplifying manufacturing 

procedures and thus, cheaper assembly cost. The entire PCB layout was redesigned. In addition, 

some minor upgrades have been made, such as the MCP2515 CAN controller was replaced with 

a new CAN controller that can accommodate flexible data rate CAN, the Microchip 

MCP2517FD. Two push buttons and four LEDs were used instead of one button and three LEDs, 

and a physical bridge for enabling/disabling WiFi feature was added. This brought total cost 

down to $220. However, the cost still has not met the $200 requirement. Instead of placing the 

entire teensy 3.6 board on the PCB, an approach of integrate its components in the design was 

pursued. The total cost per device was lowered to $180, which was the desired result. The latest 

CAN Logger 3 version, which is revision 3e as shown in Figure 2-9, is the current final product 

described in this thesis. Detailed schematics of the design will be explained in later section. The 

phrase “CAN Logger 3” mentioned from now on refers to the revision 3e. 

 

Figure 2-9. This photograph of the CAN Logger 3, Rev 3e shows the single board solution using 

the K66 processor 

K66 Processor 
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C. Block Diagram 

The CAN Logger 3 hardware design is illustrated through the block diagram in Figure 2-

10, in which the components will be discussed in detail in the next section.  

 

Figure 2-10. CAN Logger 3 hardware design block diagram 

D. Detailed Schematics 

Figure 2-11 to Figure 2-13 display the full detailed schematics of the CAN Logger 3 design. 
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Figure 2-11. Page 1 of CAN Logger 3 schematics 
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Figure 2-12. Page 2 of CAN Logger 3 schematics 
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Figure 2-13. Page 3 of CAN Logger 3 schematics 
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Each section of the schematics is discussed as follow: 

i. Teensy 3.6 

 

Figure 2-14. Integrated teensy 3.6 with ARM Cortex-M4 K66 processor on CAN Logger 3 

The CAN Logger 3 is inspired by the Teensy 3.6, which contains the ARM Cortex-M4 

K66 processor [24]. The Teensy 3.6 is an ARM32 based platform that works with the Arduino 

Integrated Development Environment (IDE). It is CAN compatible through the onboard 

FlexCAN controller peripherals, which are accessible using the FlexCAN library. The FlexCAN 

library can be found in [25]. To control costs, instead of using the original Teensy board, the 

necessary components of the Teensy 3.6 are integrated into the CAN Logger 3 circuit design 

with the same configuration as indicated on PJRC website [26]. A critical component from the 

Teensy 3.6 is the MKL02Z32VFK4 processor which comes pre-programmed from PJRC. It 

contains the bootloader that makes the K66 processor programmable with Arduino. There is a 

solder jumper connection (J3) that needs to be bridged to enable the bootloader, as seen in Figure 
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2-15. Some features that make the Teensy 3.6 an effective solution for a CAN logger include: 

dual CAN channels, real-time clock which is maintained by a 3V CR1225 coin cell battery, 

digital and analog input/output, SPI/UART/I2C communication, and an on-board SD card. The 

K66 processor operates with a clock speed of 180MHz, which is sufficiently fast to meet the 

design objectives. Moreover, the K66 also has an embedded mmCAU ColdFire coprocessor that 

is capable of implementing cryptographic algorithms such as AES-128, DES, 3DES, MD5, 

SHA-1, and SHA-256. Among those, AES-128 will be implemented to encrypt log data.  

 

Figure 2-15. Teensy bootloader and J3 connection 

MKL02Z32VFK4 

J3 Connection 
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ii. Third CAN channel  

 

Figure 2-16. CAN Logger 3 schematics for MCP2517FD CAN controller 

Because the Teensy 3.6 only has two built-in CAN controllers, the MCP2517FD [27] is 

added as an extra CAN controller for the third channel (CAN2), with the schematics shown in 

Figure 2-16. The chip communicates with the CAN Logger 3 processor via SPI with clock speed 

up to 20Mhz. A 40Mhz crystal clock is required for the transceiver with OSC1 and OSC2 

connection, and two capacitors C14 and C15 are needed for proper oscillation [28]. A bypass 

capacitor, C9, is added to the 3.3V power supply for the controller to reduce high frequency 

noise [29]. The main reasons that the MCP2517FD is chosen over the previous MCP2515 on the 

CAN Logger 2 are that the MCP2517FD supports, besides the CAN2.0B, CAN FD as specified 

In ISO11898-1:2015 [30], two INT/GPIO, and start of frame (SOF) can be used as an interrupt. 

These features are optional but great to have for future use. The cost of the MCP2517FD is $2.31 

in 2020. 
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iii. CAN Transceivers  

 

Figure 2-17. CAN Logger 3 schematics for MCP2558 CAN transceiver 

The Microchip MCP2558 [31] was the chosen CAN transceiver for the three CAN 

channels, as shown in the CAN logger schematics in Figure 2-17. The MCP2558 meets the SAE 

J2962/2 “Communication Transceivers Qualification Requirements” and meets ISO-11898-

1:2015 specifications [32]. The chip supports CAN FD with speeds up to 8Mbps. Besides the 

normal functions of a CAN transceiver, it also provides a silent mode which gives the CAN 

Logger 3 an ability to enable/disable its associated CAN channel transmission. Moreover, the 

low cost of $0.81 per chip is another reason for choosing the MCP2558. On the Teensy 3.6, pins 

3 and 4 are used for the CAN0 transceiver, and pins 33 and 34 are used for the CAN1 

transceiver. The CAN2 transceiver is connected to the MCP2517FD CAN controller via CAN2 

TX and RX. 
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iv. J1708 

 

Figure 2-18. CAN Logger 3 schematics for J1708 circuit 

The J1708 network consisted of the 74AHCT1G14 logic inverter [33] and the 

SN75HVD12D transceiver [34], as shown in Figure 2-18. This circuit is reused from the Smart 

Sensor Simulator 2 (SSS2) [35], which was adapted from the SAE J1708 standard [36]. The 

inverter provides a general-purpose logic with CMOS low power consumption and 

communicates with the processor using J1708TX. The transceiver is a combination of a 3-state 

differential line driver and differential input line receiver and communicates with the processor 

using J1708RX. Resistors R4, R5, R6, and R7 are added as shown, as recommended by the 

physical layer SAE J1708 standard. The costs for the inverter and the transceiver are $0.25 and 

$3.86, respectively. With this circuit, the CAN logger can communicate in the J1708 network via 

UART through J1708-L and J1708-H.  
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v. J1708/CAN2 Multiplexing 

 

Figure 2-19. CAN Logger 3 schematics for multiplexing 

CAN2 and J1708 are multiplexed due to conductor path limitations on the connector. The 

EE2-5NU relay [37] is used as a replacement of the ADG1634BCPZ switch [38], which is the 

version in the CAN Logger 2 and the original version CAN Logger 3. One of the reasons is that 

the switch uses the 12V line and could easily be damaged by transient overvoltage events. The 

relay costs $1.90 while the switch costs $6.23, which is 3 times more expensive. The relay is 

Double Pole Double Throw (DPDT) style, which means that the relay has two inputs and four 

outputs such that each input has two corresponding outputs that it connects to. This configuration 

is applicable because both CAN2 and J1708 use two wires for communication, as seen in Figure 

2-19. The relay is also a non-latching type with a 5V single coil, in which when energized, the 

relay will change from J1708 to CAN2. The switch is controlled by the NUD3124 inductive load 

driver [39], which takes CAN 1 Switch from the processor digital pin as an input. When CAN 1 

Switch is set high, the driver closes the connection and shorts pin 8 on the relay to ground, thus 

enabling the multiplexing. The R14 is placed at CAN1 as a pull-down resistor, which gives the 

driver input a known state during startup. The cost of the driver is $0.40 per unit. D11 is a 
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flyback diode used to prevent voltage spikes from collapsing magnetic fields from the relay coil 

or from transients arising when the power supply is disconnected [40]. 

vi. Local Interconnect Network (LIN)  

 

Figure 2-20. CAN Logger 3 schematics for LIN circuit 

Similar to the J1708 circuit, the Local Interconnect Network (LIN) circuit is also reused 

from the SSS2, which is shown in Figure 2-20. MCP2003A [41] is the chosen LIN transceiver 

due to its cost effective of $0.82 per unit, SAE J2620 and LIN specifications compliance, 

overtemperature protection, and high immunity against electromagnetic, electrostatic discharge, 

and radio frequency disturbances. The transceiver runs on the 12V line, communicates with the 

processor through LIN TX and RX, and outputs a single LIN wire to the network for 

transmission. LIN CS has to be set high to enable the transceiver. As recommended by the 

datasheet, R10 is used as a pull-up resistor. C10 is also used as a bypass capacitor. 
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vii. Single-wire CAN 

 

Figure 2-21. CAN Logger 3 schematics for SWCAN 

Figure 2-21 shows the SWCAN schematics, which contains the NCV7356D1R2G 

SWCAN transceiver [42]. The chip is a physical layer device that is fully compatible with J2411 

single wire CAN specifications and supports CAN 2.0 where highspeed application is not 

required. It is also cost effective with a unit price of $1.75. The transceiver is connected to CAN0 

alterative on pin 29 and 30 of the processor, which has to be selected using the FlexCAN library 

to enable SWCAN feature. The transceiver operates with the 12V and communicates with the 

processor through SWCAN TX and RX. The SWCAN transmission is from the CANH and 

LOAD connection on the transceiver. A resistor of more than 600 Ohm is needed between the 

SWCAN line and LOAD, according to the datasheet. Therefore, the R21 with a resistance of 

4.7k, which is commonly used, is placed as shown. Different operational modes of the 

transceiver, which are defined in the datasheet, can be selected using M0 and M1 digital outputs 

from the processor.  
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viii. Hardware security module 

 

Figure 2-22. CAN Logger 3 schematics for ATECC608A HSM 

The Microchip ATECC608A hardware security module is the key component for the 

security aspect of the logging process. General information about the module can be found in 

[43] and its schematics is shown in Figure 2-22. Because the module datasheet is not public at 

the time of this writing, a non-disclosure agreement has been signed to have access to the 

datasheet for fully utilizing the module functionality. The hardware uses 3.3V for power and 

communicates with the processor using I2C communication with SDA0 and SCL0. R1 and R22 

resistors are placed on those two lines as recommended by common I2C circuit [44]. The 

cryptographic module is designed with hardware-based key storage that protects up to 16 keys. 

Once the keys or confidential data are stored and locked in the ATECC608A memory, the 

information cannot be easily read and can only be used internally by the hardware functions. 

This is a great feature for cybersecurity where there is a need to keep secrets in a safe space and 

not expose them to the external environments where they can be sniffed or exploited with 

methods such as middle-person attacks. Moreover, the ATECC608 supports cryptographic 

algorithms including: 



   
 

38 
 

• AES-128 encrypt/decrypt, 

• Galois field multiply for generic authenticated encryption block cipher mode. 

• SHA-256 & HMAC hash. 

• 256-bit ECC following NIST standard with Elliptic-curve Digital Signature Algorithm 

(ECDSA) following FUPS186-3. 

• Elliptic-curve Diffie-Hellman (ECDH) following FIPS SP800-56A standards.  

For this project, the HSM AES-128, ECDH, and ECDSA functions will be implemented. 

The reason why ECC is preferably over other algorithms for asymmetric cryptography is that 

ECC can meet the same security standard with a much smaller key size, as shown in Table 2-1. 

A 160-bit ECC key is equivalent to a 1024-bit RSA and Diffie-Hellman, or a 256-but ECC key is 

equivalent to a 3072-bit RSA and Diffie-Hellman, and so on. 

Table 2-1. NIST recommendation on key size for some algorithms [45] 

 
This means that ECC is much more powerful in terms of computing time and memory 

space. The speed test has been conducted on various embedded processors and the results in 

Table 2-2 shows the superior speed of ECC over RSA with the time combination of signing and 

verifying. 
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Table 2-2. Speed benchmark of crypto graphic standard algorithms on three different embedded 
processors [46]. 

 
With the cost of $0.75 per piece and the provided features, the ATEC608A HSM is the 

most suitable security module for the CAN logger device. 

ix. WiFi module 

 

Figure 2-23. CAN Logger 3 schematics for ATWINC1500 WiFi module. The VBat net should 

be tied to 3.3V, which was fixed in a later hardware revision. 

The CAN Logger 3 is equipped with the low power consumption ATWINC1500 WiFi 

module [47], which features IEEE 802.11 b/g/n and 2.4 GHz ISM band. The schematic for the 

module is illustrated in Figure 2-23. The C5 and C11 are decoupling capacitors as recommended 
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by the datasheet. R16, R17, and R27 are pull-up/pull-down resistors. The module is powered 

with 3.3V and communicates with the processor using SPI, specifically SPI1 because SPI0 is 

taken by the MCP2517FD controller. P3 is a header used for easy debugging. The cost for the 

WiFi module is $7.84 per unit.  

With this feature, the CAN Logger 3 can transfer log files wirelessly to the local 

computer before uploading or transfer the data straight to the server wirelessly, which is an 

option for the scope of the project. However, this also poses as an additional attack vector. To 

mitigate risk in specific applications, a physical switch is made in the design, as seen in Figure 2-

24, such that users need to solder and bridge the J2 jumper to enable the WiFi module. Thus, if 

users do not wish to use the WiFi feature, they can physically disable the ATWINC1500 module 

maintaining peace of mind from the risk of wireless exploitation.  

 

Figure 2-24. ATWINC1500 WiFi module and J2 connection 

ATWINC1500 

J2 Connection 
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x. Voltage regulator and power protection 

 

Figure 2-25. CAN Logger 3 schematics for voltage regulator and power protection 

Figure 2-25 shows the voltage regulator and power protection schematics for the CAN 

Logger 3. To protect the device from high voltage spikes as well as EMI from the raw power 

supplied by the vehicle diagnostic port, the V2F118A400Y2EDP 42V transient voltage 

suppression (TVS) device [48] is used at TVS1. The specifications of the TVS are chosen based 

on experimenting with different voltages to achieve a maximum working voltage of 36V because 

this is approximately the cut-off for all other components that use the 12V line as well. How the 

testing was done will be discussed in the later section. The cost for the TVS is $0.60 per unit. 

High current protection is done using the OZCG series PTC [49] at PTC1. When the 

temperature increases due to the excessive current passing through, the resistance of the PTC 

will increase as well to limit the current flow. When the current drops, the PTC will go back to 

normal state. The maximum working voltage is 33V and the hold current is 750 mA, which is the 

same as the TVS feedthrough current. The cost for each PTC is $0.21. 

An ACURA107 Schottky diode [50] and a SMA6J series TVS diode [51] are used to 

protect the CAN Logger 3 against reverse polarity, as seen in D3 and Z1. The Schottky diode 

only allows current to flow one way; however, the voltage drops across it is smaller than the one 

from a regular diode. The TVS diode is bi-directional and helps protect sensitive electronic 
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equipment from voltage transients induced by transient voltage events. The costs for the 

Schottky diode and the TVS diode are $0.39 and $0.53, respectively.  

Two voltages regulators are used: the OKI-78SR [52] and the NCP1117 [53]. The OKI-

78SR regulator takes in 12V (max 36V) input and outputs 5V while the NCP117 takes in 5V 

(max 18V) and outputs 3.3V. These two regulators are reused from the SSS2 design due to their 

robust and reliability as they have built-in protection against short circuit and high current, 

thermal, and noises. The costs for the OKI-78SR and the NCP1117 are $4.30 and $0.45, 

respectively.  

C1, C6, and C12 capacitors are bypass resistors that help reduce high frequency AC noise 

present on the DC signal. C2, C3, and C28 are large capacitors used to keep the CAN Logger 3 

functioning long enough to finalize the logging session at power loss. Similar to the TVS 

specification, the amount of capacitance is chosen based on experimenting, which will be 

validated in the testing section. 

xi. Voltage monitoring 

The external voltage monitoring feature is added mainly to help detect power loss on the 

raw 12V line, especially for slow voltage drop. The voltage is measured with an analog input, 

which only takes up to 3.3V before frying the processor. Because of that, a voltage divider is 

applied to convert the 12V to a lower one by using a pair of resistors. With the given maximum 

voltage of 36V for the raw line and the desire 3.3V output, the two resistors are determined using 

Ohms law [54], with the values of 100k and 10k. A TVS similar to the one used in the power 

protection schematics is used to protect the circuit. A flyback diode and a bypass capacitor are 

also added to prevent AC noise and voltage spikes. Similar voltage monitoring application also 
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applies to A7 pin on the CAN Logger 3 external D-sub 15 connector for a future option, as 

needed. The schematics for both are illustrated in Figure 2-26. 

 

Figure 2-26. CAN Logger 3 schematics for external voltage monitoring 

xii. Push button and optoisolator transistor output  

 

Figure 2-27. CAN Logger 3 schematics for push buttons and opto-isolator transistor output 
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Two PB400 push buttons [55] are added into the design for users to interact with the 

CAN Logger 3. Each button connects to a processor digital pin as a pull-up input. When the 

switch is closed, the pull-up input is connected to ground, which triggers an interrupt for a 

designated function. The buttons are Double Pole Single Throw (DPST) style, which means each 

of them has two inputs and two outputs, in which each input has one corresponding output. A 

Single Pole Single Throw (SPST) switch should be sufficient but because the design requires the 

button to point toward the end panel for easy fabrication, a right-angle configuration is needed. 

Thus, this push button is the most suitable one with a cost of $2.02 per unit. 

Similarly, a MOCD208R2M opto-isolator transistor [56] is also added for a purpose of 

triggering an interrupt when from an external voltage. It consists of two infrared emitted diodes 

optically coupled to phototransistor detectors. Because of that, the transistor can detect sudden 

voltage drop from inputs precisely and quickly. In the design, the raw 12V line is one of the 

inputs for the transistor and its corresponding output is connected to a pull-up digital pin on the 

processor. During the power loss, the low voltage from the input will cause the transistor to 

ground the pull-up pin and hence, trigger an interrupt. Pin A6 on the D-Sub 15 connector is the 

other input for the transistor, which is currently saved for future option. The cost for this 

transistor is $0.98. Figure 2.27 shows the push buttons and the transistor schematics as described. 

R18 and R20 are used as pull-up resistors for the input voltage.  
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xiii. Mini USB 

 

Figure 2-28. CAN Logger 3 schematics for mini USB connection 

An USB connection is an essential component to interface with the processor for 

conveniently uploading or debugging firmware. A mini USB is one of the most commonly used 

types and thus, the UX60SC-MB-5S8 [57] connector was chosen for the design. The schematic 

for the USB connection is illustrated in Figure 2-28. There are four connections required on the 

USB: V+ (power), GND (ground), D+ (data+), D- (data-). D+ and D- are connected to USB D_P 

and D_N pins on the processor for data transmission, respectively. A 47-ohm resistor is placed 

between each data line to limit high current. V+ supplies 5V power, which has a Schottky diode 

D5 for reverse polarity protection, a 1k ferrite bead L6 (inductor) to flatten out voltage spikes 

from plugging and unplugging, and a bypass capacitor C4 to reduce AC noise that may be 

present. The cost of the mini USB connector is $1.05 per unit. Due to past experiences, the 

connector is mounted with two through-holes heavily filled with solder to prevent it from easily 

breaking off, as seen in Figure 2-29.  
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Figure 2-29. Mounting configuration for the mini USB connector 

xiv. LEDs and light pipes 

 

Figure 2-30. CAN Logger 3 schematics for LEDs and light pipes  

Four LG R971 series LEDs [58] with color of red, green, yellow, and blue are used for 

operational indications, as shown in Figure 2-30. They are individually controlled by the 

processor with digital outputs. Originally, each LED had a 330 Ohms (Ω) resistor to limit current 

and control brightness. However, the green LED is too dim to be noticeable and therefore its 

resistor is adjusted to 100 Ω to make it significantly brighter. Each LED cost approximately 

$0.26. 

Through-hole solder 
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Light pipes were needed to redirect the LED’s light from the PCB to the end panel. The 

component had to fit well over the LED and required a right-angle configuration. Therefore, the 

SLP3 series light pipes [59] were selected and the cost per unit was $0.64. 

xv. D-Sub 15 Connector 

 

Figure 2-31. CAN Logger 3 schematics for D-Sub 15 connector 

The D15S33E4GV00LF D-Sub 15 female connector [60] was chosen for the CAN 

Logger 3 main connector due to its known commonality, robust and reliability for major 

applications in the industry. The two threaded posts on each side help secure the cable 

connection under harsh operating conditions. Figure 2-31 shows the connector pinouts, which are 

consisted of the three CAN channels, LIN, SWCAN, raw 12V, ground, A6, and A7. A D-Sub 15 

male connector to Deutsch 9-pin cable is used to connect the CAN Logger 3, as seen in Figure 2-
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32. The pinouts of the Deutsch 9-pin side can be referred back to Figure 2-1. The D-Sub 15 

connector and the D-Sub 15 to Deutsch 9-pin cable cost $2.30 and $11, respectively.  

 

Figure 2-32. D-Sub 15 to Deutsch 9-pin cable 
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xvi. Bias resistors 

 

Figure 2-33. Schematics for biasing resistors 

Figure 2-33 displays the rest of the biasing or pull-up/pull-down resistors that have not 

been included in previous schematics. There are four pull-up resistors for CS-CAN, CS1, 

LIN!WAKE, and LIN CS, and three pull-down resistors for Silent0, Silent1, and Silent2 pins. 

These resistors put the signal into known states if the processor is not driving them. 

E. Printed Circuit Board (PCB) Layout 

The CAN Logger 3 PCB was designed using Altium Designer software, as shown in 

Figure 2-34. Due to the limited board space and the complexity of the design, the PCB was built 

with four layers. With a dimension of 3.254” L by 2.229” W by 1.1” H, the handheld device is 

very compact and convenient for truck logging operation.  
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n 

Figure 2-34. CAN Logger 3 PCB in Altium Designer 

F. Bill of Materials 

The complete Bill of Materials is shown in Table 2-3 for the printed circuit board. 
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Table 2-3. Bill of materials 

 

The cost for each device, including manufacturing and final assembly, is approximately $180. 

 

Comment Designator Quantity Supplier Part Number 1 Supplier Unit Price 1 Supplier 1
Yellow D4 1 475-2560-1-ND 0.29 Digi-key
CR1225 Batt1 1 BAT-HLD-012-SMT-ND 0.29 Digi-key

0.1uF
C1, C4, C5, C6, C7, C8, C9, C11, C13, C17,
C18, C19, C20, C21, C22, C23, C24, C25 18 399-6856-1-ND 0.101 Digi-key

2.2uF C10, C16 2 587-3386-1-ND 0.12 Digi-key
22uF C12 1 490-12451-1-ND 1.02 Digi-key
16pF C14, C15 2 311-3964-1-ND 0.1 Digi-key
470µF C2, C28 2 PCE3751CT-ND 0.81 Digi-key
100uF C3 1 P19732CT-ND 0.81 Digi-key
Green D1 1 475-1410-1-ND 0.27 Digi-key
Red D2 1 475-1278-1-ND 0.29 Digi-key
ACURA107-HF D3, D5 2 641-1884-1-ND 0.4 Digi-key
Blue D6 1 516-1437-1-ND 0.95 Digi-key
Diode D7, D8, D9, D10, D11 5 CCS15S30L3FCT-ND 0.38 Digi-key
Vehicle Interface 
Cable Connector J1 1 609-1498-ND 2.3 Digi-key
JTAG/SWD JTAG/SWD 1 1175-1735-ND 0.73 Digi-key
EE2-5SNU K1 1 399-11056-5-ND 1.7 Digi-key
1k L1, L5, L6 3 490-17350-1-ND 0.1 Digi-key
SLP3 LP1, LP2, LP3, LP4 4 492-2517-ND 0.64 Digi-key
PTC RESTTBLE 0.75A PTC1 1 507-1765-1-ND 0.21 Digi-key
NUD3124 Q1 1 NUD3124LT1GOSCT-ND 0.41 Digi-key
4.7k R1, R4, R7, R10, R21, R22 6 RHM4.7KAYCT-ND 0.14 Digi-key
10k R18, R20, R24, R28, R34 5 RHM10.0KAYCT-ND 0.14 Digi-key
330 R3, R19, R23, R31 4 RHM330AYCT-ND 0.14 Digi-key
100 R2 1 RHM100AYCT-ND 0.14 Digi-key
47 R5, R6, R29, R30 4 RHM47AYCT-ND 0.14 Digi-key

100k
R8, R9, R11, R12, R13, R14, R15, R16,
R17, R25, R27, R32, R33 13 RHM100KAYCT-ND 0.129 Digi-key

503182-1852 SD1 1 WM12834CT-ND 2.45 Digi-key
PTS830 SW1 1 CKN10587CT-ND 0.51 Digi-key
PB400 SW20, SW21 2 EG5548-ND 2.05 Digi-key
Varistor 42V TVS1 1 478-2485-1-ND 0.62 Digi-key
Varistor 24V TVS2, TVS3 2 478-2484-1-ND 0.79 Digi-key
OKI-78SR U1 1 811-2692-ND 4.3 Digi-key
ATML-ATWINC1500-MR210PA-28 U11 1 ATWINC1510-MR210PB1140-ND 8.32 Digi-key
MOCD207R2M U12 1 MOCD207R2MCT-ND 1.03 Digi-key
NCP1117LPST33 U13 1 NCP1117LPST33T3GOSCT-ND 0.46 Digi-key
MCP2517FD U14 1 MCP2517FDT-H/JHACT-ND 2.31 Digi-key
ATECC608A U15 1 ATECC608A-SSHDA-TCT-ND 0.75 Digi-key
MKL02Z32VFG4 U16 1 IC_MKL02Z32_QFN16 6.8 PJRC
NCV7356D1R2G U2 1 NCV7356D1R2GOSCT-ND 1.8 Digi-key
74AHCT1G14 U3 1 74AHCT1G14SE-7DICT-ND 0.25 Digi-key
SN75HVD08DR U4 1 296-37893-1-ND 3.97 Digi-key
MCP2558 U5, U8, U9 3 MCP2558FDT-H/MNYCT-ND 0.81 Digi-key
MK66FX1M0VMD18 
(preprogrammed) U6 1 568-13335-ND 17.65 Digi-key
MCP2003A-E/SN U7 1 MCP2003A-E/SN-ND 0.82 Digi-key
UX60SC-MB-5S8 USB1 1 H11589CT-ND 1.05 Digi-key
32.768 KHz X1 1 XC2292CT-ND 0.59 Digi-key
40MHz Y1 1 XC3069CT-ND 0.5 Digi-key
16MHz Y3 1 XC2866CT-ND 0.69 Digi-key
SMA6J Z1 1 SMA6J24CA-TPMSCT-ND 0.41 Digi-key



   
 

52 
 

G. Assembly and Manufacturing 

With the engineering of the system completed, the last step was shifting to manufacturing 

and assembly. Manufacturing the device included constructing the CAN Logger 3 PCBs as well 

as cutting enclosures to house and protect those boards.  

The two chosen PCB manufacturers were Electronic Manufacturing Solutions Inc. (EMS) 

and Colorado PCB Assembly, who helped assemble all the electronic components on the PCBs 

using Surface-mount Technology (SMT). Because direct communication with those production 

specialists is essential for an affordable and reliable product, a visit to their facility has taken 

place to explore and understand the process of manufacturing PCBs with SMT. Figure 2-35 

shows a picture of the visit at EMS’s main facility. 

 

Figure 2-35. Research team visiting Electronic Manufacturing Solutions Inc. in Arkansas 
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With full-turn-key assembly services, the Gerber files, NC Drill File, bill of materials, 

and pick-n-place files are supplied to the manufacturer and assembled devices are returned. An 

example of a completed PCBs order is shown in Figure 2-36. 

 

Figure 2-36. Completed CAN Logger 3 PCBs 

Because only PCB build operations were subcontracted, the rest of the manufacturing 

tasks - cutting the enclosure end panels - was completed with in-house laser cutter equipment. 

The sketches were made with manual measurements using a caliper and drawn on SolidWorks 

software, as shown in Figure 2-37. Figure 2-38 shows an example of the laser cutter being used 

to cut enclosures for the CAN Logger 3. 

 

Figure 2-37. SolidWorks drawing of CAN Logger 3 enclosure end panels with SD card and 

buttons side (left) and D-SUB 15 cable and mini USB side (right) 
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Figure 2-38. Laser cutter manufacturing for the CAN Logger 3 enclosure 

Assembly refers to the process of taking all the individual components built by specialist 

manufacturers and putting them together to make a functioning product. Examples of the tasks 

involved include assembling PCB with their enclosures, labelling, and configuring firmware. 

Figure 2-39 shows a batch of assembled CAN Logger 3 devices after production. 

 

Figure 2-39. CAN monitoring devices in production 
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H. Checklist 

Before the CAN loggers were sent to the customers, they must go through a 

comprehensive checklist, which is illustrated below. 

Complete this checklist before shipping a CAN Logger 3 to a Customer 

☐ Customer Name: ________________________________________ ☐  Date: __________ 

☐  Remove SD card, connect logger to USB Serial and examine startup messages. 

☐  With SD card removed, the red LED flashes. 

☐  Logger time from USB Serial is within 1 minute of actual PC time. 

☐  Logger and PC time zone: MDT (GMT-0700) or MST (GMT-0600) or Other: _________ 

☐  Red LED stops flashing after inserting an SD card. 

☐  Enter the serial command for the ID (ID CSUXX) where XX is the logger number located on 

the enclosure. 

☐  Device responds with Device ID: ___________________ 

☐  Enter the serial command to reset the count: COUNT 0. 

☐  Device responds with Set current file to 000. 

☐  Unplug and replug the USB Serial and observe solid green LED. 

☐  Logger Number Printed on the enclosure: _________________  

☐  The filename prefix matches the number printed on the enclosure. 
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☐  Connect Logger to live CAN bus. Observe Green and Yellow LED flickering. 

☐  Record the ATECC608 SN:_______________________________ 

☐  Record first digits of the IV:________________ If zeros, then no encryption. 

☐  Press the left button (near green). Observe red LED slow flash. 

☐  Double click left button (near green). Observe a new file was created. 

☐  Previous file showed SIZE, BIN-SHA, TXT-SHA, and SIG. 

☐  Note filename from Serial console. 

☐  Disconnect USB Power first, then disconnect 12V Power. 

☐  Remove SD Card from Logger, connect to computer.  

☐  Open last file in hex editor (HxD) and calculate SHA-256:___________________ 

☐  Eject SD Card, reinsert to Logger, connect USB Serial. 

☐  Previous file meta data shows BIN-SHA matching calculated SHA. 

☐  Format SD card (FORMAT). Confirm with LS A being empty. 

☐  Reset Counter to zero (COUNT 0). 

☐  Logger Device ID and Serial Number match on  

https://systemscyber.github.io/CAN-Logger-3/loggers.html 

 

 

https://systemscyber.github.io/CAN-Logger-3/loggers.html
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I. Functional Tests and Results 

There are some crucial functions that the CAN Logger 3 has to properly perform to 

successfully fulfill the operational and performance requirements. This section discusses a series 

of comprehensive testing to ensure such functionality of the CAN Logger 3. The test scripts can 

be found in the GitHub repository at [23]. 

i. CAN0 and CAN1 test 

The most important function of the CAN Logger 3 is to read and write CAN messages on 

the CAN0 and CAN1 channels. Two CAN loggers with the test script [61] and an SSS2 acting as 

a node with terminating resistors were connected to create a CAN bus for testing. The script 

from the test code is displayed below: 

 

In the setup function, both channels were initiated at 250kbps bitrate. In the loop 

function, the CAN Logger 3 would read any available message while writing a random frame on 

both CAN channels. Figure 2-40 displays the results from one of the CAN loggers 3 serial 

void setup() { 
  //Set baudrate 
  Can1.begin(BAUDRATE250K); 
  Can0.begin(BAUDRATE250K); 
} 
 
void loop() { 
// put your main code here, to run repeatedly: 
if (Can0.available()) { 
    Can0.read(rxmsg0); 
    printFrame(rxmsg0,0,RXCount0++);//Print received frame 
 } 
if (Can1.available()) { 
    Can1.read(rxmsg0); 
    printFrame(rxmsg0,0,RXCount0++);//Print received frame 
 } 
 
//Write the message on CAN channel 0 
   Can0.write(txmsg0); 
//Write the message on CAN channel 1 
   Can1.write(txmsg0); 
} 
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monitor window. The fact that there were messages shown up on both channels means the CAN 

Logger 3 was able to successfully write and read CAN messages on CAN0 and CAN1, and thus, 

passed the test.  

 

Figure 2-40. Results from one of the CAN loggers 3 serial monitor  

during the CAN0 and CAN1 testing 

ii. Autobaud test 

Autobaud or auto bitrate detection is an important feature of the CAN Logger 3. It is 

implemented by taking advantage of the Received Error Counter (REC), which can be found in 

the modified FlexCAN library at [25]. The process of how the autobaud feature works is 

indicated in Figure 2-41 below. 
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Figure 2-41. Autobaud feature diagram 
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The Autobaud process was designed based on the recommendations in J1939-16 

Automatic Baud Rate Detection Process [62]. When the device is connected to the heavy vehicle 

network, the device will start Autobaud immediately and set to listen only mode. A sequence of 

bitrate choices is iterated through, which are 250,000, 500,000, 125,000, 666,666, and 1,000,000 

bit/s. The device first starts with the initial bitrate read from EEPROM. The CAN REC and 

receive timer are reset to 0. The device then polls for any available CAN frame that it can detect 

with the current bitrate. There is a 150 milliseconds timeout for the receive timer. During that 

duration, if the device detects CAN frames, then it is on the correct bitrate. The device will 

update EEPROM with the correct bitrate setting if the previous one is different and end 

Autobaud feature.  

However, if there is no CAN frame detected, the device will proceed to read the CAN 

REC. If the number increases, that means the device is on wrong bitrate setting and it will 

change the CAN bitrate to the next one on the list and repeat the process until the right one is 

selected. If the CAN REC does not increase, this could mean that there is no actual CAN 

message on the network. If the timer has not expired, the device will go back and continue to poll 

for CAN frame. Otherwise, the device will change the CAN bitrate. The sequence is repeated 

until CAN messages are available on the network. 

To test the Autobaud feature, a setup of two networks with two different bitrates of 

250kbps and 500kbps was made. The device was first plugged in to the network with 250kbps 

bitrate and starts logging. After that, it was plugged into the second network with 500kbps 

bitrate. The data was then examined, as seen in Figure 2-42. The metadata of the two log files 

show the bitrate on CAN0, which are 250kbps on one file and 500kbps on the other. In addition, 
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the fact that the two corresponding log files were successfully created means the Autobaud 

feature passed the test.  

 

Figure 2-42. Autobaud test results from 250kbps (left) and 500kbps (right) bitrate networks 

iii. AES-128 test 

The log files are encrypted using the mmCAU with AES-128 algorithm. There are many 

AES encryption modes that can be implemented. Encryption using Electronic Code Book (ECB) 

mode is the first generation of AES and the most basic form of block cipher encryption. It breaks 

up the input data into many 16-byte blocks and encrypts them individually using its AES session 

key. Thus, data of any size can be used as input and will be padded to the size that is divisible by 

16 if necessary. However, the disadvantage of this mode is that it lacks diffusion. If identical 16-

byte blocks are encrypted in ECB, the results are also identical. As a result, this can expose data 

patterns and does not provide true confidentiality. As a matter of fact, a study on ciphertext 

entropy has proved that encryption using ECB mode is not suitable for image or text files that 

have repeated identical data [63]. This is crucial because some CAN frames are periodic, 

meaning that the same data are sent within the same constant interval. Thus, encrypting CAN 
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data using ECB mode is vulnerable. AES in the cipher block chaining (CBC) mode is used to 

overcome this problem where an initialization vector (IV) or so-called salt, which is an arbitrary 

number that is only used once, is XORed with the first block, and the cipher result is then 

XORed with the next block and so on. Therefore, each cipher block depends on all the previous 

ones, which scrambles the patterns and creates diffusion. Figure 2-43 and Figure 2-44 illustrate 

ECB and CBC modes for AES encryption processes, respectively.  

Figure 2-43. Electronic Codebook mode encryption [64] 

 

 

Figure 2-44. Cipher Block Chaining mode encryption [65] 
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A good graphical demonstration showing the differences between the ECB and CBC 

mode is the famous ECB Penguin [66], as seen in Figure 2-45. Pixels of the image were 

encrypted using ECB and the result clearly shows the input pattern. On the other hand, the 

encrypted image from CBC mode resulted in pseudo-randomness.  

 

Figure 2-45. Graphical demonstration between original image (left) and image encrypted using 

ECB (middle) and image encrypted using CBC (right) [66] 

The mmCAU uses the cryptolibAESSHA library [67] to implement its AES capability, 

with an Arduino interface published by Paul Stoffregen [68]. The AES-128 CBC encryption and 

decryption were tested against NIST test vectors [69]. The main functions from the test code [70] 

is displayed below: 
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Initially, the AES key schedule was set and the IV was loaded in order to run encryption 

and decryption correctly. The aes_cbc_encryption and aes_cbc_decrypt functions have been 

added because the cryptolibAESSHA library only supports AES ECB. The AES-128 CBC 

encryption and decryption were tested against the NIST test vectors and the outputs, which were 

displayed in blocks of 16-byte, were compared to the expected values, as seen in Figure 2-46. 

The results show exact match, which means the test passed. 

mmcau_aes_set_key(aeskey,128,keysched);//Set key schedule 
 
//Encryption 
memcpy(out,init_vector,16); //Load IV 
aes_cbc_encrypt(data_to_encrypt,cipher_text); 
 
//Print out the first block of the cipher (16 bytes) 
Serial.print("\nBlock 1 Cipher Text: "); 
for (i=0;i<block_size;i++){ 
    sprintf(str,"%02X",cipher_text[i]); 
    Serial.print(str); 
  } 
//Print out test vector to compare 
Serial.print("\nTest Vector Block 1: 7649abac8119b246cee98e9b12e9197d"); 
 
//Decryption 
memcpy(iv,init_vector,16);; //Load IV 
aes_cbc_decrypt(clear_text,data_to_decrypt); 
 
//Print out the first block of the cipher (16 bytes) 
Serial.print("\nBlock 1 Clear Text: "); 
for (i=0;i<block_size;i++){ 
    sprintf(str,"%02X",clear_text[i]); 
    Serial.print(str); 
  } 
//Print out test vector to compare 
Serial.print("\nTest Vector Block 1: 6bc1bee22e409f96e93d7e117393172a"); 
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Figure 2-46. Test results for AES-128 CBC mode encryption and decryption 

iv. Logging speed test 

This test explored the actual AES encryption speed of the mmCAU and verified that the 

CAN Logger 3 was able to log data at full bus load. An Arduino script [71] was written to 

measure the rate of mmCAU encryption, which can be seen below: 
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The script measured the time the mmCAU took to encrypt a 16-byte block using ECB 

and a 512-byte block using the CBC added function, in microseconds. The 512-byte size was 

chosen for this time testing because that is the buffer size the CAN Logger 3 adopts in its 

software design, which will be discussed further in Chapter 3. The results, as illustrated in Figure 

2-47, show that encrypting 16-bytes took about 2 microseconds, which is equivalent to 8 

Mbyte/second. However, encrypting a 512-byte took 80 microseconds, which is equivalent to 6.4 

Mbyte/sec. The loss in speed was expected because CBC mode required more computing power 

than ECB. 

 

Figure 2-47. AES-128 encryption speed 

//16-byte block encryption 
t = micros(); 
cau_aes_encrypt (in, keysched, AES_128_NROUNDS, cipher_text);  
t = micros() - t; 
sprintf(str, "aes %d bytes %u us  KBs  ", sizeof(in), t); 
Serial.print(str); 
Serial.println(1000.*sizeof(in) / t); 
 
//512-byte block encryption 
t = micros(); 
aes_cbc_encrypt(data,cipher_text); 
t = micros() - t; 
sprintf(str, "aes cbc encrypt %d bytes %u us, KBs ", sizeof(data), t); 
Serial.print(str); 
Serial.println(1000.*sizeof(data) / t); 
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However, to actually prove that the CAN Logger 3 has sufficient logging speed while 

implementing AES-128 CBC encryption, the device was tested at full bus load against a 

TruckCape with BeagleBone Black platform, which is a known CAN device that is capable of 

logging CAN messages at such speeds. The test started with 250kbps bus because it is the most 

common bitrate. At the beginning of the assessment, CAN messages were injected on both 

CAN0 and CAN1 as fast as possible using a Teensy 3.6 board. The CAN messages have a fixed 

ID of 0, and a data field starting at 0 and increasing by 1 for every message sent by the 

microprocessor. Both the TruckCape and the CAN Logger 3 devices then started logging the 

session. The CAN Logger 3 encrypted log data was decrypted afterward for comparison. The 

network speed was also measured using the TruckCape to ensure that bus load was indeed at 

100% as intended, as shown in Figure 2-48. The 101% reading was due to bit stuffing and small 

percent errors. Another indicator showing that the bus was at full speed was that all the original 

ECM occurring normally were oppressed and only the test messages were present on the bus. 

 

Figure 2-48. Bus load measurement by the TruckCape device 
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Figure 2-49. Full bus load logging result at 250kbps  

for TruckCape (left) and CAN Logger 3 (right) 

Figure 2-49 shows the log data of the two devices with message intervals of 600 µs on 

each channel at 250kbps. Given that a 29-bit CAN frame has a size of 126 bits plus bit stuffing 

(insertion of one opposite bit if five similar consecutive bits are sent), an average interval of 600 

µs seemed appropriate in this case. In a 250kbps bus, a maximum of 250,000 bits can be 

transferred per second on the network and therefore, CAN messages will be lost or dropped on 

the bus if CAN nodes send data at a faster rate. As a result, it made sense that the data field in the 

captured CAN messages did not increase by one for every message under the full bus load test, 

which was desired for this experiment. The two files have the same number of messages (11,468 

frames) and data contents, along with the results from the bus load measurement , the 

corresponding message interval, and the extreme log speed with encryption, it was safe to 

conclude that the CAN Logger 3 is capable of logging messages with AES encryption at 

250kbps even at 100% bus load.  
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To really push the CAN Logger 3 limit, the same experiment was done again at the 

1Mbps CAN bitrate because the message interval will be shorter. Figure 2-50 shows the log data 

of the two devices with message intervals of 150 µs, 4 times shorter than the one from 250kbps 

bus. The results show that the TruckCape captured 6,757 messages while the CAN Logger 3 

captured 46,755 messages. This indicates that the TruckCape was not able to keep up with the 

speed and dropped messages, as seen in its log where can0 messages were missing in some areas.  

 

Figure 2-50. Full bus load logging result at 1Mbps  

for TruckCape (left) and CAN Logger 3 (right) 

Figure 2-51 shows the graphical results from the two tests for better visualization. The 

horizontal axis represents the value, which has been converted from hexadecimal, in the data 

field from the captured CAN messages. The horizontal axis has been rescaled and only shows 

values ranging from 25,000 to 35,000 for better demonstration; however, it is not a full result. 

There are eight sets of data illustrated in the graph, created from CAN Logger 3 (CL3) and 

TruckCape (TC) logs at 250kbps and 1Mbps speed with CAN0 and CAN1 channels separated. 
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The gaps between the data point for each set were the dropped messages. In the 1Mbps bus, the 

gaps were smaller because the bus can transmit more data and hence, less CAN messages were 

dropped. Similar to the previous conclusions, the CAN Logger 3 and the TruckCape had the 

same performance at 250kbps, as seen with the same data pattern. On the other hand, the 

TruckCape failed to capture all messages on the bus at 1Mbps, as seen with large gaps with 

missing data points.  

 

 

Figure 2-51. CAN Logger 3 and TruckCape full bus test results at 250kbps and 1Mbps 

An addition test was conducted where the number of messages sent at full speed was 

reflected on the CAN Logger 3 captured data. The setup used was similar to the one from the 

25000 27000 29000 31000 33000 35000
Value from CAN Data Field (converted from hex)

Full Bus Test Result

TC CAN1 @ 1M
TC CAN0 @ 1M
CL3 CAN1 @ 1M
CL3 CAN0 @ 1M
TC CAN1 @ 250K
TC CAN0 @ 250K
CL3 CAN1 @ 250K
CL3 CAN0 @ 250K
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previous test but the TruckCape device was no longer needed. 4,000 CAN messages with ID of 

0x15555555 and data of all 0xAs were sent on both CAN channels at a fixed interval of 520.5 

microseconds on a 250kpbs CAN bitrate. The message ID and data were selected as such to 

minimize bit stuffing as much as possible to really stress the bus because many more messages 

can be delivered over a period of time. The message interval was derived based on the one from 

the previous test at full bus load, and it was adjusted through many trials to achieve 100% bus 

load measurement, as seen in Figure 2-52. Again, the 101% reading was due to bit stuffing and 

small percent errors.

 

Figure 2-52. Bus load measurement by the TruckCape device for the full bus load test with fixed 

message interval 
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Figure 2-53. Full bus load logging result at 250kbps for the full bus load test with fixed message 

interval 

Figure 2-53 shows the decrypted log data from the CAN Logger 3 after the experiment. 

There were 8,000 messages captured, indicating that the CAN Logger 3 successfully captured all 

the messages sent on both channels at full speed.  

Similarly, the same test was performed on a 1Mbps CAN bit rate. 20,000 messages were 

sent on both channels instead of 4,000. The message interval was selected to be 130.125 

microseconds, which was 4 times faster than the one from the 250kbps bus. Figure 2-54 

illustrates the captured messages from the experiment. There were 40,000 messages captured, 
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indicating that the CAN Logger 3 successfully captured all the messages sent on both channels at 

full speed. 

 

Figure 2-54. Full bus load logging result at 1Mbps for the full bus load test with fixed message 

interval 

Based on the experiments, the CAN Logger 3 has met the desired performance 

requirement. 

v. SHA-256 test 

SHA-256 hashing is used for mapping data of arbitrary size to a unique fixed-size digest 

of 32 bytes for this algorithm. Any change to the data will result in a completely different hash 
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digest. Thus, it is a good way to check if the data has been altered. The log file and some 

important information from the logging operation are SHA-256 hashed with the Teensy 3.6 

Evaluation Board. The library used can be found at [72] and its function 

 was validated against NIST test vectors [73] and [74]. The functions from the test code [75] is 

are displayed below: 

 

After importing the SHA-256 library, a Sha256 instance was created. The update function 

took the data in to hash and updated the digest. The final function would complete and output the 

hash digest of all the combined input. Figure 2-55 shows the hash digest of NIST test vectors 

using the teensy library and their correct hashes. The values are identical, meaning that the SHA-

256 library is valid. 

 

Figure 2-55. Results from SHA-256 testing 

#include <sha256.h> 
 
sha256Instance=new Sha256(); 
sha256Instance->update(text1, strlen((const char*)text1)); 
sha256Instance->final(hash); 



   
 

75 
 

vi. ATECC608A key configuration 

The ATECC608A HSM main functions are to generate its own ECC key pairs and to 

load and securely store the server public key in its memory in order to perform ECC functions 

such as ECDH and ECDSA. The SparkFun_ATECCX08a_Arduino library that was used to 

interact with the HSM can be found at [76], which has been modified for the scope of the project. 

The functions for key generation and loading server public key from the test code [77] are 

displayed below: 

 

#include <SparkFun_ATECCX08a_Arduino_Library.h>  
#include <i2c_t3.h> 
 
void setup() { 
    Wire.begin(I2C_MASTER, 0x00, I2C_PINS_18_19, I2C_PULLUP_EXT, 100000); 
    atecc.begin() == true; 
 
    \\Configuration begin 
    Serial.print("Write Config: \t"); 
    if (atecc.writeProvisionConfig() == true) Serial.println("Success!"); 
    else Serial.println("Failure."); 
 
    Serial.print("Lock Config: \t"); 
    if (atecc.lockConfig() == true) Serial.println("Success!"); 
    else Serial.println("Failure."); 
 
    Serial.print("Key Creation: \t"); 
    if (atecc.createNewKeyPair() == true) Serial.println("Success!"); 
    else Serial.println("Failure."); 
 
    Serial.println("Configuration done."); 
    Serial.println(); 
  
    \\Load public key and lock data 
    Serial.println("Load server public key"); 
    Serial.print("Load Public Key: \t"); 
    if (atecc.loadPublicKey(server_public_key,false) == true){ 
    Serial.println("Success!"); 
    } 
    else Serial.println("Failure."); 
 
    Serial.print("Lock data and OTP zone: \t"); 
    if (atecc.lockDataAndOTP() == true) Serial.println("Success!"); 
    else Serial.println("Failure."); 
 
  } 
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In the beginning of the script, the two libraries, SparkFun_ATECCX08a_Arduino and 

I2C, were imported and the ATECC608A was initialized. The configuration zone was written 

and locked with a specific structure based on the scope of the project. More detail on the 

configuration data can be found in the writeProvisionConfig function within the library file [78]. 

An ECC private key was able to be generated after that. An external public key was loaded and 

the data zone which contained those key slots were locked, meaning that any modification could 

no longer be made. Figure 2-56 shows the successful configuration from the test. The device was 

ready to perform other ECC algorithm tests.  

 

Figure 2-56. ATECC608A key configuration test results 

vii. ECDH pre-master calculation test 

ECDH pre-master calculation is a process of computing a 32-byte shared secret using the 

host’s private key and the other party’s public key. This test shows the concept of ECDH pre-

master key exchange by showing the shared secret result from the server (Python) and the client 

(teensy), which simulates the asymmetric algorithm for secure communication between the CAN 

Logger 3 and the cloud services in the project. The Python and the teensy source code can be 

found on [79] and [80], respectively. The first step was to generate an ECC key pair for the 
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teensy client, using the script from the key configuration script [77] without loading the server 

public key and locking the data because the server has not generated its key pair yet. Figure 2-57 

displays the device public key. 

 

Figure 2-57. CAN Logger 3 device public key for ECDH testing 

The client public key then was manually loaded into the server Python script, where the 

key was serialized into the right format before being loaded into the function. The server then 

generated an ECC key pair for itself and use its private key and the input client public key to 

calculate a shared secret. The code for the Python ECDH is shown below. 
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Figure 2-58 shows the server public key and the ECDH shared secret generated from the Python 

server script. 

 

Figure 2-58. Server public key and ECDH shared secret 

#generate server ECC key pair 
server_private_key = ec.generate_private_key(ec.SECP256R1(), 
default_backend()) 
server_public_key = (server_private_key.public_key()) 
 
PEM_public_key_first = '-----BEGIN PUBLIC KEY-----
\nMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE' 
PEM_public_key_last = '\n-----END PUBLIC KEY-----\n' 
 
#Input Teensy public key manually here: 
Teeny_public_key_hex = 
[0X0D,0XD3,0XF9,0X43,0X97,0X0E,0X03,0XE9,0X88,0X1D,0XF7,0X6E,0X57,0X25,0X6F
,0XD1,0XFB,0X57,0X31,0XD8,0X1B,0X4E,0X34,0X2E,0X93,0X80,0X82,0X9C,0X88,0X9F
,0X8D,0X89,0X78,0X64,0XFA,0XB0,0X66,0X9E,0X7E,0X6D,0XA5,0X1C,0XEE,0X90,0X6E
,0XA8,0X37,0X27,0X9F,0XB0,0XBA,0XAF,0X3B,0XC8,0XCC,0XCB,0XA7,0X20,0XFA,0X58
,0X6E,0XFD,0X9F,0X24] 
 
#Finalize the teensy public key in serilized PEM format 
public_key_teensy_string = PEM_public_key_first + 
Teensy_PEM_public_key[:28]+'\n'+ Teensy_PEM_public_key[28:] + 
PEM_public_key_last 
serialized_public_teensy = bytes(public_key_teensy_string,'ascii') 
 
#Load teensy public key 
teensy_public_key = 
serialization.load_pem_public_key(serialized_public_teensy,backend=default_
backend()) 
 
#Derive shared secret 
shared_secret = server_private_key.exchange(ec.ECDH(),teensy_public_key) 
print("Shared secret:",shared_secret.hex()) 
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After that, the server public key was manually loaded into the teensy script, where the 

teensy client used its private key and the server public key to calculate a shared secret. The code 

for the ATECC608A ECDH is shown below. 

 

Figure 2-59 shows that the shared secret calculated from the client, which is the same one 

from the Python script. This demonstrates the Diffie-Hellman key exchange concept where 

public keys are exchanged, and the client and the server can use the other's public key to generate 

the same shared secret for further use in secure communication. 

Void setup(){ 
 

uint8_t server_public_key[64] = 
{0X89,0X5e,0Xdf,0Xf7,0Xc5,0Xc2,0X96,0Xeb,0X97,0Xa1,0X71,0X98,0Xc2,0X53,0Xc1
,0X05,0Xf4,0Xe3,0Xda,0Xf6,0X29,0X64,0X71,0Xb2,0X15,0Xac,0X52,0X0e,0X0a,0X11
,0Xce,0X54,0Xa3,0Xec,0X91,0X0b,0Xa4,0Xe8,0X48,0X29,0Xec,0X69,0Xbe,0Xca,0Xc9
,0Xcf,0Xc8,0Xc4,0X32,0X8c,0Xec,0X5e,0X93,0X03,0X93,0Xac,0X10,0X5b,0X66,0X30
,0X49,0Xeb,0Xe4,0X87}; 
 

Serial.print("Load Server Public Key: \t"); 
if (atecc.loadPublicKey(server_public_key) == false){ 
Serial.println("Failure."); 

 } 
    Serial.print("Lock Data-OTP: \t"); 

if (atecc.lockDataAndOTP() == true) { Serial.println("Success!"); 
} 

    else Serial.println("Failure."); 
 
   //Read stored public key for ECDH 
   atecc.readPublicKey(true); 
   //Let's calculate the shared secret! 

atecc.ECDH(atecc.storedPublicKey, ECDH_OUTPUT_IN_CLEAR,0x0000); 
} 
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Figure 2-59. ECDH shared secret calculated from the teensy client 

viii. ATECC608A AES-128 

The ATECC608A also supports AES-128 ECB mode, which for this project, uses the 

ECDH shared secret as its key for encryption, thus provides data confidentiality. The AES-128 

was tested to ensure its functionality. The test code is also part of the ECDH script that was 

mentioned above, which is displayed as shown: 
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After the teensy calculated the ECDH shared secret in the previous section, instead of 

outputting the value in clear text, the shared secret was loaded into the TEMPKEY where the 

ATECC608A would refer to that slot as the AES key. A random 16-byte message buffer was 

encrypted using the first 16 bytes of the ECDH shared secret, and the ciphertext was compared 

with the correct value from an online AES tool [81]. Figure 2-60 shows the ciphertext result 

from the ATECC608A AES-128 encryption, which is identical to the one calculated using the 

online tool shown in Figure 2-61. This indicates the function passed its test.  

 

Figure 2-60. AES ciphertext calculated from ATECC608A and online tool 

//16-byte message 
uint8_t message[16] = { 
  0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 
0x0C, 0x0D, 0x0E, 0x0F 
}; 
 
Void setup(){ 
//Read stored public key for ECDH 
  atecc.readPublicKey(true); 
  //Calculate the share secret and load in tempkey! 
  atecc.ECDH(atecc.storedPublicKey, ECDH_OUTPUT_IN_TEMPKEY,0x0000); 
//Encrypt data 
  atecc.AES_ECB_encrypt(message); 
} 
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Figure 2-61. AES ciphertext calculated from an online tool 

ix. ECDSA sign and verify test 

Signing and signature verifying provide a recipient confidence in the received data that it 

was created by a known sender and the message has not been altered in transit. As a result, this 

application is used to authenticate and protect the integrity of critical information being sent from 

the CAN Logger 3 to the cloud services. This test demonstrates ATECC608A ECDSA signing 

and verifying functionality, and its compatibility with the Python server scripts because they are 

two platforms with different languages. In the first test, the teensy signed a random message and 

the Python server verified it and its signature. The test code for the Python server and the teensy 

client can be found in [82] and [83], respectively. The code for the teensy is shown below: 

 

Teensy 
//Message to be signed 
uint8_t message[32] = { 
  0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 
0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 
0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F 
}; 
Void setup(){ 
   //hash message with SHA256 
   sha256Instance = new Sha256(); 
   sha256Instance->update(message,sizeof(message)); 
   sha256Instance->final(hash_message); 
   //Sign message with private key stored on slot 0 
   atecc.createSignature(hash_message,0,true);  
   printSignature(); 
} 
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The teensy would need to go through key configuration step to generate an ECC private 

key along with its corresponding public key to prepare for ECDSA algorithm. After that, the 

message was hashed with SHA-256 and the digest was loaded into the ATECC608A to be signed 

with the device private key. A signature was generated and along with the device public key, 

were input in the Python scripts where the key was serialized to verify the message. Figure 2-62 

shows that the Python script has successfully verified the message. 

Python 
public_key_hex = [0x3B, 0x3C, 0x19, 0x35, 0x90, 0xDA, 0xE4, 0x6F, 0x64, 
0x8C, 0x7E, 0x5E, 0x52, 0x82, 0xA0, 0x98,  
0xA2, 0x5D, 0x7C, 0xC2, 0xDD, 0x3D, 0xA4, 0x8E, 0x18, 0xCF, 0x5E, 0xA1, 
0x39, 0x73, 0x67, 0x6E, 
0xDB, 0xD6, 0x25, 0xD2, 0xEC, 0x0E, 0xF7, 0x83, 0x4C, 0xC7, 0xD7, 0x5D, 
0x5E, 0x02, 0x1D, 0x41,  
0xCB, 0x25, 0xFD, 0x1A, 0x1E, 0xEA, 0x32, 0x6B, 0x61, 0xC6, 0xF4, 0xC1, 
0xBC, 0xF2, 0x21, 0x01] 
 
data_hex = [0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 
0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,  
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 
0x1C, 0x1D, 0x1E, 0x1F] 
 
signature_hex = [0x86, 0x2B, 0x67, 0x14, 0x1C, 0x06, 0xE7, 0x08, 0xF5, 
0xFA, 0x1D, 0x17, 0x8E, 0x81, 0xF9, 0x79,  
0x17, 0xBC, 0xBA, 0x85, 0xB4, 0x85, 0xAA, 0xBE, 0x1D, 0x1C, 0x2B, 0xCB, 
0xE9, 0x43, 0x96, 0x3F, 
0xB8, 0xFB, 0x75, 0x25, 0x3B, 0xF0, 0x0E, 0x0A, 0x76, 0x19, 0x58, 0x0F, 
0xFA, 0x96, 0xB0, 0xCB,  
0x68, 0xED, 0x44, 0x81, 0x9F, 0x7B, 0x91, 0x6F, 0x68, 0x31, 0x4D, 0xC2, 
0x83, 0xEE, 0xF6, 0xE3 
] 
 
#Load Public Key 
PEM_public_key = base64.b64encode(bytes(public_key_hex)).decode('ascii') 
public_key_string = PEM_public_key_first + PEM_public_key[:28]+'\n'+ 
PEM_public_key[28:] + PEM_public_key_last 
serialized_public_teensy = bytes(public_key_string,'ascii') 
public_key = 
serialization.load_pem_public_key(serialized_public_teensy,backend=default_
backend()) 
 
#Verify the signature 
if public_key.verify(signature,data,ec.ECDSA(hashes.SHA256()))== None: 
   print("Verify Signature Successfully!") 
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Figure 2-62. Results from ATECC608A signing and Python sever verifying 

In the second test, the Python server signed a message and the device verified it and its 

signature. The test code for the Python server and the teensy client can be found in [79] and [84], 

respectively. The Python and teensy code is shown below: 

 

Python 
#generate server ECC key pair 
server_private_key = ec.generate_private_key(ec.SECP256R1(), 
default_backend()) 
server_public_key = (server_private_key.public_key()) 
 
#data to be signed 
data_hex = [0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 
0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,  
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 
0x1C, 0x1D, 0x1E, 0x1F] 
data = bytes(data_hex) 
 
#Sign the message 
signature1 = server_private_key.sign(data,ec.ECDSA(hashes.SHA256())) 
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Initially, the server script generated an ECC key pair using the integrated library function. 

The same message in the first test was entered as a parameter in the signing function where the 

server private key was used. A signature was generated and it, along with the server public key, 

were input in the device teensy script where the ATECC608A loaded the data in its memory. The 

verifying function was performed, and the result shows a successful execution, as seen in Figure 

2-63. 

Teensy 
uint8_t publicKeyExternal[64] = { 
0xD6,0x78,0xAB,0x2E,0x76,0x16,0xE0,0xF6,0x10,0x47,0x0F,0xB9,0x1C,0x4A,0x1A,
0x2D,0xAE,0xB8,0x1C,0x48,0xA2,0x8A,0xAE,0xB8,0x4E,0xC8,0x7B,0x88,0xEB,0xE8,
0x50,0xDE,0xCC,0xA2, 
0x9B,0x6F,0x53,0x4A,0x21,0x58,0x06,0xF9,0xB8,0x92,0x43,0x01,0x5A,0x5C,0x67,
0x18,0xE6,0x51,0x61,0xA0,0xDA,0xBB,0x56,0xCE,0x56,0xFC,0x1B,0xD5,0xCB,0x49 
}; 
 
uint8_t message[32] = { 
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 
0x0C, 0x0D, 0x0E, 0x0F,  
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 
0x1C, 0x1D, 0x1E, 0x1F 
}; 
 
uint8_t signature[64] = { 
0x72,0x1B,0xAA,0xC8,0x15,0x7C,0x68,0x14,0x01,0x3C,0x10,0x84,0x68, 
0xF9,0xBA,0xDB,0x9C,0x26,0xAC,0xC0,0x84,0xE7,0xD3,0xEC,0x9B,0x66, 
0x32,0x19,0x2C,0xB6,0xEC,0xA6,0xEA,0x24,0xF8,0xC8,0x04,0xD6,0x57, 
0x6D,0x3E,0xDF,0xE2,0xF3,0x75,0xE0,0x04,0xD0,0x95,0x72,0x92,0xAA, 
0xD0,0x65,0x43,0x1B,0x83,0xDD,0x31,0x35,0xAA,0xAF,0x84,0x00 
}; 
 
Void setup(){ 
  //SHA256 hash mesasge 
  sha256Instance = new Sha256(); 
  sha256Instance->update(message,sizeof(message)); 
  sha256Instance->final(hash_message); 
 
  // Let's verirfy! 
  if (atecc.verifySignature(hash_message, signature, publicKeyExternal)){  
     Serial.println("Success! Signature Verified."); 
  } 
  else Serial.println("Verification failure."); 
} 
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Figure 2-63. Results from Python sever signing and ATECC608A verifying the message. 

x. CAN2 and multiplexing test 

Because the MCP2517FD is a new CAN controller version, a different library was used 

to interact with the chip. The Arduino source code of the library can be found in [85], which was 

developed by Pierre Molinaro. However, the library needed to be explored and modified to send 

and receive CAN messages on the bus. Because CAN2 is not as popular in vehicles as CAN0 

and CAN1, this application will be saved for future work. The purpose of this test was to ensure 

the MCP2517FD hardware has been wired correctly and can function with the right software. 

Even though CAN2 has not been able to work normally, the internal loopback mode can be 

activated for self-testing using the script [86] from the library. Moreover, the multiplexing 

feature is also tested in this script because it is required to enable CAN2 from default J1708. The 

test code is shown below:  
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The library was imported in the beginning of the script. SPI pinouts such as SDI, SDO, 

CS, and INT were defined and set according the schematic design of the CAN Logger 3. 

Multiplexing CAN_switch pin was also defined and pulled high to enable CAN2. The library 

setting was chosen with 20MHz SPI speed, 250kbps bitrate, and InternalLoopBack mode. In the 

looping function, the CAN controller sent out a random message and increased the send counter 

by one if it was sent successfully. At the same time, if it received a message, the receive counter 

also increased by one. Figure 2-64 shows the results from the internal loopback test script. The 

MCP2517FD was successfully initialized and able to send and receive messages internally. This 

#include <ACAN2517.h> 
 
static const byte MCP2517_SCK = 13 ; // SCK input of MCP2517 
static const byte MCP2517_SDI =  11 ; // SDI input of MCP2517 
static const byte MCP2517_SDO =  12 ; // SDO output of MCP2517 
 
static const byte MCP2517_CS  = 15 ; // CS input of MCP2517 
static const byte MCP2517_INT = 38 ; // INT output of MCP2517 
 
ACAN2517 can (MCP2517_CS, SPI, MCP2517_INT) ; 
 
#define CAN_switch 2 //multiplexing pin 
 
void setup () { 
  pinMode(CAN_switch,OUTPUT); 
  digitalWrite(CAN_switch, HIGH); 
 
  SPI.setMOSI (MCP2517_SDI) ; 
  SPI.setMISO (MCP2517_SDO) ; 
  SPI.setSCK (MCP2517_SCK) ; 
  SPI.begin () ; 
 
  ACAN2517Settings settings (ACAN2517Settings::OSC_20MHz, 250 * 1000) ; 
  // Select loopback mode 
  settings.mRequestedMode = ACAN2517Settings::InternalLoopBack ;  
} 
 
void loop(){ 
  const bool ok = can.tryToSend (message) ; 
  if (ok) gSentFrameCount += 1 ; 
  if (can.receive (frame)) gReceivedCount += 1 ; 
} 
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indicates that the hardware passed the test. However, full functionality will be investigated in the 

future. 

 

Figure 2-64. CAN2 internal loopback test result 

xi. Single-Wire CAN test 

The Single-Wire CAN is not in requirement and therefore, has not been tested. 

xii. LIN test 

The LIN feature is not in requirement and therefore, has not been tested. 

xiii. J1708 test 

J1708 feature was tested with a setup of two CAN loggers 3 connected to each other 

where one sent and the other received. The test script can be found here [87] and the code is 

shown below: 
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CAN_switch pin for multiplexing could optionally be set low, or left at its default value 

because J1708 was configured as the default network. In this script, both CAN loggers 3 sent out 

messages with data increasing by one through Serial2 for J1708 communication. At the same 

time, they also actively listened to available messages. Figure 2-65 shows the results from one of 

the devices.  

 

Figure 2-65. J1708 test results from one of the CAN loggers 3 

#define CAN_switch 2 
 
void setup () { 
  //Set CAN_switch low for J1708 
  pinMode(CAN_switch,OUTPUT); 
  digitalWrite(CAN_switch, LOW); 
  Serial2.begin(9600); //Initialize Serial2 
} 
void loop() { 
   int nBytes = Serial2.available(); //Read available messages 
   if(nBytes > 0) 
   { 
       int nCount = Serial2.readBytes(sBuffer, nBytes); 
       for(int nIndex = 0; nIndex < nCount; nIndex++) 
       { 
           Serial.print(sBuffer[nIndex], HEX); //Print messages in hex 
       } 
   }  
    Serial2.write(message,4);//Write message 
} 
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The fact that there were messages shown on the serial monitor means that the CAN 

Logger 3 was able to send and receive J1708 messages successfully. The test shows that the 

J1708 circuit was designed correctly. However, full functionality will be investigated in the 

future.  

xiv. Voltage monitoring test 

The CAN Logger 3 voltage monitoring features, which include external analog voltage 

measurement of the raw 12V pin and of pin A7, and an optically isolated input of the raw 12V 

and of pin A6. These pins are located on the D-Sub 15; however, only the raw 12V line is 

connected to the vehicle through the Deutsch 9-pin connector. Pin A6 and A7 are saved for 

future use where extra interrupts are needed. They were all tested using this script [88], as shown 

in the code below: 

 

//Define source pins 
#define RAW_sense 21 
#define A6_sense 20 
int RAW_measure = A22; 
int A7_measure = A21; 
 
void setup() { 
  // put your setup code here, to run once: 
   pinMode(RAW_sense, INPUT_PULLUP); 
   pinMode(A6_sense, INPUT_PULLUP); 
} 
 
void loop() { 
  // put your main code here, to run repeatedly: 
  Serial.print("RAW sense:"); 
  Serial.println(digitalRead(RAW_sense)); 
  Serial.print("RAW measure:"); 
  Serial.println(analogRead(RAW_measure)); 
   
  Serial.print("A6 sense:"); 
  Serial.println(digitalRead(A6_sense)); 
  Serial.print("A7 measure:"); 
  Serial.println(analogRead(A7_measure));   
} 
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The pins were defined according to how they were assigned in the design. The optically 

isolated input pins were pulled high. In the loop function, the device printed out the converted 

analog values for the external voltage measurement and a digital value of 0 (12V) or 1 (0V) for 

the optically isolated input. Based on the experiment, the analog values for the raw 12V range 

from 0 to approximately 192 on an 0-12V scale, and 0 to approximately 211 on an 0-12V scale 

for pin A7. The digital reading for the raw 12V and pin A6 is 0 for 12V and 1 for 0V. Figure 2-

66 reflects successful readings.  

 

 

Figure 2-66. CAN Logger 3 voltage monitoring test results 

Raw 12V, A6, and A7 

connected to 12V 

Raw 12V, A6, and A7 

disconnected from 12V 
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xv. Power interruption test 

In the event of a power interruption, the device needs to close the current session, and 

create and sign the associated metadata file to finish the logging process. The device’s closing 

time was measured by modifying part of the main firmware [89] as shown below: 

 

A timer variable in microseconds was set to 0 initially and printed after executing the 

binFile.close() and write_final_meta_data() functions to show long each of them took. The 

results are illustrated in Figure 2-67.  

elapsedMicros micro_timer; 
 
void close_binFile(){ 
   micro_timer = 0; 
   binFile.close(); 
   Serial.println(); 
   Serial.print("Time to close bin file (us):"); 
   Serial.println(micro_timer); 
   micro_timer = 0; 

 
   write_final_meta_data(); 

 
   Serial.print("Total closing time to create metadata textfile (us):"); 
   Serial.println(micro_timer); 
} 
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Figure 2-67. The time to close bin file and create metadata file  

On average, it took approximately 5-9 milliseconds to close the binary log file and 130-

140 milliseconds to create the metadata text file with its hash and signature and the total time 

required was about 150 milliseconds. A power loss event can interrupt this process and the data 

will not be completely recorded. Therefore, as mentioned before, large capacitors were added in 

the design to help power the teensy for a small amount of time to execute the closing functions 

during a power loss. However, the time for the metadata was still significantly large and the 

CAN Logger 3 might not be able to run for 150 milliseconds during a power loss event. As a 

result, the device’s firmware was modified such that it would save important information of the 

current logging session into the processor’s EEPROM memory before creating and hashing the 

metadata file. If the device failed to finish creating the metadata file due to power loss, it would 
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redo the process during the next bootup. The time it took to write into EEPROM was measured. 

The code is shown: 

 

 

Figure 2-68. The time to close bin file and store backup data in EEPROM 

 
void close_binFile(){ 
   micro_timer=0; 
     
   //Write current file name to EEPROM 
   EEPROM.put(EEPROM_FILE_ID_ADDR,current_file);  
 
   //Write important metada of current file for backup 
   EEPROM.put(EEPROM_filesize_hash_ADDR, filesize_hash_contents);  
 
   Serial.print("Total closing time with backup data already stored in 
EEPROM (us):"); 
   Serial.println(micro_timer);   write_final_meta_data();   
 
   write_final_meta_data();  
} 
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Figure 2-68 shows the results with the added function. The device took similar time to 

close the binary log file and approximately 3-3.3 milliseconds to store the current session backup 

data to the EEPROM. Thus, with only 8-12 milliseconds , the device could have record 

everything safely. This was a huge improvement from the 150 milliseconds measurement.  

There are two power interrupting events that can possibly occur during normal operation. 

The first one is when the CAN Logger 3 gets unplugged from the diagnostic port, which occurs 

regularly during operation. The second is during some unexpected and rare events (crashes, 

struck by lightning, etc.) , the vehicle losses power from the battery or the alternator and thus, the 

device losses power from the diagnostic port. The engine key on/off switch does not associate 

with these two events because the 12V on the diagnostic port typically remains on all the time. 

The main difference between the two power loss events is that the supply voltage drops from 

12V to 0V immediately when the device is disconnected; during a loss of vehicle power the 

supply will decay over time due to existing capacitance in the vehicle’s power network. Because 

the CAN Logger 3 is not isolated from the network, the raw 12V will exhibit the same decay as 

the vehicle power. Initially, the only voltage monitoring for the CAN Logger 3 was a binary 

output from the optically isolated input, which read false (0) if the supply voltage was non-zero, 

and true (1) if the supply voltage was zero. This posed a problem because the Teensy had 

insufficient warning that a loss of power had occurred, thereby jeopardizing the ability of the 

device to save and close the log file in order to prevent data loss. To mitigate this risk, an 

additional analog voltage monitoring system was added, as mentioned above, to the design that 

will trigger an interrupt when the supply voltage drops below 9V. The CAN logger was tested 

against those two events to ensure that no data was lost.  
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An oscilloscope was used to monitor the teensy Vin power pin along with the raw 12V 

(diagnostic port power from vehicle) input from the network and the safe 12V (diagnostic port 

power from vehicle after device’s power protection). At the same time, the firmware was also 

modified to pull an LED high immediately after the device closed the binary file and wrote data 

to the EEPROM memory. The voltage of the LED was also monitored by the oscilloscope to 

determine whether the file closing occurred and how long it took. The results for the two power 

loss cases were graphed and analyzed as shown in Figure 2-69 and Figure 2-70. 

 

Figure 2-69. Analyzing the voltage dropped from unplugging the device 
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Figure 2-69 shows that when the device was unplugged, the raw 12V input immediately 

dropped below 1V, which was the first indication that the file closing function was triggered. 

The capacitors in the design still supplied power to maintain the teensy at a normal voltage level 

of above 3.6V for about 21.5 milliseconds while the device safe 12V gradually decayed. The safe 

12V and the Teensy Vin eventually leveled out to 0V. The graph has been rescaled as shown for 

better visualization during this critical event. The LED turned on at 12.1 milliseconds, which 

indicated that the CAN Logger 3 had successfully closed the binary file and saved critical 

metadata information in the EEPROM. Therefore, no log data was lost when the power 

connection was interrupted. 

 

Figure 2-70. Analyzing the voltage dropped from vehicle power loss 
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Figure 2-70 shows that when the vehicle lost its power, the raw 12V input gradually 

decayed to less than 4V over the course of approximately 60 milliseconds . When the raw 12V 

dropped below 9V, the interrupt was triggered. The process to safely close the log file and save 

all data to the EPPROM took 12.1 milliseconds, which approximately the same as the previous 

test. The Teensy running time was extended from 21.5 milliseconds to 31 milliseconds due to the 

residual capacitance from the raw 12V. Again, the graph has been rescaled and the safe 12V, raw 

12V, and the Teensy Vin eventually leveled out to 0V. The CAN Logger 3 has successfully and 

safely recorded the log file in this power loss event.  

Both cases showed that the CAN Logger 3 passed the power interruption test. However, 

an important point from the graphs was that the teensy could not last more than 150 milliseconds 

to create and hash the metadata file. As a result, the added EEPROM function has solved the 

problem and the chosen capacitors in the design have provided sufficient running time to execute 

the function. These power loss tests were conducted in the lab settings. Starting an actual truck 

also draws current and drops the battery voltage. This test has not been conducted. 

xvi. Destructive power test 

The CAN Logger 3 was tested against two destructive power situations, which are high 

voltage and reverse polarity. For the first test, the raw 12V was increased up to 36V which was 

the intended maximum voltage for the design. The event of the voltage reaching 36V is unlikely, 

but is not impossible because voltage spike or vehicle struck by lightning can occur. The device 

raw 12V and ground were connected to a DC power generator where the output voltage was 

slowly increased from 0V to 36V. At the same time, the LED on the device was set high as an 

indication to determine whether the processor still functioned properly during the test. In the 

initial design, the TVS components used in the external voltage monitoring circuit were 
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destroyed at approximately 24V. As a result, they were replaced with a different component that 

had a higher voltage rating. The test was conducted again, and the device failed at 36V, as 

anticipated. 

For the second test, the raw 12V and ground wires were switched before connecting the 

CAN Logger 3. Through observation, the device repeatedly restarted itself, but no damage was 

observed. Both tests successfully demonstrated that the CAN Logger 3 has protection against 

high voltage up to 36V and reverse polarity.  

xvii. LEDs and buttons test 

The four LEDs and two push buttons on the CAN Logger 3 were tested for their 

functionality. The test code can be found here [90], which is displayed below: 
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The pins for the four LEDs and the two push buttons were defined. Two Boolean 

variables with true/false state for the buttons were also defined. The LED pins were set to output 

mode while the button pins were set to pullup input. The Boolean variables were tied to the 

button digital value and the LED outputs were tied to the Boolean variables. When the test script 

was uploaded, the LEDs were always on until the buttons were pressed. This indicates that the 

LEDs and the buttons were wired correctly and functioned properly. Figure 2-71 shows the CAN 

Logger 3 with all four LEDs lit up. 

//Define LED pins based on schematic 
#define GREEN_LED_PIN 6 
#define RED_LED_PIN 14 
#define YELLOW_LED_PIN 5 
#define BLUE_LED_PIN 39 
 
//Define button pin, the button is soldered on SW21 
#define button1 28 
#define button2 53 
//Create an on/off boolean for the button 
bool buttonState1; 
bool buttonState2; 
 
void setup() { 
  // put your setup code here, to run once: 
  //Define LED pin mode 
  pinMode(GREEN_LED_PIN,OUTPUT); 
  pinMode(YELLOW_LED_PIN,OUTPUT); 
  pinMode(RED_LED_PIN,OUTPUT); 
  pinMode(BLUE_LED_PIN,OUTPUT); 
  //Pull button high 
  pinMode(button1,INPUT_PULLUP); 
  pinMode(button2,INPUT_PULLUP); 
} 
 
void loop() { 
  // put your main code here, to run repeatedly: 
  //If button is pushed, the pin will pull low 
  buttonState1= digitalRead(button1);  
  buttonState2= digitalRead(button2);  
  digitalWrite(GREEN_LED_PIN,buttonState1); 
  digitalWrite(YELLOW_LED_PIN,buttonState1); 
  digitalWrite(RED_LED_PIN,buttonState2); 
  digitalWrite(BLUE_LED_PIN,buttonState2); 
   
} 
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Figure 2-71. LEDs test 

xviii. WiFi test 

Even though the WiFi function has not been implemented for the current operation, the 

ATWINC1500 WiFi module was tested to ensure proper functionality for future use. The library 

used for the module can be found here [91]. Because the module is connected to the processor 

SPI1, the library was changed to adapter for this design in WiFi101-

master/src/bus_wrapper/source/nm_bus_wrapper_samd21.cpp, as seen: 

 

The first test was to check for firmware updates to make sure that the processor could 

correctly communicate with the module and it was up to date. Before running the test, the J2 

connection was bridged to enable WiFi capability. The test script was used from the library 

example [92], as shown below: 

53 #if !defined(WINC1501_SPI) 
54 #define WINC1501_SPI SPI1 // Change here from SPI to SPI1 
55 #endif 



   
 

102 
 

 

 

Figure 2-72. ATWINC1500 WiFi module firmware check 

#include <SPI.h> 
#include <WiFi101.h> 
 
//Define the pins for WiFi chip 
#define WiFi_EN 24 
#define WiFi_RST 25 
#define WiFi_CS 31 
#define WiFi_IRQ 23 
 
void setup() { 
//Initialize WiFi module 
  WiFi.setPins(WiFi_CS,WiFi_IRQ,WiFi_RST); 
  pinMode(WiFi_EN, OUTPUT); 
  digitalWrite(WiFi_EN,HIGH); 
 
// Print firmware version on the shield 
  String fv = WiFi.firmwareVersion(); 
  String latestFv; 
  Serial.print("Firmware version installed: "); 
  Serial.println(fv); 
 
  if (REV(GET_CHIPID()) >= REV_3A0) { 
    // model B 
    latestFv = WiFi_FIRMWARE_LATEST_MODEL_B; 
  } else { 
    // model A 
    latestFv = WiFi_FIRMWARE_LATEST_MODEL_A; 
  } 
 
  // Print required firmware version 
  Serial.print("Latest firmware version available : "); 
  Serial.println(latestFv); 
} 



   
 

103 
 

Because SPI1 was used, the pinouts for the communication were redefined according the 

design schematics: Enable (EN) – 24, Reset (RST) – 25, Chip Select (CS) – 31, and Interrupt 

Signal (IRQ) – 23. The Enable pin was set high for normal operation, according to the datasheet. 

The firmware was then retrieved and printed out on the Arduino console, as illustrated in Figure 

2-72.  

The next test was to examine how the ATWINC1500 module handled the speed of the 

CAN network and if logging CAN messages via WiFi was feasible for future reference. In this 

setup, the connection was established between the CAN Logger 3 and a local computer with 

Python application. The code for the CAN Logger 3 and the Python can be found at [93] and 

[94], respectively. The CAN Logger 3 test script is shown: 

 

#include "arduino_secrets.h" 
#include <FlexCAN.h> 
#include <WiFi101.h> 
 
char ssid[] = SECRET_SSID;         
char pass[] = SECRET_PASS;     
 
int port = 80; 
WiFiServer server(port); 
 
void setup(){ 
//Create open network.  
status = WiFi.beginAP(ssid, pass); 
} 
 
void loop(){ 
WiFiClient client = server.available(); 
  if (client) {                // if you get a client 
    if (Can0.available()) { 
       Can0.read(rxmsg); 
       load_buffer(); 
    } 
    if (Can1.available()) { 
       Can1.read(rxmsg); 
       load_buffer(); 
    } 
  } 
} 
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And the Python code is: 

 

The CAN Logger 3 acted as a host which broadcasted its WPA2 access point with the 

SSID and password stored in the arduino_secrets.h, and the port was set at 80. When the 

computer successfully connected to the wireless network with the correct password, the CAN 

Logger 3 started reading any available message from the bus, packed those data to the WiFi 

frame, and sent them over. When the computer received the data, it unpacked and saved them as 

a log. The test results are shown in Figure 2-73. 

import socket 
import sys 
 
 
#setup tcp client for CAN data transfer 
SERVER_IP = "192.168.1.1" #insert IP address of server here 
SERVER_PORT = 80 
 
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 
 
try: 
    sock.connect((SERVER_IP, SERVER_PORT)) 
except OSError: 
    print("Could not connect TCP Socket. Make sure SERVER_IP is correct.") 
    sys.exit() 
 
with open (LOG_FILE_NAME, 'w') as file: 
    while True: 
        data = sock.recv(Buffer_size) 
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Figure 2-73. CAN logging via WiFi 

However, the challenge discovered in this test was that there are missing messages from 

the log, indicating that the ATWINC1500C module could not keep up with the speed, even at 

normal bus load and without encryption. Therefore, the idea of using the CAN Logger 3 to 

stream live data via WiFi has not been further explored. On the other hand, without the speed 

constraint, the CAN Logger 3 can still utilize the WiFi feature to send the log files stored from 

the SD to the local computer. This is, in fact, in the scope of the project and can be used as an 

option for data uploading process in the future. 



   
 

106 
 

xix. Real-time clock test 

The real-time clock provides an accurate timestamp of when the logging session starts, 

which is important for user and forensics reference. This function is based on the elapsed timer 

within the processor and is powered by the 3V coin cell battery. Information of the integrated 

time library from the teensyduino can be found here [95]. The code for time function used in the 

main logging firmware [89] is shown: 

 

After the TimLib.h library was imported, the device synchronized its time with the clock 

of the computer where the firmware was uploaded. The 3V coin cell battery would keep the time 

running when the device was unplugged. Figure 2-74 shows the synchronized real time clock 

from the logging firmware.  

#include <TimeLib.h> // be able to keep realtime. 
 
void setup(){ 
//Setup timing services 
  setSyncProvider(getTeensy3Time); 
  if (timeStatus()!= timeSet) { 
    Serial.println("Unable to sync with the RTC"); 
  } else { 
    Serial.println("RTC has set the system time"); 
  } 
  setSyncInterval(1); 
   
  sprintf(timeString,"%04d-%02d-%02d 
%02d:%02d:%02d.%06d",year(),month(),day(),hour(),minute(),second(),uint32_t
(microsecondsPerSecond)); 
  Serial.println(timeString); 
} 
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Figure 2-74. Setting real time clock from the logging firmware 

To test the real time clock, the device was plugged into a CAN bus for logging two 

sessions with 7 days apart. The timestamps of those log files were compared with each other and 

with the actual time. They were accurate and therefore, the real time clock has worked as 

intended.  

As mentioned above, the current configuration has the real-time clock of the CAN 

Logger 3 tied to the clock of the computer where the main firmware is uploaded, which can be 

limited and inconvenient. Therefore, setting time to UTC would be better. 
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xx. Error frame test 

When errors occur during operation, the device should be able to capture error frames for 

troubleshooting. It is an important factor in the data pool for anomaly or intrusion detection. The 

FlexCAN library has been modified to capture error frames, which can be seen in the 

FlexCAN::error_isr() function in FlexCAN.cpp file [96]. The error.h file [97] from socketCAN 

is utilized to define the types of error. The device can capture six different errors: 

1. A CAN frame is not acknowledged 

2. Bit stuffing violation 

3. The fixed-form bit field contains at least one illegal bit, causing format error 

4. CAN frame Cyclic Redundancy Check (CRC) error has been detected 

5. Unable to send dominant bit, which causes bit0 error 

6. Unable to send recessive bit, which causes bit1 error 
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Figure 2-75. Bit stuffing error injection setup 

To test the error frame capability, a setup was made with the purpose of injecting bit 

stuffing errors, as seen in Figure 2-75 above. An SSS2 and an ECM were used to simulate a 

truck network with two 120 Ω terminating resistors, one at either end. A CAN Logger 3 was 

connected to the CAN bus for data collection. A Teensy 3.6 and an MCP2562 CAN transceiver 

were also added as a node for bit stuffing error injection using the following code [98]:  
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Pins 3 and 4 on the teensy 3.6 were attached to the CANTX and CANRX, respectively. 

Both of these lines operated at 3.3V. When there were CAN messages on the bus, the MCP2562 

received the data and converted the CANRX signal to the Teensy 3.6. Bit stuffing is asserting a 

bit of opposite polarity after five consecutive bits of the same polarity. As a result, an interrupt 

was attached to the CANTX such that when the teensy 3.6 received the start of frame dominant 

bit signal on the CANRX, the CANTX would be set high for more than five-bit length to set a bit 

stuffing error. After many trials and errors, the right timing was determined to be 17 µs. Figure 

2-76 illustrates the CANTX and CANRX signal using the Logic Analyzer Saleae during the error 

injection. 

 

#define rx_pin 4 
#define tx_pin 3 
elapsedMicros counter; 
 
void setup() { 
  // put your setup code here, to run once: 
Serial.begin(9600); 
pinMode(rx_pin,INPUT); 
pinMode(tx_pin,OUTPUT); 
 
} 
 
void loop() { 
  // put your main code here, to run repeatedly: 
   
  if(digitalRead(rx_pin) == 0) { 
   counter = 0; 
   while (counter< 17) digitalWrite(tx_pin,LOW); 
   digitalWrite(tx_pin,HIGH); 
   delay(100); 
  } 
} 
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Figure 2-76. CAN0TX (channel 0) and CAN0RX (channel 1) signals 

Figure 2-76 shows the exact setup as described above. When the first start of frame bit 

occurred, the CANTX (channel 0) was set for 17 µs , which successfully generated a bit stuffing 

error with 6 recessive bits in a row on CANRX (channel 1).  

 

Figure 2-77. Error frames captured in CAN log file 

Figure 2-77 shows the CAN data from the CAN logger after the test. Error frames with 

bit stuffing error type, were successfully captured, as shown in the figure with messages that 
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contained ID of 0x20000008 and hex 0x04 on the third data byte. The error.h [97] and 

FlexCAN.cpp [96] files in the FlexCAN library [25] were used to define the error frames with 

specific message ID and data for different CAN violations. The bit stuffing error is defined in the 

codes below. 

Error.h code: 

 

FlexCAN.cpp code: 

 

When there is an error occurred, the message ID is set to CAN_ERR_FLAG 

(0x20000000). This results in the 0x2 appeared in the most significant byte of the message ID. If 

the error is a bit stuffing violation, a bitwise OR is performed between the message ID and the 

CAN_ERR_PROT (0x00000008). The third byte in the data field is also set to 

CAN_ERR_PROT_STUFF (0x04). Therefore, the message ID is 0x20000008 and the third data 

byte is 0x04, as seen in the results from the test. In conclusion, the device passed the test. 

#define CAN_ERR_FLAG 0x20000000U /* error message frame */ 
#define CAN_ERR_PROT       0x00000008U/* protocol violations /data[2..3] */ 
#define CAN_ERR_PROT_STUFF       0x04 /* bit stuffing error */ 
 

void FlexCAN::error_isr (void) 
{  
  uint32_t status = FLEXCANb_ESR1 (flexcanBase); 
  if (report_errors){ 
    CAN_message_t msg; 
    msg.id = CAN_ERR_FLAG; //Set this to show this is an error id 
    msg.len = 8; 
    msg.ext = 1; 
    memset(&msg.buf, 0, 8); 
 
// A bit stuffing error was detected. 
    if (status & FLEXCAN_ESR_STF_ERR) { 
      msg.id |= CAN_ERR_PROT; /* protocol violations / data[2..3] */ 
      msg.buf[2] |= CAN_ERR_PROT_STUFF;  /* bit stuffing error */ 
    } 
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xxi. Request message test 

The CAN Logger 3 can send out request messages for On Request parameters defined in 

SAE J1939. These messages are defined by the Parameter Group Number (PGN) within the SAE 

J1939 standard [3], specifically the SAE J1939-71 vehicle application layer [99]. The request 

message PGNs used for this project are listed below: 

 

Among those PGNs, the component and vehicle identification are the most important 

ones, which are 65259 (0x00FEEB) and 65260 (0x00FEEC), respectively. The code to send the 

request messages within the main firmware [89] are shown below:  

uint16_t request_pgn[NUM_REQUESTS] = { 
  65261, // Cruise Control/Vehicle Speed Setup 
  65214, // Electronic Engine Controller 4 
  65259, // Component Identification 
  65242, // Software Identification 
  65244, // Idle Operation 
  65260, // Vehicle Identification 
  65255, // Vehicle Hours 
  65253, // Engine Hours, Revolutions 
  65257, // Fuel Consumption (Liquid) 
  65256, // Vehicle Direction/Speed 
  65254, // Time/Date 
  65211, // Trip Fan Information 
  65210, // Trip Distance Information 
  65209, // Trip Fuel Information (Liquid) 
  65207, // Engine Speed/Load Factor Information 
  65206, // Trip Vehicle Speed/Cruise Distance Information 
  65205, // Trip Shutdown Information 
  65204, // Trip Time Information 1 
  65200, // Trip Time Information 2 
  65250, // Transmission Configuration 
  65203, // Fuel Information (Liquid) 
  65201, // ECU History 
  65168, // Engine Torque History 
  64981, // Electronic Engine Controller 5 
  64978, // ECU Performance 
  64965, // ECU Identification Information 
  65165  // Vehicle Electrical Power #2 
}; 
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The request messages were sent individually with the ID of 0x18EAFFF9 and the data 

field consisted of the corresponding 3-byte PGN in the list as described previously. In the 

message ID, byte 0xEA represented Request PGN and byte 0xF9 represented the diagnostic tool 

source address. The PGNs were shuffled before being sent in the least significant byte order 

(little-endian).  

To test this feature, the CAN Logger 3 was attached to a CAN network to log the data 

while sending request messages to the ECM. The log data was parsed to check if the ECM 

responded to the requests with valid information. Figure 2-78 and Figure 2-79 shows the request 

messages and the corresponding responses from the ECM for component and vehicle 

identification information, respectively.  

if (send_requests){ 
    if (send_passes < NUM_REQUEST_PASSES){ 
      if (send_request_timer > REQUEST_TIMING){ 
        send_request_timer = 0; 
        txmsg.len = 3; 
        txmsg.id = 0x18EAFFF9; 
        txmsg.buf[0] = (request_pgn[request_index] & 0x0000FF); 
        txmsg.buf[1] = (request_pgn[request_index] & 0x00FF00) >> 8 ; 
        txmsg.buf[2] = (request_pgn[request_index] & 0xFF0000) >> 16; 
 
    //These are in reverse byte order. 
        send_Can0_message(txmsg); 
        if (RXCount1 > 0) send_Can1_message(txmsg); 
  
        request_index++; 
        if (request_index >= NUM_REQUESTS) { 
          request_index = 0; 
          send_passes++; 
          //shuffle 
          //Serial.println("Shuffling Requests"); 
          for (int i = 0; i < NUM_REQUESTS; i++) { 
            int j = random(i, NUM_REQUESTS); 
            auto temp = request_pgn[i]; 
            request_pgn[i] = request_pgn[j]; 
            request_pgn[j] = temp; 
          } 
        } 
      } 
    } 
} 
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Figure 2-78. Request message and its responses for component identification 

 

Figure 2-79. Request message and its responses for vehicle identification 

In Figure 2-79, the first message was the request asking for the component identification 

with the PGN of 0x00FEEB (65259). The PGN in the CAN frame was in least significant byte 

order (EBFE00), as stated in the J1939-21 Data Link Layer [2]. The next CAN message with the 

ID of 0x18ECFF00 was a response from the engine saying it would response to that PGN request 

by sending seven messages containing the information using the transport layer protocol with the 

ID of 0x18EBFF00. Within the data field of those seven messages, the first byte indicated the 

index and the last seven bytes were the actual data. By combining all those together, the full 

response in hex was:  

Request message for component identification from the CAN Logger  

Response from engine 

Request message for vehicle identification from the CAN Logger  

Response from engine 
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Similarly, the full message for the vehicle identification from Figure 2-79 was: 

 

Converting to ASCII would give: 

 

To confirm if the received responses were valid, a DG DPA5 RP1210 device was used to 

retrieve the information, as shown in Figure 2-80.  

 

Figure 2-80. Component and vehicle identification information using DG Diagnostics tool 

The component and vehicle identification information retrieved from the CAN Logger 3 

matched the one from DG DPA5, which means that the CAN Logger 3 passed the test.  

434D4D4E532A36583175313044313530303030303030302A36303831313133362A303030303
030303030302A 

30303030303030303030303030303030302A 

CMMNS*6X1u10D1500000000*60811136*0000000000* - component identification 
00000000000000000* - vehicle identification (VIN) 
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Chapter 3. Software Design 

A. Process Overview 

The CAN logging operation includes two main processes: provisioning and normal 

operation. Both are required to communicate with the Amazon Web Services (AWS), which was 

chosen as the third-party cloud services provider for this project. The interface between the CAN 

Logger 3 and the AWS services is done via a local computer running a Python application. The 

CAN logger devices communicate with the local computer through local serial USB. On the 

other hand, the connection between the computer and the AWS cloud is through the Internet with 

secure TLS using the Python requests module. 

 

Figure 3-1. CAN Logger 3 software design overview  
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The provisioning process must happen first to configure the new device before it can be 

delivered to clients and function properly as intended. With the provisioned CAN logger, clients 

can use it as a standalone device to log data from heavy trucks securely with encryption. The 

encrypted log files will temporarily be stored on the device until uploaded to the AWS server for 

secure storage and data management. The process overview is depicted in Figure 3-1. 

In order to achieve the security and privacy of this model, the following factors are 

assumed to be uncompromised: 

1. The local computer with Python application 

2. The provisioning operator 

3. The Internet connection with secure TLS 

4. The AWS third-party  

5. The owner of the CAN logger 

The local computer and the provisioning operator are parts of the device’s manufacturing 

process. Preventing these two factors from being compromised is not in the scope of the CAN 

logging project but in the security of the local facility itself. As a result, these two factors are 

assumed to be safe in this project. 

Transferring sensitive data via the Internet can be risky. However, by following the 

industry-standard using TLS, the connection via the Internet should be protected. Therefore, it is 

safe to assume that the communication between the Python application and the AWS is secure in 

this project. 
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Using a third-party cloud is a debatable subject because the data owners put all their trust 

and resources into the hand of a different company. However, this is common in the business 

world, where one relies on the services of data storage and the protection from others. On the 

other hand, some prefer to spend more resources to develop their own data management structure 

because the data may be too valuable to be stored elsewhere. The decision whether to use a third-

party service depends on the needs of the data owner. Amazon is a big company with a favorable 

reputation, and its AWS provides a data management system with high security on its end at a 

much lower cost than building one. Therefore, AWS is trusted to be used in this project, and their 

security is assumed to not be easily compromised.  

Lastly, the owner of the CAN logger is the only person who possesses and operates the 

device post-delivery. It is their responsibility to keep their device safe from unauthorized 

physical access. Any device that is in a wrong hand can be broken; it’s only a matter of time 

because there is no such system that is 100% secure. For this project, the CAN logger owner is 

assumed to always have possession of the device and operate it correctly without any harmful 

intention. However, a well-designed system should make it extremely difficult for hackers to 

attack. It should take a lot of time and money to penetrate the system, and thus, the obstacles 

should discourage hackers from trying, or at least give the system administrator more time to 

detect and eliminate any threat. And if one device is compromised, it will not compromise all 

devices and the overall system should still function properly. The CAN logger was designed to 

follow this principle. 
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B. Provisioning 

i. Provisioning function 

The provisioning process is a one-time public key exchange between the CAN logger 

device and the server hosted through AWS before the devices get delivered to the users. A 

provisioning operator or system administrator will serve as a connecting role to implement and 

monitor the process between the device and the server. The initial provisioning’s primary 

purposes are to acquire the device’s identification for the server database and to exchange public 

keys to establish the same shared secret for secure communication using asymmetric 

cryptography. The steps in key exchange provision are depicted in Figure 3-2 and Table 3.1 

below. 

 

Figure 3-2. Key exchange provisioning process diagram 
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Table 3.1. Key exchange provisioning process 

Process System Description 

1 Embedded Firmware Starting from the device, the ATECC608A hardware 
security module first generates an ECC key pair – the 
device private key and public key. 

2 Embedded Firmware The device private key is locked in the memory slot and 
cannot be changed or read. 

3 Local Computer The device’s public key along with the ATECC608A ID are 
first sent to a Python application on a local computer 
controlled by the provisioning operator. The connection 
here is through local serial (mini USB cable). 

4 Local Computer The Python application then forwards the device public key 
and the HSM ID to AWS through the internet with secure 
TLS protocol. 

5 AWS Cloud Once the server receives the data from the Python 
application, it will use the lambda function to generate its 
ECC key pair specifically for this CAN logger. 

6 AWS Cloud The server private key is encrypted in AWS Key 
Management Service (KMS) using its master key (unique 
key managed by AWS). 

7 AWS Cloud The encrypted server private key is then stored and tied to 
the device ID in the AWS DynamoDB database. 

8 AWS Cloud The shared secret key is derived with ECDH pre-master 
with the device public key and the server private key. 

9 AWS Cloud The server private key is serialized and encrypted with a 
randomly generated 16-byte password for back up purpose. 

10 AWS Cloud The password is encrypted using AES-128 ECB mode 
because it is only 16 bytes. The AES encryption key used is 
the shared secret derived from ECDH. 

11 AWS Cloud The server public key, server serialized encrypted private 
key, and encrypted password are sent back to the Python 
application using the same secure TLS communication. 

12 Local Computer The provisioning operator will then perform a visual key 
comparation between the device and server public keys 
obtained from the Python application to the ones visible on 
AWS website. This makes sure that the server and the 
device both have the other’s authentic public key in case the 
communication between the Python application and the 
AWS server is compromised. 
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13 Local Computer Once the provisioning operator confirms the key match, the 
server public key will be sent to the CAN Logger 3 through 
local serial. 

14 Embedded Firmware The server public key is stored and locked in the 
ATECC608A memory key slot for future function 
implementation. 

15 Local Computer The provisioning operator can also save the serialized 
server private key, encrypted password, and the 
corresponding serial number to a JSON file, which is a 
physical backup that the administrators keep. However, to 
use the server private key, it needs to be loaded with the 
corresponding password, which can be decrypted as 
described in the next section. 

16 Local Computer If the key-check fails, the application will shows an error 
message. 

 

ii. Get server private key password function 

During the provisioning process, the random password generated for the server private 

key is sent to the local computer Python application. The key is converted to an ascii-armored 

PEM form, which is known as the serialized private key. The operator or administrator has an 

option to decrypt the password and use it to retrieve 

 the serialized server private key stored in the JSON physical backup file. The process is 

illustrated in Figure 3-3 and Table 3-2. 
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Figure 3-3. Get serialized server private key password function diagram 

Table 3.2. Get serialized server private key password function process 

Process System Description 

1 Embedded Firmware The CAN logger initially sends its serial number to the 
Python application for identification. 

2 Local Computer The local computer Python application loads the backup 
JSON and looks up the encrypted password from the 
corresponding serial number from the file. 

3 Local Computer The encrypted password is sent to the CAN logger device 
via local serial. 

4 Embedded Firmware The shared secret key is derived from ECDH pre-master 
algorithm with the stored device private key and the server 
public key. 

5 Embedded Firmware The encrypted password is decrypted using the shared 
secret key. 

6 Local Computer The decrypted password is sent back to the local computer 
application where it is displayed for the operator or 
administrator. 
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C. Normal Operation 

i. Logging 

After the key exchange provision has been completed, the device is ready to be used for 

logging sessions. In this process, the log data will be encrypted in real-time and stored locally on 

the SD card. It is then hashed and its digest along with the session metadata are signed before 

being sent to the server. These steps ensure that the contents of the files are not exposed or 

modified in storage and while being transmitted to the server through the Internet. Signing the 

logs verify that the server receives authentic data from the correct sender. The logging and file 

uploading process is depicted in Figure 3-4. 

 

Figure 3-4. Logging and uploading files process diagram 
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Table 3-3. Logging and uploading files process 

Process System Description 

1 Embedded Firmware When logging session starts, the ATECC608A HSM 
generates a 32-byte random number. 

2 Embedded Firmware The first 16 bytes of the 32-byte number is designated for 
the AES key of this logging session. 

3 Embedded Firmware The last 16 bytes of the 32-byte number is designated for 
the initialization vector (IV) for the AES CBC mode. 

4 Embedded Firmware The CAN logger initially determines the CAN bus bitrate 
with autobaud, and generates a metadata text file with the 
same name as the log file, which contains the timestamp 
and bitrate, to be stored on the SD card. 

5 Embedded Firmware The AES IV is appended to the metadata file. 

6 Embedded Firmware The CAN logger collects heavy vehicle data in 512-byte 
buffer. The first 508 bytes are actual data and the last 4 
bytes are CRC-32 checksum for error detection. During the 
logging, the buffer is encrypted by the mmCAU and written 
to the binary file. When this buffer is full, the teensy 
processor SHA-256 hashes and updates the hash with 
previous buffers, if any. The buffer is reset, and the process 
repeats until the logging stops. A new log file is started 
when the current logging session reaches 1Gb of data. 

7 Embedded Firmware After the logging session finishes, the encrypted log file is 
stored in the SD card. This file has the same name as the 
metadata file and is in binary format. 

8 Embedded Firmware The SHA-256 hash of the encrypted log file is appended to 
the metadata file. 

9 Embedded Firmware The shared secret key is derived from ECDH pre-master 
algorithm using the device private key and the server public 
key stored in the ATECC608A HSM. 

10 Embedded Firmware The 16-byte AES session key is encrypted with AES-128 
ECB using the shared secret key. The encrypted key is then 
appended to the metadata file. 

11 Embedded Firmware The device public key stored in the ATECC608A HSM is 
appended to the metadata file for later local verification. 

12 Embedded Firmware The metadata file is hashed using SHA-256. 

13 Embedded Firmware The metadata file hash digest is signed with ECDSA using 
the device private key. 
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14 Embedded Firmware The metadata text file appended with its signature is stored 
in the SD card. 

15 Local Computer Before uploading the file to AWS, the user must log in with 
their credentials to identify themselves and establish secure 
connection. Their credentials will be tied to the uploading 
session later. The login process follows the AWS API 
authentication, which will be explained in detail later. 

16 Local Computer Through local serial, the device connects to the application 
which extracts the metadata file with its signature and the 
encrypted log file. 

17 Local Computer The metadata file signature is verified using the device 
public key stored in the metadata file. This process mainly 
checks the metadata file for error that may occur during 
logging operation or transmission to the computer 
application. However, it does not guarantee the file’s 
integrity because the device public key used for verification 
is stored in the data to be verified itself and thus, the key is 
not reliable. Malicious users can replace the key with their 
own public key and resign the metadata file. A true integrity 
check will be performed on the AWS side. After the 
metadata is successfully verified, the metadata and its 
signature are sent to AWS via the Internet with secure TLS. 

18 AWS Cloud Once the server receives the metadata, it first checks for 
invalid session key, such as key containing all 0xFF or 0x00 
that could occur when the logger failed to encrypt the AES 
session key. 

19 AWS Cloud The metadata file is hashed with SHA-256. The hash digest 
will be used for ECDSA verification. 

20 AWS Cloud The device public key is retrieved from AWS DynamoDB 
database using the device serial number from the metadata. 
The device public key here is from the provisioning process 
and thus, it is reliable to be used in ECDSA verification.  

21 AWS Cloud The metadata file is verified with ECDSA using the 
metadata file hash, its signature, and the device public key. 

22 AWS Cloud If the metadata verification is successful, AWS sends a 
response back to the local computer application with a 
message that the metadata verification has passed. 

23 AWS Cloud If the metadata verification fails, AWS sends a response 
back to the local computer application with a message that 
the metadata verification has not passed and the metadata 
may have been compromised. 
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24 Local Computer When the local computer application receives the message 
that the metadata has been verified successfully, the 
application starts sending the encrypted log file to AWS. 

25 AWS Cloud When AWS receives the encrypted log file, the server 
hashes the file with SHA-256 and the hash digest is 
compared with the one from the metadata file. 

26 AWS Cloud If the hashes match, the encrypted log file with its 
corresponding hash and user credentials are stored in 
Amazon S3 Bucket. AWS also sends a response back to the 
local computer application with a message that the 
encrypted log file has been uploaded successfully. 

27 AWS Cloud If the hashes do not match, AWS also sends a response back 
to the local computer application with a message that the 
encrypted log file has not been uploaded because the file 
has been compromised. 

 

Data structure 

The data structure of how the 512-byte buffer is collected is illustrated in Figure 3-5. This 

format is from CAN logger version 2 and has not been changed for version 3. The EEPROM 

memory map for the autobaud feature (Chapter 2, part H.ii.) is also explained in the same figure. 
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Figure 3-5. Data structures for 512-byte buffer, CAN frame, and autobaud EEPROM 
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ii. Get Key and/or Decrypt Log File Function While Connecting to Logger 

After the user has successfully uploaded the metadata and the encrypted log file, they can 

retrieve the file AES session key in plaintext, which is then used to decrypt the file locally. As 

shown in Figure 3-6, this process can only be performed where the local computer Python 

application still has the uploaded metadata file and the encrypted log file in its memory, either 

from the uploading process or the files have to be extracted again from the same connected CAN 

logger.  

 

Figure 3-6. Get file AES session key and/or decrypt the log file diagram. 
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Table 3-4. Get file AES session key and/or decrypt the log file process 

Process System Description 

1 Local Computer The user has to login to identify themselves if they have not 
done so. The login credentials are sent to AWS server via 
the Internet with secure TLS as a JSON web token (JWT). 

2 Local Computer The device serial number and the encrypted log file SHA-
256 hash digest are sent to AWS server via the Internet with 
secure TLS. 

3 AWS Cloud The server uses the serial number and the log file hash 
digest to identify the corresponding file from the database 
and look up its associated device public key. 

4 AWS Cloud The server uses the serial number and the log file hash 
digest to identify the corresponding file from the database 
and look up the server encrypted private key for this CAN 
logger. 

5 AWS Cloud The AWS KMS uses the master key associated with the 
user account to decrypt the server private key 

6 AWS Cloud The shared secret key is derived from ECDH pre-master 
algorithm using the server private key and the device public 
key obtained earlier. 

7 AWS Cloud The server uses the serial number and the log file hash 
digest to identify the corresponding file from the database 
and look up the encrypted AES session key associated with 
the log file. 

8 AWS Cloud The 16-byte AES session key is decrypted with AES-128 
ECB mode using the shared secret key. 

9 AWS Cloud The server uses the login credentials to determine if the user 
has permission to download the file. Only data owner, 
administrator, and users granted access by the owner have 
permission to download. If the user has permission, the 
AES session key in plaintext is sent back to the local 
computer Python application via the internet with secure 
TLS. 

10 AWS Cloud If the user does not have permission, the server responses 
with a message indicating that the user does not have 
permission to download the file. 

11 Local Computer The local computer Python application displays the AES 
session key in plaintext for the user. 

12 Local Computer If user wants to decrypt the log file with the key, the Python 
application first looks up the AES IV for that file. 
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13 Local Computer The log file is decrypted with AES-128 CBC using the AES 
session key and the IV obtained earlier. The decrypted log 
file then can be extracted for data analysis. 

 

iii. List and Download File Function While Connecting to the Server 

Once the user has successfully uploaded all the desired encrypted log files and metadata 

files to the server, they can also download those files from the server through the local computer 

Python application without having the device connected. This process has two parts: connect to 

the server to list all the files that the user has permission to view and download, and download 

the chosen file. Figure 3-7 shows the stated process. 

 

Figure 3-7. List and download file while connecting to the AWS server diagram 
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Table 3-5. List and Download File While Connecting to the AWS Server Process 

Process System Description 

1 Local Computer The user has to login to identify themselves if they have not 
done so. The login credentials are sent to AWS server via 
the Internet with secure TLS. 

2 AWS Cloud The server uses the login credentials to look up all the files 
that the user has access to in the AWS DyanomoDB 
database. 

3 AWS Cloud The list of all those files along with their metadata are sent 
back to the local computer where they will be loaded into 
the Python application memory. 

4 Local Computer The list of all the files obtained from the server is displayed 
on the application. 

5 Local Computer The user can choose a specific file from the list to 
download. The device serial number and hash digest for that 
file are sent back to the server via the Internet with secure 
TLS. 

6 AWS Cloud The server uses the serial number and the encrypted log file 
hash digest to identify the corresponding file from the 
database and look up its associated device public key. 

7 AWS Cloud The server uses the serial number and the log file hash 
digest to identify the corresponding file from the database 
and look up the server encrypted private key for this CAN 
logger. 

8 AWS Cloud The AWS KMS uses the master key associated with the 
user account to decrypt the server private key. 

9 AWS Cloud The shared secret key is derived from ECDH pre-master 
algorithm using the server private key and the device public 
key obtained earlier. 

10 AWS Cloud The server uses the serial number and the log file hash 
digest to identify the corresponding file from the database 
and look up the encrypted AES session key associated with 
the log file. 

11 AWS Cloud The 16-byte AES session key is decrypted with AES-128 
ECB mode using the shared secret key. 

12 AWS Cloud The log file hash digest to look up the encrypted log file 
binary from AWS S3 Bucket. 

13 AWS Cloud The server uses the login credentials to determine if the user 
has permission to download the file. If the user has 
permission, the AES session key in plaintext and the 
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encrypted log file are sent back to the local computer 
Python application via the internet with secure TLS. 

14 AWS Cloud If use does not have permission, the server responses with a 
message indicating that the user does not have permission to 
download the file. 

15 Local Computer The AES IV for the encrypted file is retrieved from the 
metadata file obtained earlier. 

16 Local Computer The log file is decrypted with AES-128 CBC using the AES 
session key and the IV obtained earlier. The decrypted log 
file then can be extracted for data analysis. 

 

D. Example Transcripts 

i. CAN Logger 3 

Serial Commands 

Typically, the CAN Logger 3 works as a standalone device with only logging and 

sending request messages. However, it can also be operated with a computer where the user can 

run other different device functions with built-in serial commands, as shown in Figure 3-8.  

 

Figure 3-8. Built-in serial commands for the CAN Logger 3 
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These serial commands help the user to access the full functionality of the CAN Logger 3 

right on the spot, such as managing files on the SD card, starting and stopping logging sessions, 

configuring the device identification, etc. Figure 3-9 shows an example of the STREAM ON 

serial command, which is commonly used during operation for CAN bus observation. This 

command streams CAN frames as seen on the bus to the serial monitor; however, it is an add-on 

feature and does not affect the main logging functionality. The columns from left to right in the 

Figure 3-9 are CAN channel, number of messages received, time in microseconds since the 

device began running, CAN frame ID, CAN frame extended ID specifier (0 is not extended ID 

and 1 is extended ID), a number of byte in CAN frame data field, and CAN frame data field.  

 

Figure 3-9. Streaming CAN frames on serial monitor 

Operation with encrypted logging 

By default, the CAN Logger 3 always encrypts heavy truck data during logging sessions, 

even when it operates as a standalone device or with a computer. When the device powers on, it 

goes through a routine setup before being able to start logging, such as checking the I2C 
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ATECC608A HSM connection, generating random AES session key and IV, setting RTC, etc. 

The green LED on the device should turn on after the setup finishes successfully. If the SD card 

is missing, the red LED on the device will flash until the card is inserted. Figure 3-10 displays 

the device information for user reference and debugging on the Arduino serial monitor after the 

initial setup. 

 

Figure 3-10. CAN logger startup information on Arduino serial monitor 

The user can connect the CAN Logger 3 to the vehicle CAN bus via the diagnostic port 

to start the logging session. If there are messages present on the network, the device will 

automatically log the data to the SD card in the encrypted format, indicated by the green and 

yellow LEDs toggling. Figure 3-11 shows an example of an encrypted log file in hexadecimal 

with decoded text in ASCII, where the data looks random with no correlation or meaning. 



   
 

136 
 

 

Figure 3-11. Encrypted log file in hex format 

With the CAN logger as a standalone device, the user can double click the left button (the 

panel facing the user) to start a new log file. A single click on the same button will trigger the 

device to send request messages for vehicle identification. To stop the current logging session, 

the user can simply unplug the device from the diagnostic port or start a new log file. The user 

can also do all those steps with serial commands if the device is operated by a computer. The 

encrypted log files saved in the SD card can then be uploaded to the AWS server via the Python 

client application, which will be explained in the next section. 

Operation with non-encrypted logging 

There is an option to switch the device to non-encrypted logging mode for situations 

where the user only wants to have the plain log files right away for convenience without having 

to go through the uploading and decrypting process through the AWS server. To switch to non-
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encrypted logging mode, the user has to run the ENCRYPT OFF command on the serial monitor. 

The data will then be collected as is and written to the SD card. Figure 3-12 shows an example of 

a log file in plaintext where the data follows the 512-byte structure as described in the previous 

section (Chapter 3, part C.i. Data structure). 

 

Figure 3-12. Non-encrypted log file in hex format 

ii. Python Client Application 

The CAN logger overview processes described above are implemented through a Python 

interface, which is controlled by the user. The source code can be found in [100]. The GUI is 

shown in Figure 3-13, and its functions are described in Figure 3-14. All functions are tested to 

show how they should respond and to ensure that the program works correctly, as anticipated in 

this section. 
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Figure 3-13. Local computer Python client application interface 

 

Figure 3-14. Description of the features offered within the application 

User – Login 

 

Figure 3-15. Login function interface 
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When the user first runs the application, it will automatically ask for a username and 

password with a dialog box, as seen in Figure 3-15. The account can be created on the CAN 

logging project website on [101], as seen in Figure 3-16. The user will be asked to verify their 

email during the registration to ensure the system is not flooded with invalid emails. After the 

user has successfully registered an account, the AWS User Pool will be updated with the 

registered account and ready for the authentication process in the Python application. 

 

Figure 3-16. CAN logging project website 

When the user enters their username and password, these credentials are submitted to the 

AWS User Pool, which returning the access token, ID token, and refresh token to the user. These 

tokens are used to authenticate against AWS API Gateway, and only when the authentication is 

successful, all the functions on the server as described in section B and C can be executed using 

Lambda. The tokens have a one-hour timeout, and therefore, login is required again after they 

expire. This login procedure follows the AWS guideline and recommendation [102], as seen in 

Figure 3-17.  
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Figure 3-17. Access resources with API Gateway and Lambda with a User Pool diagram 

The login process can also be executed manually by selecting login function under the 

User dropdown menu. 

User – Connection Test 

A quick way to check the communication between the application and the server is to do 

a connection test function under the User dropdown menu. If everything works as expected, the 

server will successfully respond with a code of 200, as shown in Figure 3-18. Otherwise, users 

will need to contact the administrators to resolve the problem. 

 

Figure 3-18. Connection test dialog 
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Logger – Connect to Logger 

Once the clients have logged in, they can proceed to upload their files to AWS server for 

secure storage. After selecting the connect to logger function under the Logger dropdown menu, 

the application will retrieve and display all the log files along with their metadata from the SD 

card, as shown in Figure 3-19. Clients can inspect the data and proceed to upload function. 

 

Figure 3-19. Client application connects to device and displays files on SD card 

Logger – Upload File 

The user can upload a chosen file by clicking on the row that contains the corresponding 

information on the application and selecting the upload function. A form for user input regarding 

log file information such as name, company, make, model, year, and a note will pop up, as 

shown in Figure 3-20. This tag helps clients to identify and distinguish different log files. At the 

end of the form, the user also has an option to add a default access list, which is created using the 

utility share access function. This step makes it convenient in case the user has to add access to 

multiple files with the same email list.  
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Figure 3-20. User input form layout for tagging log file before upload to server 

After the user input is filled and submitted, the application will receive back a status code 

of 200, which means that the file is successfully uploaded to the server, and the file status will 

change to “verified”. 

However, if the server returns an error with a status code of 400, there are some possible 

reasons that cause failure in the uploading process: 

• “Email not verified” – the login email has not been registered and needs to be verified. 

• “Serial not found” – the logger has not been provisioned and/or its data has not been 

correctly stored in the database. 

• “Public key from metadata does not match the one from server” – the public key stored in 

the metadata does not match the public key stored in the server, which means that the 

data has been compromised or the log file is not uploaded from its original device. 

• “Metadata failed to verify” – the metadata file fails to verify its integrity, which means 

that the data has been compromised. 
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• “File is rejected due to invalid encrypted session key” – the encrypted session key is all 

0x00 or 0xFF, which is invalid. 

• “Hash Digest already exists or data is missing” – the file is already uploaded or missing 

data. 

• “Log file cannot be found in s3 Bucket” – there is an error uploading the file to s3 

storage, and the server could not locate the file. 

• “Log file hash does not match” – the hash of the log file uploaded to AWS S3 storage 

does not match the expected hash from the metadata, which means that the content of the 

log file in S3 has been compromised. 

Logger – Get Key/Decrypt File 

After the file is uploaded successfully to the server, the users can obtain the AES session 

key from the server to decrypt the file. With the application still displays all the available log 

files from the connected device, clients can select the desired file and choose get key/decrypt file 

function under the Logger dropdown menu. The server will respond with the AES session key if 

successful, as seen in Figure 3-21. The user can copy the key for themselves or use it in the 

application to decrypt the file. If clients choose to decrypt the file with the application, it will 

decrypt then save the file locally, as shown in Figure 3-22. The user now has the decrypted 

version of the log file for further usage.  
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Figure 3-21. An AES session key in plaintext is retrieved from the server using get key/decrypt 

file function 

 

Figure 3-22. Saving the decrypted log file to local computer 

Figure 3-23 shows the decrypted content of the downloaded file from the server using the 

get key/decrypt file function. Because the log file follows the 512-byte data structure, the data is 

displayed with 512 hex bytes per line for easy observation. The content has meaning decoded 

text, which means the file has been correctly decrypted.  
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Figure 3-23. A decrypted log file downloaded from the server 

in hexadecimal (left) with ASCII decoding (right)  

Logger – Format SD Card 

The user has an option to format the SD card while the device is being connected to the 

local computer Python application. This can be done by selected the format SD function under 

the Logger dropdown menu. A window will pop up to confirm, as shown in Figure 3-24. The 

application will return a message indicating the SD card has been successfully formatted.  

 

Figure 3-24. Formatting SD card to blank state 

Server – Connect to Server and List Files 

The user can select the connect to server function under the Server dropdown menu to 

view all the uploaded files or files that clients have shared access to, as shown in Figure 3-25. 
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This function does not require the user to have their device connected because the server looks 

up the all the files that have been uploaded by the user or files that the user has been granted 

access to from the database and return their metadata information. The application will then 

display all the data for the user’s view.  

 

Figure 3-25. Connecting to server and listing all files 

If the server returns an error with a status code of 400, there are some possible reasons 

that cause failure in retrieving the data: 

• “Email not verified” – the login email has not been registered and needs to be verified. 

• “Unable to retrieve table item” – there is an error while scanning the database. 

Server – Download File 

With the list of available log files displayed on the application, the user can click on the 

desired file and select the download file function under the Server dropdown menu. If there is no 

error occurs, the server will return the encrypted binary of the request log file. The application 

will ask the user if they want to save the encrypted or plaintext version of the log file, as seen in 
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Figure 3-26. If the user chooses to save the encrypted version, the application will decrypt the 

file locally. 

 

Figure 3-26. Downloading a log file from server to local computer 

If the server returns an error with a status code of 400, there are some possible reasons 

that cause failure in retrieving the data: 

• “Missing required parameters” – some data sent from the application are missing. 

• “Email not verified” – the login email has not been registered and needs to be verified. 

• “Unable to retrieve serial number from table” – there is an error while scanning the 

database. 

• "Data Key is Not Available" – there is an error while decrypting server private key, 

which means that the logger that the requested file belongs to has not been provisioned 

and/or its data has not been correctly stored in the database. 

• “File Meta data not available. Please upload file!” – the file metadata has not been 

uploaded successfully to the database. 
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• "You do not have permission to download this file" – the file does not belong to clients or 

they don’t have share access. 

• “Log file cannot be found in s3 Bucket” – the requested file is not in the AWS s3 storage, 

which means the log file was not successfully uploaded before. 

Server – Share Access 

With all the files listed on the application after connecting to the server, the user has an 

option to share or revoke access of a file to other users. This can be done by clicking on a desired 

log file on the application and selecting the share access function under the Server dropdown 

menu. A window will pop up, asking if the user wants to share or revoke access. Depending on 

the needs, the user will choose appropriately and enter the user email they want to share or 

revoke. The function only takes in one email input at a time, which is shown in Figure 3-27. The 

server will return a status code of 200 upon successful execution, with a message of “{email 

input} has been added to / revoked from the access list.” 

 

Figure 3-27. User input for file access sharing or revoking 
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If the server returns an error with a status code of 400, there are some possible reasons 

that cause failure in editing the access list: 

• “Missing required parameters” – some data sent from the application are missing. 

• “Email not verified” – the login email has not been registered and needs to be verified. 

• “File digest not found” – the server could not locate the file, or the file has not been 

uploaded correctly. 

• “You do not have permission to share or revoke access to the selected file” – only the 

owner of the file can share or revoke access. 

• “There is no {email input} in access list to revoke access” – the email to revoke does not 

exist in the access list. 

Server – Read File Info 

If the user wants to view the information of a file quickly, they can either double click on 

the desired file or highlight the file and select the read file info function under the Server 

dropdown menu. This function displays all parameters of the file, such as uploader, share access 

list, name, company, make, model, year, note, and download log, as seen in Figure 3-28.  
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Figure 3-28. Reading file information 

Utility – Provision 

This function is only used during the provisioning process by the operator or 

administrator to exchange the public keys between the logger and the server. The device must 

have the provisioning firmware [103] before proceeding further. The operator will need to have 

the device connected to the application and select the provision function under the Utility 

dropdown menu. After the server successfully creates its ECC key pair and obtains the device 

public key, the server public key will be sent back to the application. At this time, the operator 

will perform a visual key confirmation and compare the server public key and device public key 

from the application to those from the server on the AWS database website. For easier 

visualization, the public keys are hashed, and only the first 10 bytes are displayed, as seen in 

Figure 3-29. This process ensures that the server and the device have each other’s correct public 

key during the key exchange process.  
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Figure 3-29. Visual key confirmation between the client application and AWS server 

Once the operator confirms that the keys match, the application will send the server 

public key to the device where it will be stored and locked correctly. If keys do not match, then 

there could be an error during transmission, or the communication has been compromised. The 

operator will have to delete the device information in the AWS database and restart the 

provisioning process. 

In addition, after the device is successfully provisioned, the application will update a 

security backup list with the serialized server private key and the encrypted password associated 

with the provisioned device, as seen in Figure 3-30. This list is made as a physical backup to 

calculate the ECDH shared secret for decrypting the AES session key locally in case the AWS 

server is offline, as mentioned in the previous section (Chapter 3, part B.i.). However, the 

security backup list cannot be used until the encrypted password for the server private key is 

decrypted. The get password function in the below section will need to be executed to obtain the 

password in plaintext.  
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Figure 3-30. Security backup list example 

Utility – Get Password 

This function decrypts the password that is used to load the serialized server private key 

into the Python program for ECDH pre-master calculation. With the current firmware from the 

provisioning process, the operator can execute the get password function under the Utility 

dropdown menu. The application will require the operator to select the security backup list, and 

the password in plaintext will be returned upon successful execution, as shown in Figure 3-31. 

The password in plaintext can then be recorded into a different list. Due to the important 

confidentiality, the security backup list and the password list will be stored in a flash drive and 

mailed to the administrators. 

 

Figure 3-31. Decrypting password for the encrypted server private key 
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Utility – Default Access 

As mentioned above, there is an option to add a default access list in the upload function. 

The list can be made using the default access function under the Utility dropdown menu. A 

dialog will appear for clients to input all the emails that they want to share access to, as seen in 

Figure 3-32. Clients have to input one email with no comma or space per line. A CSV file with 

the input contents will be made and saved on the local computer. When clients decide to use the 

default access list while uploading a file, they can select this CSV file for convenience and time-

saving.  

 

Figure 3-32. Creating default access list for file uploading process 

iii. Cloud Backend 

The server backend can be accessed through the AWS management console website. 

There are some important AWS services used for this project: DynamoDB, Simple Storage 

Service (S3), Identity and Access Management (IAM), CloudWatch, Cognito, and KMS. Clients 

won’t have permission to view or edit because these services are only for administrative use, 
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except for S3, where users can manage their uploaded data. The structure of the CAN logger 

project is designed in a way that the sensitive information regarding the CAN loggers and their 

associated log files within DyanmoDB and S3 are encrypted. If AWS is exposed, the 

confidentiality of the loggers and the log files are still protected. 

DynamoDB 

DynamoDB is a no-SQL database, which contains two tables that store important data for 

the CAN logging project. The CANLoggers table contains the device’s unique information that 

is registered after the provisioning process, as seen in Figure 3-33. The table contains the 

following parameters: 

• “id” – device serial number. 

• “device_public_key” – the public key of the registered logger. 

• “email” – the operator’s account used during the provisioning process. 

• “encrypted_data_key” – encrypted customer master key. 

• “encrypted_server_pem_key” – encrypted server private key. 

• “sourceIp” – the IP address of the provisioning operator. 

• “device_public_key_hash” – the first 10 bytes of the device public key SHA-256 hash. 

• “server_public_key_hash” – the first 10 bytes of the server public key SHA-256 hash. 

These parameters are usually updated or deleted during the provisioning process if an 

error occurs or when the device has been revoked. 
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Figure 3-33. AWS DynamoDB CANLoggers database 

The second table is CanLoggerMetaData, which contains metadata of uploaded log files, 

as shown in Figure 3-34. The table contains the following parameters: 

• “digest” – the SHA-256 hash of the log file. 

• “CAN0/CAN1” – CAN bitrate of the log file. 

• “access_list” – the emails who have shared access to the file. 

• “datetime” – the time when the log file was created. 

• “download_log” – the log consisted of the time, and the user’s IP address and email when 

the file is accessed and downloaded. 

• “filename” – the name of the file. 

• “filesize” – the size of the file. 

• “init_vect” – the AES initialization vector. 
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• “meta_data” – the user input note from the file uploading. 

• “serial_num” – the serial number of the device. 

• “session_key” – the encrypted AES session key. 

• “signature” – the signature of the metadata text file. 

• “text_sha_digest” – the SHA-256 hash digest of the metadata text file. 

• “upload_date” – the date when the file was uploaded. 

• “uploader” – the email of the uploader. 

• “verify_status” – the integrity status of the log file. 

 

Figure 3-34. AWS DynamoDB CanLoggerMetaData database 

S3 Bucket 

S3 is used to store all the log files is called can-log-files bucket, as shown in Figure 3-35. 

On the website, the following parameters can be seen: 
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• “Name” – the SHA-256 digest of the file. 

• “Last Modified” – the time when the file was uploaded or last modified. 

• “Size” – the size of the log file. 

• “Storage class” – the class of the storage. 

Administrators and users can view and edit these files, such as changing parameter values 

or delete files as needed. Currently, users can access all uploaded files, including files from other 

users. For future work, access control needs to be added so that users can only view or edit their 

own data or data with access permission from others. However, the Python client application and 

the CAN logger project website do have access control. Users can view their data on both 

options, but they can only download their log files through the client application using pre-

signed URLs. 

 

Figure 3-35. Encrypted log files stored on AWS S3 

IAM 

IAM helps manage user access to different AWS services and resources securely. 

Different users and groups can be established using IAM, where different permission levels can 
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be specified for each of them. Therefore, IAM is the key used to separate administrators from 

normal users. Moreover, an additional layer of protection for the administrator accounts can be 

added using multi-factor authentication within IAM. Figure 3-36 illustrates a typical IAM main 

page. 

 

Figure 3-36. AWS IAM main page 

Cognito 

Cognito is used for identity management. An AWS User Pool provides user account 

registration and authenticates users. As described in the previous section (Chapter 3, part D.ii. 

User – Login), the account registration takes place on the CAN Logger project website. The 

AWS User Pool then updates its database with a successful registered account, as seen in Figure 

3-37. The information in the User Pool is then used for login authentication where users get 

tokens to access API Gateway and Lambda.  
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Figure 3-37. AWS Cognito User Pool main page 

CloudWatch 

CloudWatch is a powerful AWS monitoring and observability service. For the scope of 

the project, CloudWatch is mainly used for debugging code and logging all the operating 

functions as described in the client application section. The CloudWatch interface on the website 

can be seen in Figure 3-38. There are eight functions used that are shown: 

• “auth” – used for getting AES session key from the server. 

• “download” – used for downloading a file from server. 

• “hello” – used for testing the connection. 

• “list” – used for connecting to server and listing files. 

• “provision” – used for the provisioning process. 

• “share” – used for sharing or revoking access. 

• “upload” – used for uploading files to the server. 
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• “verify_upload” – used for verifying the integrity of the log file after being uploaded to 

the server. 

 

 Figure 3-38. AWS CloudWatch main page 

Key Management Service (KMS) 

KMS is a service that securely creates and manages cryptographic keys across different 

AWS services and resources. These keys are stored in AWS hardware security module (HSM), 

where they are highly safeguarded and tamper-resistant. The CAN Logger project uses one KMS 

master key to secure secrets and private keys, as seen in Figure 3-2, 3-6, and 3-7 previously. The 

main page of the AWS KMS is illustrated in Figure 3-39. 

 

Figure 3-39. AWS KMS main page 
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E. Chapter Summary 

Secure end-to-end communication between vehicles and their data management services 

is vital when confidentiality and integrity are important factors in the processes of data 

monitoring and collection. In a typical heavy truck model, OEMs are not required to design a 

built-in data monitoring and management system for the customers. However, due to the 

horizontal integration design, this can be done mostly by telematics companies or third-party 

devices that involve a cloud IoT platform. Secure end-to-end communication may or may not be 

implemented by these third-party service providers. However, if they do implement it, their 

process is likely to be proprietary and the customers have to trust their implementation.  

This chapter describes, in detail, the CAN Logger 3 software design that provides a secure end-

to-end data transmission between the vehicles to the AWS cloud platform with the Python client 

application as a user supporting interface. There is no one unique way to implement a secure 

end-to-end communication, but this project uses off-the-shelf products as well as industry 

recommended practices to carry out the task. The documentation and source codes of the CAN 

Logger 3 design are available to the public for references, and it has the following features: 

• A low-cost hardware security module is used for secure key storage along with 

cryptographic implementations, including Diffie-Hellman key exchange, digital 

signature, and encryption. Its library can be found at [76]. 

• A public key exchange process between the CAN Logger 3 and the AWS cloud is 

performed during the provisioning process at production. The same shared secret key can 

be derived later from both parties for secure communication. 
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• Every truck logging session is encrypted using a randomly generated key, which is then 

encrypted using the shared secret key from the provisioning process. Thus, all the 

sensitive information is encrypted to protect data confidentiality before being stored on 

the local SD card. 

• A client application interface is made for users to transfer their data from the CAN 

Logger 3 to the AWS server as well as to view and download uploaded files from the 

database. The communication between the device and the client application is through 

local serial, and the communication between the client application and AWS server is 

through the Internet with secure TLS using the Python requests module.  

• Every truck logging session is hashed, and the hash digest along with the logging session 

metadata are signed using the device private key. The signature has to be successfully 

verified by the AWS server using the device public key obtained from the provisioning 

process before the log data is uploaded and stored on the server database. This step 

verifies that the data is from the correct sender and it has not been altered in any way, 

which is very important in cybersecurity measures as well as forensics purposes.  

• User access control is implemented to ensure that only authorized users can access their 

data only or data that has been shared with them.  

• Each device’s vital information is backed up to a physical flash drive, which is kept by 

the administrators.  
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Chapter 4. Field Testing on Vehicle 

A. Data Collection 

One of the main purposes of this project is to actually collect heavy vehicle network data 

from operating trucks to generate large and beneficial resources for the trucking industry. As a 

result, CAN messages from operating heavy trucks have been gathered along the CAN loggers’ 

development, starting by collecting data using the NMFTA CAN Logger in 2017. NMFTA has 

been playing a major role in supporting the project by providing data resources from different 

trucking companies. A batch of 100 NMFTA CAN Loggers and 25 CAN Logger 2 were built 

and shipped to NMFTA, where they were distributed to the volunteering companies for data 

collection. Because secure cloud storage was not in the design at this time, these companies had 

to ship the SD cards back to NMFTA, where the data was locally stored under a non-disclosure 

agreement with NMFTA. As of now, the NMFTA database has the following statistical 

information: 

• Total number of captured messages: 11,035,396,328. 

• Total size of all log files: 667.83 GB. 

• Number of different trucks: 21. 

• Number of CAN Loggers used: 54. 

• Number of Companies involved: 11. 

• Figure 4-1 shows a bar graph describing the number of messages per engine make.  
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Figure 4-1. Number of messages per engine make 

• Figure 4-2 shows a bar graph describing the number of messages per truck model year.  
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Figure 4-2. Number of messages per truck model year 

In addition, the researchers have been making efforts to collect data when opportunities 

arise. In 2017, a 2007 Sterling truck was donated to the University of Tulsa, where the project 

was being conducted at the time. The Sterling was a great resource for data collection as well as 

device testing because instead of relying only on the truck in a box setup using an SSS2 as seen 

in Figure 2-75 (Chapter 2, part H.xxi.), the truck provided an actual operating platform which 

can be accessed anytime and modified as needed. Figure 4-3 shows the researching team 

working on the Sterling CAN network at the University of Tulsa facility. 
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The CAN logging project has moved to Colorado State University facility because the 

researchers conducting the project have transferred to this location from the University of Tulsa 

this past year. Even though the Sterling truck was no longer available, the Systems Engineering 

Department of Colorado State University obtained a 2014 Kenworth truck for research in heavy 

vehicle networks and cybersecurity. Figure 4-4 shows the 2014 Kenworth truck at Colorado 

State University facility.  

 

Figure 4-3. Research team working on the CAN network of the 2007 Sterling truck 
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Figure 4-4. 2014 Kenworth truck of Systems Engineering department and Duy Van 

The data pool for the CAN logging project needs log files from various types of trucks to 

create a large sample size. As a result, the data collected from the Sterling and the Kenworth was 

not adequate. To gain access to other trucks, the research group has been building good 

relationships with the local truck dealerships by visiting their sites to obtain truck parts for 

different research projects as well as attempting to repair their broken diagnostic tools. As a sign 

of friendship, the dealerships gave the team access to or even drove around their vehicles for data 

collection. Figure 4-5 shows a data logging session on a brand-new 2019 International truck at 

the Tulsa Summit Truck Group dealership in December 2018. Both the NMFTA CAN Logger 

and the CAN Logger 2 were used for data comparison.  
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Figure 4-5. Data collection on a 2019 International truck at the Summit Truck Group dealership 

in Tulsa 

Moreover, the CAN Logger 3 has also played an important part in other’s projects in 

terms of providing and analyzing the network data for references. One event was helping the 

2019 senior project team from the University of Tulsa with capturing vehicle and engine speed 

for their tire pressure monitoring system test runs on a 2019 Freightliner. Figure 4-6 shows the 

mentioned event that took place March 2019 in Dallas, Texas. The collected log files were also 

used for the data pool. 

NMFTA CAN Logger 

CAN Logger 2 
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Figure 4-6. Helping the University of Tulsa senior project team with capturing vehicle data 

B. J1939 Decoding 

After obtaining the log files in plaintext, either from logging with non-encrypted mode or 

decrypting the files using the Python client application, the data needs to be decoded into 

engineering units using SAE J1939. Furthermore, there were existing tools, like the Linux can-

utils based on SocketCAN to inspire common storage formats for CAN data. The socketCAN 

candump log was chosen to be the universal format because it has been commonly known and 

widely used in the community. A GUI was developed to convert log files in plaintext captured 

from any CAN logger version to the candump format. The source code can be found here [104]. 

The GUI also displays all the transport layer protocol messages as well as verifies all the 512-

byte block CRCs, which have been added in the CAN logger version 2 and 3 data structure, to 

ensure that the data did not have any error occurred during operation. This candump converted 

file can be generated by selecting the save as candump format function. Figure 4-7 shows the 

GUI interface after loading a CAN Logger 3 binary with CRC check. Figure 4-8 shows the same 
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file saved in socketCAN candump format, which has the following structure from left to right: 

real-time clock, CAN channel, CAN ID, and data field.  

 

Figure 4-7. CAN logger format converter GUI 
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Figure 4-8. A CAN Logger 3 file converted to socketCAN candump format  

On the other hand, the user can also save the file in format as shown in the GUI, where 

each parameter, including every byte in the data field, is illustrated per column. This format is 

easier to visualize and can be generated by selecting save as text format function. Figure 4-9 

displays the log file in the text format.  
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Figure 4-9. A CAN Logger 3 file converted to text format as shown in the CAN logger format 

converter GUI 

C. Data Interpretation  

A CAN data analyzer GUI was developed to interpret the log files from any CAN logger 

version, as seen in Figure 4-10. This program parses through the data and reconstructs the 

information based on the J1939db JSON file [105] to human-readable and user-friendly display. 

The source code can be found here [106]. The main features of the CAN data analyzer program 

are: 

• In the CAN ID Table, each unique CAN message ID is displayed per line along with their 

parameters such as Parameter Group Number (PGN), Suspect Parameter Number (SPN), 

Source Address (SA), Destination Address (DA), counts, period, and frequency. 
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• When the user clicks on a specific CAN ID in the CAN ID Table, the Data Table will 

display all the CAN messages with that ID. 

• Transport layer protocol messages are displayed in the Transport Layer Message Table. 

• The user can select a CAN ID with a specific PGN in the CAN ID Table to plot its 

associated SPN values, which can be looked up in the J1939-71 standard [99]. The 

column parameter in the Data Table can also be plotted by selecting the desired header. 

 

Figure 4-10. CAN data analyzer GUI 

With the CAN logger format converter and CAN data analyzer tool, log files can be 

decoded and their information can be obtained. Taking the senior project event in Dallas, TX as 

an example, some basic properties of the data recorded during the testing are depicted in Table 4-

1, through five different runs. The parameters describing in each run are total time in second, log 

file size in byte, number of total messages, average number of message per second, number of 

unique PGN, number of unique SA, top vehicle speed in mph, and top engine speed in RPM.  
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Table 4-1. Information of five truck runs from the Dallas trip 
 Run 1 Run 2 Run 3 Run 4 Run 5 

Total time (s) 801.2 392.5 457.75 1067.4 585.7 
File size (bytes) 13,851,648 6,776,832 7,900,160 15,360,000 10,262,528 
Total messages 514,028 251,486 293,172 570,002 380,838 

Messages/second 641.6 640.7 640.5 534 650 
Number of unique PGN 99 99 90 97 93 
Number of unique SA 20 19 13 17 15 

Top vehicle speed (mph) 63.96 47.4 48.16 49.17 45.9 
Top engine speed (RPM) 1,635.25 1,551.375 1.612 1,645.5 1,517.9 

 

Some conclusions were drawn from Table 4-1, including, but not limited to: 

• During a normal drive, the truck generated approximately 640-650 messages per second 

on average. Run 4 had significantly smaller messages per second  (534) because the truck 

was turned off, which produced fewer messages, for a portion of the logging session. 

• The vehicle did not generate the same set of CAN messages on every run based on the 

fact that the numbers of unique PGN and SA were not the same. 

• The second run had the highest top vehicle speed among the five. 

• The vehicle reached a top engine speed of approximately 1500-1600 RPM. 

The CAN ID table from the CAN data analyzer can give a better understanding of the messages 

within a log file. Table 4-2 displays the CAN ID table information of the messages captured 

during the second run. 

Table 4-2. CAN ID table of the of the second run from the Dallas trip  
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The CAN ID table from Table 4-2 was made up of different combinations of the unique 

PGN (derived from Hex CAN ID) and SA. The data was sorted by the Count column, from 

largest to smallest. Due to the large number of unique PGN (99) and SA (20), only the first 10 

combinations were displayed. From here, better insights can be made for this second run, such as 

all the decoded messages PGN acronym and SA for easy interpretation, the message that 

occurred the most frequently (or least) and its corresponding interval, message counts, etc.  

Vehicle wheel speed (PGN 65265, SPN 84) and engine speed (PGN 61444, SPN 190) are 

the two parameters that are commonly analyzed to determine how the vehicle was operated 

throughout the trip. Generated by the CAN data analyzer GUI, Figure 4-11 and Figure 4-12 show 

the vehicle speed and engine speed in RPM over time plots from the data collected in the second 

run during the Dallas trip. The same plots can also be generated using the vehicle speed plotting 

script [107] and engine speed plotting script [108]. The difference between using these scripts 

and the CAN data analyzer plotting feature is that the scripts require the log file input in 

socketCAN candump format while the CAN data analyzer requires the log file input in raw 
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format. These plots provided the senior project team at the University of Tulsa beneficial insights 

to help complete their project.  

 

Figure 4-11. Vehicle speed plot from the second runs for the University of Tulsa senior project 

 

 

Figure 4-12. Engine speed plot from the second runs for the University of Tulsa senior project 
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Chapter 5. Chip Level Digital Forensics Application 

This chapter discusses an application of using the CAN Logger 3 for researching heavy 

vehicle digital forensics. This study was conducted by Dr. Jeremy Daily and Duy Van, with the 

support from Matthew DiSogra from Delta |v| Forensic Engineering. The CAN logger was used 

for logging data and acting as a middle person device to extract critical information to complete 

this research, as described in section H of this chapter. The research was published by SAE 

International, with the title of “Chip and Board Level Digital Forensics of Cummins Heavy 

Vehicle Event Data Recorders,” and the paper number is 2020-01-1326 [10]. This chapter 

follows the same structure as the SAE paper. 

A. Abstract 

Crashes involving Cummins powered heavy vehicles can damage the ECM containing 

heavy vehicle event data recorder (HVEDR) records. When ECMs are broken and data cannot be 

extracted using vehicle diagnostics tools, more invasive and low-level techniques are needed to 

forensically preserve and decode HVEDR data. A technique for extracting non-volatile memory 

contents using non-destructive board level techniques through the available in-circuit debugging 

port is presented. Additional chip level data extraction techniques can also provide access to the 

HVEDR data. Once the data is obtained and preserved in a forensically sound manner, the binary 

record is decoded to reveal typical HVDER data like engine speed, vehicle speed, accelerator 

pedal position, and other status data. The memory contents from the ECM can be written to a 

surrogate and decoded with traditional maintenance and diagnostic software. The research also 

shows the diagnostic trouble codes from the ECM are preserved. In other words, the digital 

forensic technique of extracting memory contents through the in-circuit debugging port does not 
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introduce any new fault codes. Cryptographic hashing of the forensic binary data provides a 

mechanism to verify the original digital forensic record. Finally, the decoding for the HVEDR 

binary record is presented so investigators can decode the forensic record without the need for a 

surrogate ECM. The techniques in this paper provide a new method for extracting data from 

heavy vehicle ECMs. 

B. Introduction 

Since approximately 2002, Cummins ECMs have had the capability to record the data for 

Sudden Deceleration Data Reports (SDDRs). When the measured wheel speed changes by an 

amount greater than some programmed threshold, a SDDR recording is triggered. A typical 

SDDR will contain a second-by-second history of vehicle speed. In 2009, Bortolin, et al., 

validated the speeds recorded in the SDDR against a V-BOX III GPS data logger establishing a 

basis for their use in accident reconstruction [113]. 

Engine control modules with HVEDR capabilities can be compromised in a crash. The 

location of a module in the engine compartment is more vulnerable than if the HVEDR is in the 

cab. For example, the Cummins ECM is located on the drivers’ side of the engine, as shown in 

Figure 5-1. In frontal collisions, the region containing the ECM is prone to damage, which can 

render the ECM inoperable. Often, separation of the engine from the frame in a crash 

compromises the vehicle side connector of the ECM, as shown in Figure 5-2. The effects of 

power loss (as a result of mechanical damage) on the Cummins family of electronics were 

studied by Messerschmidt, et at. in 2010 [110]. Findings showed that depending on the 

mechanics of the power loss, SDDR data may or may not be retained by the ECM. 
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When ECM connectors or casings are damaged, often the internal components and 

integrated circuits (ICs) are in good working order. This means data bearing chips (e.g. 

EEPROM, flash memory, and microprocessors) can still contain data. In 2015, Daily, et al. 

validated such a method on the DDEC V family of ECMs [111]. The purpose of this chapter is to 

explain how to extract data from damaged Cummins CM870, CM871, and CM2350 electronic 

control modules. The techniques presented in this work should apply to other Cummins ECMs 

with the in-circuit debugging port enabled, but were not tested. These include the CM570, 

CM875, CM876, CM2150, and CM2250 that have been used to control on-highway Cummins 

engines. The difference in architecture between the CM870 series and CM2350 series presented 

in the paper should give the reader an appreciation for the process to accommodate different 

hardware architectures. 

 

Figure 5-1. Typical location of the Cummins electronic control module on the drivers’ side of the 

engine compartment 
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Figure 5-2. Cummins electronic control module with damage to the vehicle connector, which is 

consistent with a crash where the engine is dislodged from the frame 

While the primary focus of this paper is recovery and interpretation of the SDDRs, 

Cummins ECMs also have the capability of storing data in the form of fault code snapshots. 

These snapshots can be triggered by electrical faults detected by the ECM and can include a 

record of vehicle speed at the time of occurrence. Because vehicle speed is recorded, fault code 

snapshots are also useful for the purposes of accident reconstruction. However, these snapshots 

can be overwritten by subsequent occurrences of the same fault. A secondary application of the 

methodologies outlined in this paper is preservation of fault code snapshots. Before an ECM is 

powered up for a network level acquisition, fault code data can first be preserved via board level 

Joint Test Action Group (JTAG) in-system programming port forensics. If the network level 

acquisition proves to introduce or overwrite fault code data, the process can be repeated by 
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reprogramming the ECM with the originally imaged data. This process can be repeated 

indefinitely until the desirable results are achieved without risking data loss. 

C. Procedure 

A wide view of the process is shown in Figure 5-3 with the verbs in boxes acting on the 

data in the ECM under investigation. The first step in the process is to extract the data from the 

subject ECM. There are three ways to extract the data: 1) through the network, 2) through the in-

circuit debugging port, 3) direct reading of the data bearing chips. Traditionally HVEDR is 

downloaded over the network. In this paper, we focus on extracting data using board and chip 

level techniques. 

Once the complete binary image of the ECM is extracted, parts of it can be decoded to 

develop an understanding of its contents. A good candidate for decoding is the sudden 

deceleration data. Regardless of the decoding of the raw binary, the image can be written to an 

exemplar or surrogate ECM that does not have damage. A network-based download (e.g. using 

Cummins PowerSpec) of the data can then be performed. If there is a decoded record from the 

binary, these data can be compared. If there is no external decoding of the binary, the extracted 

binary image is cloned by writing the binary image to the exemplar. 
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Figure 5-3. Simplified process diagram 

D. Extracting Data 

The first part of a digital forensics analysis is data acquisition. This this process has three 

levels: 1) Network Level, 2) Board Level, and 3) Chip Level. Network level acquisition of digital 

forensic data typically uses a vehicle diagnostic adapter (VDA) with some manufacturer specific 

software to download the data over the in-vehicle network. Most data extractions use this method 

when the ECM is intact. Network based extractions, while the most common, are outside the 

scope of this paper. Instead, we focus on board level and chip level forensics. There are three 

examples of these techniques in the following sections. 

i. Chip Level Forensics 

Often, broken electronic control modules still have intact circuits and ICs, commonly 

referred to as chips. The data bearing chips can be integrated into the main processors or built as 

additional memory devices, such as flash or EEPROM devices. In the case of the Cummins 
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CM870, the memory components are found in three distinct parts: 1) the flash memory, 2) 

EEPROM, and 3) processor memory. The flash memory location is shown in Figure 5-4 for a 

CM870. The CM871 uses a similar processor as the CM870 but does not have an EEPROM and 

the flash memory is a ball grid package. The flash memory for the CM871 is shown in Figure 5-

5. An overview of the chipsets are shown in Table 5-1. 

A strategy to recover or read the binary data in these memory bearing devices is to 

remove or detach them from the circuit board and insert them in the chip reading device. The 

photograph in Figure 5-7 shows the process of removing a flash memory chip from an engine 

control module using hot air. Care must be taken to keep the pins from the surface mount 

package straight and clean, since they will be read using a chip reader. 

Table 5-1. Chipsets for the Cummins ECMs under study 

ECM Processor FLASH EEPROM 

CM870 Freescale MPC555 
BGA 

Intel FLASH 
28F800F3 TSOP 

AT25128 8-pin SOIC 

CM871 Freescale MPC565 
BGA 

AM29BDD160G 
16Mbit Flash 

Integrated 

CM2350 NXP MPC5674 BGA Integrated Integrated 
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Figure 5-4. The location of the Flash memory in the Cummins CM870 

 

 

Figure 5-5. The internal contents of a Cummins CM871 with the flash memory highlighted 
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Figure 5-6. The inside of a Cummins CM2350. All data bearing devices are integrated into the 

main processor 

A chip reader is a general-purpose machine with adapter sockets to accommodate 

different chip shapes and pin spacings. These readers are more appropriately called programmers 

as they are designed to write programs to the memory chips during end of line programming. In a 

forensic sense, the ability to write to a chip poses a risk of data spoliation, so caution must be 

taken to avoid using the erase and write functions of the chip programming utility.   

 

Figure 5-7. Removing flash memory from an engine control module using a hot-air rework 

station 
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The Xeltek SuperPro 6000 programmer, shown in Figure 5-8, was used to read the Intel 

automotive flash memory found in many engine control modules (e.g. Cummins, Caterpillar, 

Detroit Diesel). The operation requires removing the chips from the printed circuit board, 

ensuring the pins are straight and free from excess solder, inserting the chip into the holder and 

attaching the holder to the device. A photograph of the Intel flash memory chip from the 

Cummins CM870 control module is shown in Figure 5-9.  

Once connected, the software for the Xeltek programmer can image (read) the binary data 

from the chip in its entirety. This a bit for bit copy of the data on the flash memory, or an image, 

of the memory chip as it was while was in the ECM. The process of creating this copy is called 

imaging.  

 

Figure 5-8. General purpose chip programmer 
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Figure 5-9. Intel flash memory used to hold the Cummins Sudden Deceleration data for the 

Cummins CM870 engine control module 

Acquiring chip level forensic data is destructive to the ECM and requires a delicate 

process of lifting the chip from the board as shown in Figure 5-7. To read the chip contents 

without a chip reader, the data bearing memory chip needs to be transplanted onto a surrogate 

ECM and processed. However, these procedures are challenging, especially for Ball Grid Array 

(BGA) chips, like the one used in the Cummins CM2350. Fortunately, there is an alternative 

method that leaves the board and chip intact, which uses the Joint Test Action Group (JTAG) in-

circuit programming port. As it turns out, this method applies to all the Cummins modules in this 

research. 

ii. Board Level Forensics 

If the ECM is opened to expose the board, the circuitry remains intact inside, and the 

JTAG port is enabled (by default from the factory), then an in-circuit programmer can be used to 

extract the memory contents for the data bearing chips. It is important to note the necessity of the 
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JTAG port being open. As OEMs harden their ECMs against cybersecurity attacks, these ports 

may be shut off in the future. For MY 2019 and older Cummins ECUs, the JTAG port is open. It 

is expected this technique may not work in models going forward due to the lockout of the JTAG 

port. 

With the JTAG, data obtained can then be either directly decoded, or, the data can be 

reprogrammed into a surrogate ECM and then downloaded using traditional techniques. In this 

paper, the two tools used to image the memory contents through the JTAG port are explained 

and compared. This comparison demonstrates the techniques and data between the tools are 

consistent and reliable. The comparison of the tool output is critical in establishing a sound 

scientific and engineering basis for the process. In practice, only one tool is necessary. The two 

tools are the AlienTech KTAG, as shown in Figure 5-10 and the PEmicro Cyclone, shown in 

Figure 5-15. 

Using the Alientech KTAG 

The KTAG system, based out of Europe, is primarily marketed to the so-called tuner 

community who are enthusiasts interested in modifying the performance of their engines by 

manipulating the firmware binary codes on the ECM. There are different levels of the software 

service for the KTAG, one for developing and distributing a modified firmware, and the other for 

writing a firmware developed by someone else. Since a forensic examination is focused on 

reading, the master version (used for developing) of the KTAG hardware was used.  

The second part of the KTAG system is the software. Alientech, the makers of the KTAG 

system, tries to accommodate many makes and models of microprocessors found in engine 

control modules. Their business model is to sell subscription services for the programming 

protocols for the different processors. Therefore, to read the data from the Cummins ECMs, 
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which use the MPC5XX series processors, the Alientech protocol package for the MPC5XX 

series needed to be active.  

This paid subscription for the KTAG software provided benefit for extracting the data 

through the JTAG port with clear instruction on setup. Visual guides in the computerized help 

system instructed the technician performing the forensic examination where to connect the 

different color cables, power connectors, and jumper wires. These instructions eliminated many 

hours of reverse engineering to properly connect to a JTAG port.  

 

Figure 5-10. Alientech KTAG kit as pictured on the KTAG website 

An example connection of the KTAG cables and jumper to the Cummins CM870 is 

shown in Figure 5-11. The CM870 is a module made using a FlexPCB that conforms to its 

metallic substrate. The malleable sides of the engine controller are screwed and sealed to a rigid 

frame in the core. To access the crystal (for the jumper wire) and the JTAG port, only the back 
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side of the module needs to be opened. The backside is the side of the module opposite the 

connectors.  

 

Figure 5-11. The inside of the Cummins CM870 with a bridge attached to the crystal and the 

JTAG port connected with a ribbon cable on the right 

The front side, or connector side, accepts the power cables and key switch signals from 

the KTAG device. In situations where the connectors are broken, the connections may need to be 

made by finding an intact trace on the inside of the board. The key switch is controlled through 

software, so there is no visible switch with the KTAG system. The connections for the power 

cable and ignition switch from the KTAG are shown in Figure 5-12. 
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Figure 5-12. : Power cable with key switch shown connected to a Cummins CM870 ECM 

Once physical connections are established and stable power is applied, the user selects 

the correct protocol and reads the data. The graphical interface for these options is shown in 

Figure 5-13. The data extraction process takes about 5 to 15 minutes, during which the software 

displays indicators of the memory sectors being read.  
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Figure 5-13. Selecting the correct ECM through the KTAG software and reading the memory 

contents through the JTAG port 

Upon completion, the user can save the files. An option to save the files separately is 

offered and the user should select yes, as shown in 5-14. By saving the files separately, the raw 

binary images of the memory bearing chips are preserved as individual files. Whereas choosing 

to not save files separately results in the KTAG system transforming the data into their own 

proprietary format.  
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Figure 5-14. Saving the files after reading the memory contents using the K-TAG software 

Upon collecting and saving the file, it is critical to rapidly convert the binary image into a 

forensic image. This quick action, before any other, ensures a defensible integrity check of the 

data anytime in the future. This is especially useful if there is a cybersecurity event, a crash 

event, or the potential for litigation. A discussion of digital forensic soundness ensues. 

Using the PEmicro Cyclone 

The PEmicro Cyclone is a general purpose in-circuit programmer/debugger shown Figure 

5-15. It is a commercially available tool with applications to many microprocessors for any type 

of electronic device. It does not have any specific vehicle ECM related capabilities or 

functionality like the KTAG system. Instead, the forensic technician will have to have prior 

knowledge of how to connect the JTAG port to the PEmicro Cyclone. The Cyclone FX is a 

feature-full offering from PEmicro. Less expensive tools can accomplish the same task described 

in this section. 
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The JTAG ports in the CM870 and CM871 follow a standard layout, only headers need to 

be soldered to the pads on the board to connect a ribbon cable. The same pin headers can be used 

for both the KTAG and the PEmicro. However, the CM2350 printed circuit board does not have 

headers in a standard JTAG configuration. Therefore, the knowledge gained from the KTAG was 

used to determine the location of the pins for the CM2350. 

 

Figure 5-15. Image of the PEmicro Cyclone in-circuit programmer and debugger 

The KTAG user guide was specific to the KTAG color cables and did not give insight 

into the name of the connection. To determine pin locations, the microprocessor was removed 

from the CM2350 board and a continuity test was conducted between the pads suggested by the 

KTAG help file and the BGA pads on the PCB. Since the processor is the NXP MPC5674F and 

has a publicly available data sheet [114], the signals can be inferred by the name of the ball pads 

for the microprocessor. The results of reverse engineering traces in the PCB are shown in Figure 

5-16. 
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Figure 5-16. Determination of JTAG signal names and the KTAG color guide for the CM2350 

After obtaining the necessary information about individual JTAG pinout, the CM2350 

data can be extracted using the PEmicro Cyclone. Figure 5-16 illustrates individual JTAG pinout 

for PEmicro connection.  

Using the PEmicro device requires the technician to have additional knowledge for the 

signal traces and components in the ECM. One must identify the family of the module 

microprocessor and identify the proper port in the PEmicro, as seen in Figure 5-17. This can be 

done by examining the part number imprinted on the top surface of the processor, and looking up 

the datasheet. The CM2350 module contains a MPC56XX series, which corresponds to port C on 

the PEmicro Cyclone. The manual for the PEmicro Cyclone shows connector port C to have the 

pinout shown in Figure 5-18.  
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Figure 5-17. Supported microprocessor families by PEmicro Cyclone on different ports 

 

 

Figure 5-18. JTAG pinout for port C on PEmicro Cyclone 

A setup assembly for CM2350 data extraction using the PEmicro Cyclone is shown in 

Figure 5-19. The PEmicro Cyclone is connected to the CM2350 module at JTAG pinout from the 

above information using a ribbon cable and grabber clips. A SSS2 is used to supply power for 

the CM2350 module for the extraction process [115].  
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Figure 5-19. Setup for PEmicro data extraction on CM2350 

After the physical setup is completed, the investigator would use the PEmicro software, 

which has both command line interfaces and graphical user interfaces. Each microprocessor 

family has its own programmer and for the CM2350 MPC5674; the correct software is 

progppcnexus_cyclone.exe [115]. Figure 5-20 shows the interface of the programmer on a 

Windows computer.  
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Figure 5-20. PEmicro interactive programmer 

Once successfully connected to the CM2350, the PEmicro programmer will ask for an 

algorithm to run on the module. The algorithm is needed to identify which memory to be read, 

which is based on the exact part number of the microprocessor and its memory size. The 

algorithm for this CM2350 is NXP_MPC5674F_1x32x1024k.pcp, as shown in Figure 5-21 

[115].  
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Figure 5-21. Choosing algorithm for data extraction 

The memory data of the CM2350 can now be retrieved using the Upload Module 

function in the programmer, as seen in Figure 5-22. The programmer will ask for a name for the 

output file before extracting the data.  

 

Figure 5-22. Extracting data in software using upload module function 
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The PEmicro programmer reads and outputs the memory content in an S19 file type. The 

S19 record is a format developed by Motorola and it is the only compatible file type for PEmicro 

programmer usage. Figure 5-23 shows the data extracted from the CM2350 using PEmicro 

Cyclone.  

 

Figure 5-23. Data retrieved using PEmicro Cyclone in S19 file type shown in a hex editor 

However, S19 records are not an easy format for data analysis. Thus, it is necessary to 

convert S19 records to raw binary using the srec2bin.exe program. Figure 5-24 shows the 

execution in the windows command prompt window where the S19 file from the CM2350 data 

extraction process is converted to BIN file.  
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Figure 5-24. Execution command to convert S19 to BIN file 

The binary data obtained using the PEmicro is then compared with the one obtained using 

the KTAG. The result is shown in Figure 5-25. Calculation of the SHA-256 digest on each 

record produces the same value, which indicates that the data extraction process using the 

PEmicro device or the KTAG are equivalent. Either method is appropriate and produces the 

same result for the flash memory of the CM2350.  

 

Figure 5-25. Comparison between binary data retrieved using KTAG (left) and PEmicro (right) 
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iii. Extraction Tool Comparison 

The binary images from the KTAG came in three separate files for each ECU: 1) the 

microprocessor, 2) the EEPROM, 3) the flash memory. The PEmicro, however, would only 

produce the memory contents of the microprocessor. In the case of the CM2350, the flash is in 

the microprocessor, so the there is an opportunity to compare the binary image from the KTAG 

and the PEmicro. As expected, the binary images matched. This was determined by calculating 

the SHA-256 hash of each file and comparing the digests. Since the hashes match, the files are 

identical, bit by bit. The results of calculating the hash values for the files containing the binary 

images shows the tools provide the exact same results. This means only one tool is needed to 

perform the extraction. 

It is important to note the PEmicro extraction does power on the module and some run-

time counters will resume. Therefore, subsequent extractions will not have the same SHA-256 

digest. The meaningful data, like the sudden deceleration records, do not change or have any 

differences that are dependent on the method or tool used for the binary data extraction. Even 

though these counters change, they will be reset back to the original image each time the data is 

reflashed from the original chip image.  

iv. Forensic Soundness 

The premise of creating a forensic image is to establish forensic soundness as originally 

described by McKemmish [112] and applied to HVEDRs by Johnson, et al. [113]. To 

summarize, forensic soundness has the following elements: 

• Meaning is a term that denotes confidence in the interpretation of extracted evidence data 

• Error Detection denotes processes for detecting or predicting errors in the forensic process 
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• Transparency means the forensic process is documented, known, and verifiable 

• Expertise is required for investigators examining digital data 

• Tamper detection involves processes to evaluate if data in the original record has been 

changed 

The process for establishing a forensic image that has tamper detection is to calculate a 

cryptographic hash and associate it with the file. Ideally, the hash would be digitally signed to 

provide attestation for the hash and file. The signed hash should accompany the file in all 

transfers of information. With this digitally signed hash data and the original binary image, 

anyone can verify the digital signature and attest the investigator was the signatory and the file 

contents have not changed.  

Cryptographic Hashing and a Digital Forensic Image 

To create a forensic image of the chip, the memory contents read from the device needs 

to be hashed to provide a mathematical method to determine if the data remains unaltered. The 

strategy to achieve a forensic image is to compute the SHA-256 digest and include that hash 

digest with the original image. Since the SHA-256 algorithm is standard, it can be implemented 

many ways. For example, some free and open-source programs are available as add-ins for the 

file explorer in Windows’ right-click menus.  

Hashing the file is a manual step in the processes that needs to be performed immediately 

after the original image is acquired. The timeliness of the hash is critical to establish provable 

confidence of the authenticity of the data. Hash values should always be calculated before any 

analysis is performed. This reduces the likelihood of critique in manipulating the data to a 

specific end. If a forensic investigator has calculated the hash before any decoding, then any 
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manipulation would be at random, since there would be no knowledge of the data. If a forensic 

investigator would prefer not to use the Python script, there are utilities available for Windows 

that compute cryptographic hash values. These “right-click” menu options can be discovered 

using an internet search engine.  

The saved binary file is native machine code and does not have an application to open it. 

In this case, to view the raw binary (also known as hex codes), a hex editor is common. With the 

hex editor, the raw data can be viewed for analysis. Many hex editors, like HxD, have calculation 

tools. The example shown in Figure 5-26 displays a tool to calculate the SHA-256 hash digest. 

This digest should be archived before performing any analysis or subsequent data interpretation. 

An easy method to archive this hash is to send it, along with the original file, to a trusted e-mail 

account.  

 

Figure 5-26. Example calculation of the SHA-256 cryptographic hash digest in the HxD hex 

editor 
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The process of computing and preserving a hash for the forensic image is the same 

regardless of the tool used to extract the data.  

E. Data Decoding and Analysis 

With the forensic image extracted and preserved, an analysis can be done to determine 

interesting data within the binary image. In a vehicle crash reconstruction, determining the data 

structures and values for the sudden deceleration record is of interest. To this end, we present the 

techniques and results of decoding the SDDR and the Data Plate. These pieces of data can 

provide some indication of an attributable event.  

 

Figure 5-27. A binary image from the ECM showing some human readable snippets 

The screenshot of the forensic image shown in Figure 5-27 reveals human readable data. 

This suggests the contents of the memory are not encrypted while stored in non-volatile, which is 

a prerequisite for performing a binary analysis. 



   
 

206 
 

i. Data Plate 

The data plate contains descriptors of the engine and ECM. An example for the CM870 

in this study is shown in Figure 5-28 with its corresponding data stored in the EEPROM shown 

in Figure 5-29. 

 

Figure 5-28. Data plate from the Cummins PowerSpec report for a CM870 

 

 

Figure 5-29. ASCII decode contents from the EEPROM record found in the CM870 
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F. ECM Cloning: The Virtual Chip Swap 

Physically moving a memory bearing chip from one ECM to another is often a 

challenging prospect. The process requires a steady hand or specialty tools. The 8-pin EEPROMs 

found in passenger vehicle airbag modules are easy examples of this technique. However, the 

high pin count and/or BGA chips make physically swapping the chips almost impossible.  

Since the in-circuit programming techniques have both read and write capabilities, the 

data from the module under investigation can be read and written to a surrogate ECM. Since the 

binary image from the initial read is forensically preserved, with a SHA-256, it provides a 

canonical copy of the original ECM. This forensic image can be written to other ECMs many 

times over without compromising the integrity of the image. This can be useful when 

investigating fault codes and their origination.  

The process of reading from one ECM and writing to another is called cloning. It is 

dubbed a virtual chip swap because only the data is moving, not the physical chip. The process 

makes a bit-for-bit copy of the flash memory from one chip to another.  

 

Figure 5-30. Extracting the binary record from the broken ECM 



   
 

208 
 

A visual representation of the chip cloning process is shown in Figure 5-30. The ECM 

images on the left of the figure show the front and back of a broken control module. The data is 

extracted and held as file contents. A screenshot of the data in a hex editor is representative of 

the data. Immediately after the binary image data is saved to a computer, the file contents need to 

be cryptographically hashed to demonstrate the contents were not altered. 

The reverse process of taking a binary image and writing it to an ECU is shown in Figure 

5-31. This figure shows the same binary that was extracted and hashed being imaged onto an 

exemplar ECM. The ECM depicted in the figure is connected to a vehicle emulation device 

capable of providing power, ignition, and CAN communications. From this device, a service tool 

can be used to download the data from the new ECM, but the data would be from the original 

ECM.  

 

Figure 5-31. Uploading or 'flashing" an exemplar ECM with the forensic binary image of the 

broken ECM 

The process to perform the chip cloning using the KTAG system is built into the 

programming software. As shown in Figure 5-32, the cloning function is an automated process 

activated by pressing the Clone ECU button. 
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Figure 5-32. The Clone ECM function within the KTag software provides cloning capabilities 

After following the on-screen instructions from the KTAG software, the data from the 

broken ECM will be on the new ECM. However, there are a few data elements that do not get 

transferred. A comparison of the Cummins PowerSpec Data Plate from two different ECMs is 

shown in Figure 5-33. The ECM data plate labeled as A is the surrogate ECM that will have its 

contents replaced. The VINs are called out to show the changes after the cloning process. ECM 

B is the ECM that has the data that needs to be transferred to the donor or surrogate ECM. 

After the cloning process, the Data Plate information from the two ECMs were compared 

again, as shown in Figure 5-34. All the data from the surrogate ECM was replaced except the 

part number and serial number. This infers these data elements are stored in different memory 

bearing devices than the flash memory. Often processors have unique IDs that can be used for 

part tracking.  
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Figure 5-33. Data Plate from 2 different ECMs (A and B) before cloning. ECM B will be copied 

over to ECM A 

 

 

Figure 5-34. Data Plate information after the image from B is flashed onto A 

Once the binary image has been transferred to the surrogate ECM, a traditional download 

procedure is enabled (assuming the surrogate ECU is in proper working order). During the 
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cloning process, it is important to save the binary file and calculate the hash function of the 

device. This digital image can be used repeatedly to write to ECUs. Since the SHA hash digest is 

known, the image can also be verified before each use. One of the uses of the binary image is 

manual decoding where an investigator determines the meaning of the data in the flash memory 

as it relates to sudden deceleration events.  

G. Decoding Sudden Deceleration Events 

The data of interest in crash reconstructions are often associated with the sudden 

deceleration event where vehicle speed, engine speed, engine load, throttle position, brake, 

clutch, cruise and lamp status are tabulated for 75 seconds (60 seconds before a trigger and 15 

seconds afterwards). An example table of partial data from the Cummins PowerSpec report is 

shown in Figure 5-35. The data shown in this figure is contrived because it was generated in a 

laboratory to have a speed of 150 mph, which is unrealistic. The data in the ECU was generated 

using a vehicle speed signal generator. The generator was a small microprocessor development 

board called the Teensy 3.2. It was programmed using the Arduino language to change frequency 

of a pulse width modulated signal set to a 50% duty cycle.  

The initial challenge is to identify the hundreds bytes associated with the sudden 

deceleration record from the 3 million bytes in the binary record. This process requires some 

pattern matching within the records. Since we have a known repeated record of 150mph, we 

needed to determine how 150mph is encoded. Our first attempt was to follow the SAE J1939-71 

recommendations where speed is encoded with 2 bytes and the least significant bit value is 1/256 

km/h. However, this conversion did not work as there were no repeated patterns with the value. 

Instead, we tried to encode speed directly as 1/256 miles per hour per bit. This encoding scheme 

would suggest 150 mph would be encoded as 150*256 = 38,400. This decimal value represented 
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as a little endian (Motorola format), 16-bit hexadecimal number is 0x9600. Searching for 0x9600 

in the binary file resulted in the repeated pattern shown in Figure 5-36. 

 

Figure 5-35. Table produced by Cummins PowerSpec from a laboratory generated speed record 

 

 

Figure 5-36. A pattern showing the decoded 150mph record 
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To further test the theory of an encoding scheme where the LSB is 1/256 mph, the speed 

value coming off the 150 mph constant, which is 89 mph, as shown in Figure 5-35, is 

determined. Since we have a theory of the position for the speed record being every 14 bytes, we 

identified the likely position corresponding the 89 mph entry in the PowerSpec SDDR record. 

The value of 0x588A is highlighted in blue in Figure 5-37. The value of 0x588A is 22,666 in 

decimal. Using the conversion rate of 1/256 per mph, the resulting operation is 22,666/256 = 

88.54 mph, which rounds to 89 mph, thus confirming the location and structure of the SDDR in 

memory. 

 

Figure 5-37. Confirming a speed record of 89mph 

Using a similar strategy for the changing parameters within the SDDR records, a 

decoding scheme was determined. The results of the binary positions and subsequent 

conversions are shown in Figure 5-38 with a confirming example from the SDDR record in 

PowerSpec. However, there are still switch parameters represented by single bits that are 

constant through the PowerSpec records. Since there are no unique changes, we need to find or 

generate a new record with changing switch values. To do this, a method called middle-person 

attach was used to create arbitrary PowerSpec records. But first, we need to understand the J1939 

network traffic for the Sudden Deceleration Records. 
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Figure 5-38. Decoding results for variable parameters in the PowerSpec records 

H. CAN Data Analysis 

Understanding the vehicle network and diagnostic communications is necessary for being 

able to solve the mystery of the switch bits. The first step is to record the data using the CAN 

Logger. A photograph of the inside of the CAN Logger 2 used for this research is shown in the 

upper left of Figure 5-39 and the assembly of the CAN Logger 2 and its corresponding cable is 

shown in the remainder of the figure. 

 

Figure 5-39. CAN Logger 2 to compare binary image with CAN network traffic 
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The CAN Logger 2 is capable of logging network traffic to an SD card without missing 

frames. Based on the work in [111], it was hypothesized that the memory contents will be 

reflected in the CAN traffic. Therefore, a section of memory corresponding to a SDDR record 

was identified as shown in Figure 5-40. The goal was to find this memory record in the CAN 

traffic. Since CAN messages are limited to 8-byte frames, a transport protocol as defined in SAE 

J1939-21 Data Link Layer [2] is used to transfer memory contents over CAN. This means the 

messages for data transport will carry 7 bytes per frame of memory contents with the first byte 

used as an indexing counter to ensure ordered delivery. The data identified in Figure 5-41 show 

the messages with the same contents as the ones in memory shown in Figure 5-40. 

 

 

Figure 5-40. Raw data from the binary image 
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Figure 5-41. CAN Traffic from the log file matching the data in the binary image from a direct 

chip read 

With the understanding of how the network traffic carries the SDDR records, we can 

insert a device to manipulate the data in transit to set switch events in the records. From these 

manipulated records, the encoding for the switches can be determined. 

i. Middle person Manipulation 

A middle person is a hardware device that breaks the direct link from one node to 

another. In this case the direct link is the CAN bus from the ECM to the vehicle diagnostics 

adapter. If this link is broken with a man-in-the-middle, then the data on the ECM side of the link 

can be changed as it is transferred over to the VDA side of the link. This means the middle 

person hardware needs to have 2 CAN channels, one for each link. Since the CAN Logger 2 has 

these channels, it was reprogrammed to be a middle person.  

The setup for the middle person is shown in Figure 5-42. The device in the upper left of 

Figure 5-42 is the Smart Sensor Simulator 2, which is connected to the ECM (not shown). The 

SSS2 creates a truck-like network and a 9-pin diagnostic port. The other link shown in Figure 5-
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42 is the Cummins Inline 7 vehicle diagnostics adapter. The middle person is the CAN Logger 2 

with an adapter cable that breaks the direct link. This cable has the J1939 traffic from the ECM 

connected with channel 1 on the CAN Logger 2 and Channel 2 is connected to the VDA. Thus, 

the processor in the CAN Logger 2 is the man in the middle. 

The logic programmed into the middle person looks for the pattern associated with the 

SDDR events. Once it detects a CAN frame containing the switch data is to be forwarded to the 

VDA, it manipulates the data frame to set a switch bit. The corresponding PowerSpec report is 

acquired and the changed switch status is located. From this change, the encoding scheme can be 

determined. 

 

Figure 5-42. Using the CAN Logger 2 as a Man-in-the-Middle 
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ii. Decoded Results 

After mapping the binary switch data to engineering results (i.e. translating the data), a 

routine was built to decode all the switch data in the SDDR. The results of the decoding from the 

example is shown in Figure 5-43. 

 

Figure 5-43. Results of decoding the switch states for all three available sudden deceleration 

records 

With the complete key to each line of the table in the SDDR records, we can build a tool 

to create a custom version of the Cummins PowerSpec report generator. The results of the 

Python-based implementation is shown in Figure 5-44. 
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Figure 5-44. Comparison of the custom decoding of the vehicle speed and engine speed records 

compared to the Cummins PowerSpec report 

I. Discussion 

The methods presented in this paper for the CM870, CM871, and CM2350 may only 

apply specifically to the ECMs tested. It is not uncommon for manufacturers to introduce 

revisions to circuit boards during production. Chip part numbers or configurations may be 

different in other CM870/871/2350 ECMs with different circuit board revisions.  

The virtual chip swap methodology may not be a replacement for conventional chip 

swaps in all cases. Damage to the ECM that interrupts the connections between the JTAG header 

and the processor may prevent successful communication. This could include localized impact 

damage in the processor region or severe burning that consumes the circuit board. 

The method of binary chip imaging may be the best way to preserve the fault code data in 

an ECU. Since the startup routines do not take place, the ECU is not initialized and does not 
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perform its diagnostic routines. This keeps the fault codes preserved, with an ability to reset an 

ECU with a forensically sound digital image.  

If the ECU is cloned, the new ECU with the data of interest can be powered back on to do 

a download. Many times, the investigator may not want to set new fault codes. When performing 

a download on the cloned ECU, there are 2 methods to try to achieve a fault free environment: 1) 

connect the ECU into a surrogate vehicle in good operating order or 2) connect the ECU to a 

bench harness with a complete simulation of the fault free environment. Each of these strategies 

is challenging because fault codes can arise from configuration differences between the surrogate 

vehicle/bench harness and the ECU with the new data. For example, a bench harness would need 

to have a CAN based Variable Geometry Turbo (VGT) that matched the ECU in question. If the 

programming on the VGT is different, a new fault code may be introduced.  

With the technique explained in this research, the vehicle/bench harness can be updated 

to address new fault codes. Once the fault code is mitigated, then the ECU can be flashed back to 

its original state using the forensically sound ECU binary image. The process can be repeated 

until there are no new fault codes present. Furthermore, forensic investigators can examine the 

differences in the binary images to see presence and preservation of the fault codes. The direct 

interpretation of the fault codes from the binary image is out of scope for this research. However, 

preliminary analysis suggests a more complicated linked data structure with contributions to fault 

code data scattered throughout the binary records. Nevertheless, the work presented herein 

provides a fundamentally sound method to drastically reduce the risk of data spoliation through 

the creation of additional fault codes. 
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J. Chapter Conclusions 

A forensically sound method for imaging, preserving, and analyzing data from a 

Cummins CM870/871/2350 electronic control module was explained in detail. When a 

Cummins-powered heavy vehicle has damage to the electronic control module containing the 

heavy vehicle event data recorder, data may not be able to be extracted using vehicle diagnostics 

tools. Invasive and low-level techniques for extracting non-volatile memory contents were 

described that use board level techniques with the available JTAG port. Additional chip level 

data extraction techniques can also provide access to the data through a chip reader.  

Once these data are obtained and preserved in a forensically sound manner, the binary 

record was decoded and presented to show typical HVDER data, like engine speed, vehicle 

speed, accelerator pedal position, and other status flag data.  

The memory contents from the ECM can be written to a surrogate module. The data from 

this surrogate module can be downloaded and decoded with traditional maintenance and 

diagnostic software. This was described as a virtual chip swap.  

The research also shows the ECM is not turned on during the binary imaging. Therefore, 

diagnostic trouble codes from the ECM are preserved in its as-found state. In other words, the 

digital forensic technique of extracting memory contents through the JTAG port does not 

introduce any new fault codes.  

Cryptographic hashing of the forensic data provides a mechanism to verify the original 

digital forensic record, which makes the technique presented forensically sound. Finally, the 

decoding for the HVEDR binary record was presented so investigators can decode the forensic 



   
 

222 
 

record without the need to a surrogate ECM. The techniques in this chapter provide a new 

method for extracting data from heavy vehicle ECMs. 
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Chapter 6. Thesis Conclusions 

A. Abstract Restatement 

A large database of CAN network traffic from operational heavy trucks is a beneficial 

resource that gives the trucking industry a better understanding of those vehicles' cybersecurity 

aspects. An intrusion detection algorithm can be developed based on the database to protect 

heavy trucks from potential cybersecurity threats. Therefore, an affordable CAN logger device 

was designed to gather CAN data. Moreover, the device must also be secure for the CAN 

logging process to prevent the log data information and integrity from being compromised. Thus, 

encryption and digital signature were introduced and implemented in the CAN logger design. 

Practical encryption is an important tool in improving the cybersecurity posture of data 

loggers and engineering tools by providing confidentiality. Implementations of symmetric and 

asymmetric algorithms were used to perform envelope encryption of session keys with 

symmetric encryption algorithms. Maintaining determinism and minimizing latency are primary 

considerations when implementing a cryptographic solution in an embedded system. To satisfy 

the stringent requirements for truck systems, the mmCAU on the NXP K66 processor found on 

the Teensy 3.6 development board was evaluated for potential use in heavy vehicles. Results 

show the K66 mmCAU can encrypt heavy vehicle CAN traffic at a rate over 6 Mbps per second 

and, along with the CAN Logger 3, successfully log all the data at 100% bus load. Using AES-

128 in CBC mode, the log data is encrypted in a manner such that the overall data is encrypted 

instead of each code block being individually scrambled as in the ECB mode. AES CBC mode 

provides high entropy encryption for data confidentiality; however, it does not include error and 

integrity checks. The error verification of the encrypted buffer is handled by a CRC checksum 
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and the integrity check uses an Elliptic Curve Digital Signing Algorithm (ECDSA). An 

ATECC608A HSM is explored and utilized to securely store key pairs for key management and 

implement an ECC algorithm to sign the data for integrity verification. The ATECC608A is also 

used to generate shared secret keys using ECDH for secure data storage and management. Secure 

collection and secure data transportation to a central server are crucial areas of focus for a 

practical cybersecurity implementation. 

B. Contribution Restatement 

The CAN logging project has gathered a significant amount of heavy truck CAN traffic 

with more than 11 billion messages for the database, and more data is still being collected. 

Moreover, a CAN logger device with an AWS cloud system has been designed for the project to 

provide secure data collection and storage by implementing cybersecurity measures following 

the industry standards. There is also a user-friendly client application GUI for users to manage 

their data between the device and the AWS server. The log data from the project can only be 

accessed by its owner and the project administrators; however, the CAN logging project 

hardware and source codes are made available to the trucking industry as well as the public with 

the hope that it can be applied to increase cybersecurity posture in heavy vehicles, and its 

documentation can be found on the GitHub repository [23]. 

Cyber-physical system security, as a field of study, is in its infancy. This thesis represents 

a concrete example of designing an entire data logging system (i.e. device, front-end and back-

end) with cybersecurity as a primary objective. The CAN Logger 3 project demonstrates the 

economics and feasibility of incorporating cybersecurity as a design requirement. This body of 

work should be useful for inspiring future designs that incorporate CAN bus, hardware security 

modules, and system level communications.  
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C. Future Work 

Even though some features are not within the current project scope, they are still needed 

to be tested to completely validate the CAN logger design. On the other hand, there are ideas that 

can be implemented to improve the CAN logging project design. The following list describes 

some possibilities for future work: 

• The Single-Wire CAN feature needs to be validated. 

• The LIN feature needs to be validated. 

• The CAN2 feature needs to be fully implemented in the firmware by utilizing the 

ACAN2517 library [85]. 

• The J1708 feature needs to be fully implemented in the firmware. 

• J1708 and CAN2 needs to be detected automatically for multiplexing by using the REC 

from CAN2, which is similar to the autobaud feature. 

• The WiFi feature can be implemented where data stored on the CAN logger can be 

transferred to the local computer client application wirelessly for convenience. WPA2 

should be used in this application for security. 

• With the current configuration, the server public key stored in the ATECC608A HSM is 

validated through the provisioning process and cannot be changed after that. Therefore, 

this could be costly to revoke that public key because it requires the HSM to be replaced. 

Public key certificates can be added to the design using the ATECC608A HSM memory 

slot to efficiently validate the server public key. 
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• An RSA asymmetric encryption scheme can be implemented in such a way that the CAN 

logger uses a server’s RSA 2048-bit public key stored on the ATECC608A HSM to 

encrypt AES session keys, which will be decrypted using the corresponding RSA private 

key residing on the server. By replacing the ECDH shared secret with this method, the 

design can be improved by reducing the number of keys that the system has to manage 

because the ECDH shared secret key is eliminated. Moreover, it is also more difficult for 

attackers to hack the CAN logger if they have the physical device because it will require 

more resources to crack the RSA encryption than reverse-engineering the device and 

exploiting the ECDH shared secret function on the device. For the current configuration, 

there is a low risk that the device is physically compromised because the users are trusted 

to keep their devices secure. However, if a device is stolen and hacked, critical 

information from only that device is exposed, and the administrators can revoke it from 

the server without negatively affecting the entire system.
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